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Abstract  

Digital engineering is increasingly established in the industrial routine. Especially the application of 

machine learning on geometry data is a growing research issue. Driven by this, the paper presents a new 

method for the classification of mechanical components, which utilizes the projection of points onto a 

spherical detector surfaces to transfer the geometries into matrices. These matrices are then classified using 

deep learning networks. Different types of projection are examined, as are several deep learning models. 

Finally, a benchmark dataset is used to demonstrate the competitiveness.  

Keywords: data-driven design, artificial intelligence (AI), data mining, deep learning, part 
classification 

1. Introduction 
Driven by the continuous improvement of computation performance as well as huge advances in the 

field of machine learning methods, digital engineering and data-driven design tools reform established 

product development processes (Bickel et al., 2019). In this context, particularly the automatic 

classification of mechanical engineering parts throughout the design process receives increasing 

attention. Various application options are conceivable, starting from a simple component search in 

created assemblies over the employment in FE-simulation. Moreover, with the aim to simplify the pre-

processing of finite element simulations, Kestel et al. (2019) use a combination of text mining and 

ontologies to independently extract FE-specific knowledge from databases and FE simulation reports, 

which can be merged with part detection for a better automation of the preprocessing stage. A first 

concept proposes Spruegel and Wartzack (2015) to this objective, with an automatic part recognition 

in FE simulations. Even in the reverse engineering process, the automatic detection of part classes 

enhances the quality of the reconstructed part model (Qie et al., 2021). 

In this paper, a new method is presented which can classify parts from the field of mechanical 

engineering by applying deep learning in combination with the projection method. The performance of 

the new method is first compared with initial approach, followed by a comparison with established 

algorithms from computer vision via a benchmark dataset. 

2. State of the art in the part classification 
The idea of classification is to assign a specific predefined class label to a given input. Consequently, 

it is a supervised machine learning method, which has a huge application range, from classifying 

images, time-sequences or text data. This working principle is also adapted for 3D geometry parts. 

Many methods and new algorithms have been developed to achieve this objective. In particular, the 

discovery of Convolutional Neural Networks (CNNs) had an enormous impact on the development of 
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geometry classification algorithms. CNNs machine-imitate human vision by arranging multiple filters 

and layers one after the other to transform the input image into a large feature map. Afterwards fully 

connected neural networks or other classifiers, such as support vector machines or decision trees, can 

be applied for the classification. Almost all current methods for part classification have CNNs as the 

foundation for detection. The different methods can be distinguished by their geometry input format. 

A short overview is presented in Figure 1. 

The shown formats are all derived from 3D surface meshes. Compared to other geometry formats 

(e. g. STEP or IGES) they require less memory and can be easily manipulated while representing the 

geometry accurately enough without providing unnecessary information. 

 
Figure 1. Overview of different part classification methods sorted by their input format 

The first geometry representation is called voxel and its name is composed of the acronym "vox" for 

volume and "el" for element. It is a spatial 3D grid that represents geometry in a defined area. A point 

of this grid is called a voxel, comparable to a pixel within an image. This format offers the advantage 

of providing geometry uniformly in the grid representation. Several methods have taken this into 

consideration and are therefore built on the voxel representation. Brock et al. (2016) developed a new 

approach based on the VoxNet architecture, which was extended by inception-style modules and a 

relatively shallow network was chosen. This new procedure was called Voxception-ResNet (VRN), 

due to the integration of the inception modules. The approach of Furuya and Ohbuchi (2016) 

combines the description of 3D objects via local features with rotation normalized grids into a new 

method called Deep Local feature Aggregation Network (DLAN). 

In contrast to voxels, point clouds are irregularly and disorderly distributed in space, which makes the 

application of typical CNNs impossible. This problem has been solved by PointNet, which is a deep 

learning architecture invented by Qi et al (2016) that extracts features from point clouds. The 

described method is not only able to recognise components, but also to segment them. The part 

detection is based on two steps, the input transformation and feature generation, as well as the 

classification of global features. For input transformation, a combination of transformation networks 

and matrix multipliers are utilised, which are transferred to a global feature vector via max pooling. 

