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1. Introduction. The concept of an automatic structure has been generalized
from groups [5] to semigroups [2]. Several authors [1, 6, 7] have asked the following
question. Let S be a finitely generated semigroup embeddable in a group and let G be
its universal group [3, Chapter 12]. If G is automatic, must S be automatic?

Examples in favour of this implication include: free groups and semigroups;
braid groups and semigroups [5, Chapter 9]; abelian groups and their subsemigroups
[1, Proposition 3.15].

A similar question asked whether the automatism of a group implied the
automatism of its positive subsemigroups. (A positive subsemigroup is a subsemigroup
generated by a group generating set.) This question was recently answered negatively
[1, Section 7]. However, the techniques used cannot be adapted to answer the original
question.

The purpose of this paper is to answer the original question in the negative.
Section 3 contains an example of a finitely generated semigroup S such that S embeds
in a group and S is not automatic, but the universal group of S is automatic.

2. Definitions and preliminaries. This section contains the definitions required
for automatic semigroups and states the various results on automatism required for
the remainder of the paper. This paper assumes familiarity with regular languages and
finite automata; Sections 1.1 and 1.2 of [5] contain all the basic theory for automata
and languages needed hereafter.

DEFINITION 2.1. Let A be an alphabet representing a set of generators for a
semigroup S. For any word w ∈ A+, denote by w the element of S represented by
w. For any set of words W , W is the set of all elements represented by at least one
word in W .

Let $ be a new symbol not in A. Let

A(2, $) = {(a, b) : a, b ∈ A ∪ {$}} − {($, $)}
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be a new alphabet. Define the mapping δA : A+ × A+ → A(2, $)+ by

(u1 · · · um, v1 · · · vn) �→

⎧⎪⎨
⎪⎩

(u1, v1) · · · (um, vn) if m = n,

(u1, v1) · · · (un, vn)(un+1, $) · · · (um, $) if m > n,

(u1, v1) · · · (um, vm)($, vm+1) · · · ($, vn) if m < n,

where ui, vi ∈ A. The symbol $ is usually called the padding symbol.

DEFINITION 2.2. An automatic structure for S is a pair (A, L), where A is a finite
alphabet representing a set of generators for S and L ⊆ A+ is a regular language with
L = S and such that, for each a ∈ A ∪ {ε},

La = {(u, v) : u, v ∈ L, ua = v}δA

is a regular language over A(2, $). An automatic semigroup is a semigroup that admits
an automatic structure.

PROPOSITION 2.3 ([2, Proposition 3.5]). If a semigroup S is automatic, then so is S1,
the semigroup formed by adjoining an identity to S.

PROPOSITION 2.4 ([4, Theorem 1.1]). Let M be a monoid with automatic structure
(A, L) and let B represent a finite [semigroup] generating set for M. Then there exists an
automatic structure (B, K) for M.

PROPOSITION 2.5 ([5, Corollary 4.1.6]). All finitely generated virtually abelian
groups are automatic.

PROPOSITION 2.6 ([2, Proposition 2.3]). Let U and V be subsets of A+ × A+ such
that UδA and VδA are regular. Then

UδA ◦ V−1δA = {(u, v)δA : (∃w ∈ A+)((u, w) ∈ U ∧ (v,w) ∈ V )}

is also a regular language over A(2, $).

In addition to the results above on automatism, Section 3 requires some
information about universal groups. If S is a semigroup that embeds in a group,
then the universal group U of S is the largest group into which S embeds and which
it generates, in the sense that all other such groups are homomorphic images of U .
Alternatively, the universal group of S is the group defined by treating any semigroup
presentation for S as a group presentation. (Actually, universal groups are defined
for all semigroups, not just those embeddable into groups. For the formal definition
of universal groups of semigroups, and for further information on the subject, see
[3, Chapter 12].)

Given a subsemigroup S of a group G, the subgroup of G generated by S does not,
in general, coincide with the universal group of S. However, in certain special cases,
they are isomorphic.

PROPOSITION 2.7 ([1, Corollary 4.4]). Let G be a group that satisfies a non-trivial
semigroup law. Let S be a subsemigroup of G and let H be the subgroup of G generated
by S. Then H coincides with the universal group of S.
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3. The example. Let S8 be the symmetric group on eight elements. Let �8 be the
direct product of eight copies of the integers under addition. View elements of �8 as
octuples of integers. Let G = S8 � �8, where S8 acts (on the right) by permuting the
components of elements of �8. (The �-components are indexed from 1 at the left to
8 at the right.) The abelian subgroup �8 of G has index 8!, so that G is a virtually
abelian group.