This vector is then classified by a multi-layer perceptron (MLP) and the corresponding label is 

determined. The described procedure was improved further by Qi et al (2017) to PointNet++, with the 

aim of recognising more fine-grained patterns. 

An alternative approach for point clouds has been developed by Xu et al. (2018), the SpiderCNN. This 

architecture consists of so-called SpiderConv units, which extend the convolutional operations to 

irregular point sets by parametrizing a family of convolutional filters. These filters are defined as the 

product of a simple step function for detecting local features and a Taylor polynomial that 

approximates the weights. 

Besides using the two previously described geometry formats as input for classification, images can 

also be selected. The existing methods generally render several images from different views of the 

part, which are then classified using CNNs. A well-known method from this category is the Multi-

View CNN (MVCNN), which was stated by Su et al (2015). In this method, rendered views from the 
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3D object are passed through the first CNN layer to extract view-based features. In the subsequent 

view pooling layer, the previously extracted features from all views are combined and directed 

through the second CNN, which is responsible for part classification. 

Another image-based approach relies not only on component but also on orientation prediction, the 

RotationNet developed by Kanezaki et al. (2018). Unsupervised learning helps finding the three best 

object poses out of twelve fixed camera perspectives, to optimise the classification accuracy. In 

contrast to the previous techniques, methods based on images are not able to segment 3D geometries 

and have therefore fewer general functions. Especially the ModelNet (Wu et al., 2015) benchmark 

results of the RotationNet show that the usage of images enables a high accuracy in part detection. 

A special case in this collection is the method of Spruegel and Wartzack (2015), which is limited to 

the identification of FE simulation parts. This method has been highlighted with a hatching in Figure 

1, because in this method an image is not transferred into a CNN, but into a normal neural network. 

For this purpose, the geometry was projected into a matrix which was then transformed into a vector. 

This serves as input for a neural network. 

The collection of algorithms shows that image-based methods can achieve high accuracy and are 

partly already used in the product development environment. For this reason, the method presented 

below also utilises images as an input for the classification algorithm. 

3. Projection method for classifying mechanical engineering 
components 

The idea of this new approach is to project a point cloud onto a sphere and then transform it into a 

matrix, which is the input for the CNN. The origin of this projection method goes back to Spruegel 

and Wartzack (2015). The stated method has the problem that it was only applied to very specific 

classes, e. g. screw ISO 4762 – M6 x 20. Therefore, no transferability to new components could be 

verified or tested. Furthermore, the approach used a volume mesh as input, which severely limits the 

applicability of the method, since the reconstruction of surface meshes to solids can be costly and 

complicated. 

Consequently, the goal of the new approach is to enable a broader class classification, like screw or 

alignment pin, by learning the features of the respective class. In addition, surface meshes should be 

taken as input to ensure better applicability and comparability. A comparison of the new method with 

the old one on a given data set is presented in Section 4.1. 

While the procedure was significantly revised, changed and optimized in almost all partial aspects, the 

basic idea has been preserved by converting the geometry into a point cloud and then in a matrix. 

Therefore, a 3D mesh is necessary for the execution, which serves as a starting point for the 

projection. In principle, point clouds can also be used as input but with the restriction of a fixed point 

cloud number for all parts to achieve a meaningful projection. 

Unlike the established image-based methods, it does not use multiple views of the geometry, but an 

already processed form. The detailed structure of the new classification procedure is explained in 

detail in the following chapter. 

3.1. General overview 

In Figure 2 the complete overview of this method is shown. The process can be subdivided in two 

main steps, the point cloud generation and projection method, followed by the building and training of 

the classifier. The procedure starts with the input of a 3D geometry, which is first processed and 

converted and then handed over to the trained model. This classifies the matrix and provides the 

appropriate class for the geometry in question. Every main step consists of several sub-steps, each of 

which is explained in the next chapters. 
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Figure 2. Overview of the general procedure of the classification 

3.2. Geometry pre-processing and projection method 

The first step is to read the geometry file and extract the faces and vertices. This information is then used to 

align the component. For this, a bounding box is generated around the part. The calculated corner points 

serve as input for a principal component analysis (PCA), which defines the alignment of the individual 

geometries. 

Next, the aligned component is converted into a point cloud by randomly generating a defined number of 

points on the surface of the respective component. For this series of experiments, a fixed point cloud 

number of 25,000 per each component was selected. The number is defined by the combination of 

projection resolution and a feasible computing time. The random distribution on the mesh could be 

improved by further optimization, but due to high component numbers, the focus was set on a faster 

method to generate the point cloud. The projection method utilizes the information of the individual points 

and projects them onto a detector sphere. This globe is divided into several areas, which are called pixels. 

The exact structure of the sphere can be examined in the publication of Spruegel et al. (2021). 

Finally, the projected points per pixel are counted. Similar to a map, the generated sphere is unfolded, and 

the result are considered as an input matrix for the machine learning process. Hence, the projection has two 

main primary parameters: the type of projection and the resolution of the matrix. 

 
Figure 3. Examples of the two projection methods according to Bickel et al. (2020) 
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The resolution of the projection matrix describes the number of pixels on the detector sphere. A matrix 

with the resolution 100x100 means that the detector sphere has 10,000 pixels. For this study, a fixed 

resolution of 256x256 is chosen, due to two reasons: On the one hand, this resolution value can still be 

calculated relatively time-efficiently. On the other hand, the network architectures have a standard 

input size between 230-260 pixels and can provide reasonable results with this input size. 

The projection method can also be varied. The original version uses a center projection, as stated by 

Spruegel and Wartzack (2015). This general idea was enhanced with the normal projection from 

Bickel et al. (2020). The new aspect is, unlike the central projection, to use the normal direction of 

each point for the projection. The normal direction can either be determined via the mesh faces or 

calculated using the neighbouring points. The general procedure of these two ways of projecting 

points can be seen in Figure 3, which shows the difference in the two types of geometric 

transformation. 

Besides counting the projected points per pixel, other values can also be used. A newly developed 

variant is called "distance projection". In this case, the projection follows the example of the center 

method. Rather than counting the projections per pixel, the distance between the center point and the 

point cloud point is projected into the pixel. The mean value of the distances per pixel is then 

determined and transferred to the matrix. 

This newly developed type of geometry transformation solves a significant problem of the two 

previous projection types. Through the additional information about the mean value of the distance, it 

is possible to create an approximation to the geometry, starting from a created transformation matrix. 

The process is not fully reversible, as the mean calculation per pixel contributes to the inaccuracy of 

the reconstruction. It also offers the advantage for the classification process of more collected 

information in the transformation matrix. The distance had not been considered before and could help 

to improve the accuracy of the classification. 

The last step of the geometry processing is the conversion of the generated matrices into RGB images. 

For this purpose, an existing function in the image datastore of Matlab is employed, converting the 1-

channel images into 3-channel images. These images are then passed on to the machine learning 

model in the next step. The necessary structure and training of the models are explained in depth in the 

subsequent section. 

3.3. Building and training of the classifier 

The procedure for the building and training of the classifier model is based on the standard process of 

creating machine learning models with transfer learning. This means that pre-trained networks are 

taken as a starting point and specific layers are exchanged for the particular task. The network is only 

fine-tuned, which usually leads to faster and more stable trained models. First, the available data is 

split into training- and test-datasets. The training dataset is used for fitting and optimizing the 

pretrained model, while the test-set is applied afterwards for evaluating the accuracy of the trained 

model. As mentioned earlier, CNNs are broadly deployed for classifying images and geometries and 

therefore are chosen for finding the right class for the generated matrices. 

Over the recent years, a various number of CNN architectures have been developed. A huge step in the 

classification accuracy of image detection was achieved with the alexnet in 2012 by Krizhevsky et al (2012). 

The next significant improvement was the introduction of the VGG 16 and VGG 19 architecture through 

Simonyan et al. (2014). These very deep neural networks could increase the accuracy of the classification, but 

due to their high number of layers, require a lot of computing power and time. This was followed by the 

development of the resnet structures through He et al. (2015), which are also available in different numbers of 

layers (e. g. resnet18, 50, 101). The benefit of this network structure is the skipping of layer and as a result, 

very deep networks can be realised that are still less computationally intensive. 

Older architectures such as the alexnet, as well as more recent models with new layer versions were selected 

for this study. Overall, five different CNN models have been selected for the component detection 

application, which were all pretrained on the ImageNet (Deng et al. (2009)) dataset: resnet50, 

inceptionresnetv2 (Szegedy et al. (2016)), densenet201 (Huang et al. (2016)), alexnet and inceptionv3 

(Szegedy et al. (2015)). 
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There are two main reasons for choosing multiple networks. Firstly, it should be ensured that the 

presented projection method can transform geometry into a matrix that offers enough specific features 

for successful classification. If different CNNs can correctly classify the converted data, it indicates 

that the geometry conversion was successful. Furthermore, the different CNNs will be tested to 

determine which is the best architecture for the problem, compared by the achieved test accuracy of 

each CNN-structure. 

4. Evaluation of the new approach 
In this section, the previously presented method is examined and the influence of the different CNNs 

is shown. This is followed by a comparison with its native approach and established algorithms in the 

field of computer vision. For all comparisons, the stated test and training datasets from a benchmark 

are used. The training dataset is applied to create and optimise the machine learning model. The 

finished model is then checked against the unknown test data to verify that the generated model is 

applicable. The dataset chosen is a benchmark dataset for mechanical components; this new geometry 

collection has been developed specifically for the product development domain and therefore differs 

significantly from other established datasets. In the following chapter, this dataset is briefly illustrated 

and explained to present the results of the classification in more detail. 

4.1. Presentation of the dataset 

The applied dataset for this new classification method was developed by Kim et al. (2020) and is 

named "Mechanical Component Benchmark" (MCB). It consists of 58,696 different geometries, sorted 

into 68 classes. The dataset is divided into two different sets, whereby dataset A was used for this 

study, which contains the same statistics as the original dataset. A short sample of components from 

the collection is shown in Figure 4. 

 
Figure 4. Overview of random parts in the MCB-dataset 

For the evaluation of the results, the metrics have been adopted from the MCB dataset. The applied 

formula for the accuracy is listed below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

The used variables in the equation are true positives (TP), true negatives (TN), false positives (FP) and 

false negatives (FN), according to Fawcett (2006). 

4.2. Comparison to the old approach 

To demonstrate that the new method provides higher accuracy values than the old approach, initial 

investigations have been carried out. A workstation PC with 32 GB RAM, an Intel XEON W-2125 

and a Nvidia Titan V was used for the training of the all stated models in this paper. 
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As previously explained, the original method is not able to use surface meshes as an input format. For 

this reason, the procedure was adapted by the process step "geometry preprocessing" from Figure 2. It 

was ensured that the quotient of "point cloud number" / " total number of pixels" was in the same 

range as the new approach. The number of pixels is specified as 36x36 which corresponds to a point 

cloud number of 1000. As described in the publication of Spruegel and Wartzack (2015), the matrix is 

subsequently transformed into a row vector and fed into a neural network. In addition to the original 

specification of two hidden layers with 550 neurons each, 10 other layouts were tested. 

The original layout achieved a test accuracy of 62.82 %, whereas the overall maximum of 65.06 % 

was achieved with a different layout (280 125 45). 

In contrast to these results stands the first test for the new approach with a resnet50 as architecture and 

also the center projection. With this combination, an accuracy of 89.03 % was achieved. This 

comparison demonstrates that the new method gives a significantly better result, improving the 

accuracy by about 25% points. The results are shown in Figure 5. 

 
Figure 5. Comparison of the new method with the older approach 

Therefore, not only in the general characteristics of the method could be improved, but also the 

classification of components. Based on these results, the new method will be examined in detail in the 

following chapters. 

4.3. Evaluation of the projection methods and network architectures 

To test the assumption, whether the geometry transformation provides enough information and 

features to classify components, the test-accuracy of all five networks is analysed. All data was 

prepared in the same way and the training parameters for the different CNNs also remained the same 

for all five models. The training duration for one model varied between 8 h and 2 days, depending on 

the architecture. First, the influence of the data preparation with different projection methods on the 

classification result has been investigated. For this purpose, the results of each projection variant for 

all five networks were summarised in a box plot and are presented in Figure 6. 

 
Figure 6. Comparison of the projection methods with all network types 
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The diagram shows the distribution for the projection methods: center, normal and distance. It should 

be noted that all three projection variants show satisfactory results. The lowest classification value is 

89.03 %, whereas the highest value reaches almost 96.65 %. These high values in combination with 

the relatively low dispersion of the results demonstrate that the geometry conversion works and 

provides sufficient features for classification. 

Furthermore, the comparison among the projection methods clearly shows that the normal projection 

provides better results than the other two variants, independent of the CNN architecture. The test 

accuracy is on average more than 5 % higher compared to the previous two methods. The difference 

between the center and the distance projection reveals that the distance variant delivers slightly better 

results with a further scattering, but both are not comparable with the normal projection. 

Proceeding from this study, the normal projection was selected for further investigation to determine 

the best combination with the stated CNN architectures. The results are displayed in Figure 7. The 

various networks and their associated classification accuracies are plotted in the bar chart. The 

diagram compares the five CNN models with each other and highlights that the combination of normal 

projection and the densenet201 delivers the best results for the MCB dataset. 

 
Figure 7. Comparison of different CNNs with transformed geometry by the normal projection 

In summary, the results indicate that geometry conversion is effective and can provide relatively good 

classification accuracies. In the upcoming chapter, a comparison is conducted with established object 

detection methods. 

4.4. Comparison to established methods 

The achieved results are now compared with the accuracies produced in the MCB publication. In this paper, a 

total of seven state-of-the-art methods from the part classification field were compared with each other. The 

algorithms are explained in detail in section 2 and are called: PointCNN, PointNet++, SpiderCNN, MVCNN, 

RotationNet, DLAN and VRN. In addition, the results of the approach to classify parts in FE simulations 

were added. The procedure developed in this publication is benchmarked against these eight procedures by 

the test accuracy. The diagram in Figure 8 displays the comparison result. 

The bar chart reveals that the developed method can compete effectively with the other approaches. Only one 

algorithm scores better results for the MCB-A dataset, the RotationNet. All other methods have a lower 

classification accuracy compared to the projection method, proving that the new procedure can compete with 

the available methods. 

This combination of data set and capable methods offers new possibilities for the application in product 

development. A common problem is the unavailability of a dataset with labelled components, which is 

necessary for training. A possible solution to this, similar to transfer learning, would be to train a model with 

the large MCB data set and then optimize it with less data from the specific use case. 

In addition, the data set can be used directly for an application, since it has a high number of classes, which cover 

many standard components from product development. One idea would be to use the data set to detect components 

95,58

96,19

96,65

96,02

95,43

92,00

93,00

94,00

95,00

96,00

97,00

98,00

T
e
s
t 
a
c
c
u
ra

c
y

inceptionresnetv2

resnet50

densenet201

inception

alexnet

%

https://doi.org/10.1017/pds.2022.152 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.152


 
ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN  1509 

in assemblies and then transfer the geometrical model into a graph, similar to principle sketches. This requires a 

large number of specific classes of machine elements (e. g. washer bolt or countersunk screw) in conjunction with 

general components (e. g. turbine or valve), both of which are covered by the MCB data set. The generated result 

can then be combined with the results of another approach. Bickel et al. (2021) developed a method for recognising 

and classifying components of principle sketches and transferring them also into graphs resulting in the possibility 

of quickly displaying similar assemblies to generate a large variation for a problem solution in the early stages of 

the product development process. 

 
Figure 8. Comparison of the MCB results against the new method according to Kim et al. (2020) 

Another idea would be to use the ability to detect specific parts within the FE simulation, but instead 

of applying this method in the preprocessing, this could also be used to improve the postprocessing of 

simulations. For example, it would be conceivable that, depending on the detected component class, 

neuralgic areas are automatically evaluated or frequent sources of error are pointed out. 

5. Conclusion and Outlook 
In summary, this paper presents a new method for the classification of 3D geometry in the field of 

mechanical engineering. The procedure was compared to an older approach and optimised based on 

various parameters and network architectures. Then, the new method was benchmarked against 

established methods from the field of object detection, whereby the new method performed very well 

in comparison. Only one method was able to achieve better accuracy values, the RotationNet. 

The presented part classification method also needs continuous improvement; relevant parameters for 

new examinations are the hyper-parameters of the individual networks, as well as the component 

alignment. Especially with the orientation of the components, an optimised version should make it 

possible to further increase the classification result. 
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