Let A = {a, b, c, d, e, f, g, h} be an alphabet representing elements of G in the
following way:

a = [(1 3), (0, 1, 1, 0, 0, 0, 1, 0)],

b = [id, (0, 0, 1, 0, 0, 0, 0, 0)], f = [(1 5)(2 6), (0, 0, 0, 0, 1, 1, 2, 0)],

c = [(1 3)(2 4), (1, 0, 0, 0, 0, 0, 1, 1)], g = [id, (0, 0, 0, 0, 1, 1, 0, 0)],

d = [id, (0, 0, 0, 1, 0, 0, 0, 0)], h = [(1 5)(2 6), (1, 1, 0, 0, 0, 0, 0, 2)].

e = [(2 4), (0, 1, 0, 0, 0, 0, 0, 1)],

Let S be the subsemigroup of G generated by A.

PROPOSITION 3.1. The semigroup S is not automatic.

Proof. Let A′ = {a, c, e, f, h}. Observe that only letters from A′ have non-identity
S8-components or non-zero seventh and eighth �-components. Note further that the
seventh and eighth �-components are not affected by any of the S8-components in A,
and that there are no negative integers amongst the �-components.

Now, for any α ∈ � ∪ {0},
abαcdαe = [(1 3), (0, 1, 1, 0, 0, 0, 1, 0)][id, (0, 0, α, 0, 0, 0, 0, 0)]cdαe

= [(1 3), (0, 1, α + 1, 0, 0, 0, 1, 0)][(1 3)(2 4), (1, 0, 0, 0, 0, 0, 1, 1)]dαe

= [(2 4), (α + 2, 0, 0, 1, 0, 0, 2, 1)][id, (0, 0, 0, α, 0, 0, 0, 0)]e

= [(2 4), (α + 2, 0, 0, α + 1, 0, 0, 2, 1)][(2 4), (0, 1, 0, 0, 0, 0, 0, 1)]

= [id, (α + 2, α + 2, 0, 0, 0, 0, 2, 2)]

and

fgαh = [(1 5)(2 6), (0, 0, 0, 0, 1, 1, 2, 0)][id, (0, 0, 0, 0, α, α, 0, 0)]h

= [(1 5)(2 6), (0, 0, 0, 0, α + 1, α + 1, 2, 0)][(1 5)(2 6), (1, 1, 0, 0, 0, 0, 0, 2)]

= [id, (α + 2, α + 2, 0, 0, 0, 0, 2, 2)].

Hence abαcdαe = fgαh for all α ∈ � ∪ {0}.
LEMMA 3.2. For each α ∈ � ∪ {0}, the elements of S represented by abαcdα and fgα

are represented by those words alone.

Proof. Suppose that w represents

s = fgα = [(1 5)(2 6), (0, 0, 0, 0, α + 1, α + 1, 2, 0)].

Since the seventh and eighth �-components are 2 and 0, the only letters from A′ in
w are either two letters a or one letter f . The first option is impossible, since the S8-
component of w would then be the identity permutation. Since the third and fourth
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�-components of s are zero, and these components are unaffected by theS8-component
of f , the rest of w must consist of letters g. Hence w is a rearrangement of fgβ for some
β. Since the first two �-components of s are 0, no letters g can precede the letter f .
Thus w = fgβ . Considering the fifth and sixth �-components of s shows that β = α.
Therefore fgα is the unique word over A representating s.

Now suppose that v represents

t = abαcdα = [(2 4), (α + 2, 0, 0, α + 1, 0, 0, 2, 1)].

The first task is to determine what letters from A′ appear in v. The letter h is ruled out
by the last �-component of t being 1. If an f is present, the only other letter from A′

must be e, since the last two �-components of t are 2 and 1. However, this gives the
wrong S8-component. The other possibilities are a, a, and e; or a and c. Suppose the
former. If the letter e is the last of these three letters, then v has a non-zero second
�-component. If one of the letters a is the last of the three, then v has non-zero second
and third �-component. Hence the letters from A′ must be a and c.

Since the fifth and sixth �-components of t are 0, and these components are
unaffected by the S8 components of a or c, no letters g can be present in v. Hence v is a
rearrangement of acbβdγ , for some β, γ ∈ � ∪ {0}. The letter a must precede the letter
c, for otherwise v would have non-zero second and third �-components. Similarly, the
third �-component of s being zero forces the letters b to lie between the letter a and
the letter c (since the S8-components of a and c together send the third �-component
to itself). The letters d must lie to the right of the letter c, since otherwise v would have
non-zero second �-component. Hence w = abβcdγ . The values of the first and fourth
�-components of t together force β = γ = α, so that abαcdα is the unique word over
A representing t. �

Suppose that S is automatic. Then, by Proposition 2.3, so is S1. Proposition 2.4
implies that S1 has an automatic structure (C, L), where C = A ∪ {1}. (The new
symbol 1 represents the adjoined identity of S1.) Let φ : C∗ → A∗ map w ∈ C∗ to
the word over A formed by deleting any symbols 1 from w. Obviously wφ = w.

Proposition 2.6 shows that the language

Le ◦ L−1
h = {(u, w)δC : u, w ∈ L, ue = w} ◦ {(w, v)δC : w, v ∈ L, vh = w}

= {(u, v)δC : u, v ∈ L, ue = vh}

is regular. Let N be the number of states in a finite state automaton A recognizing
Le ◦ L−1

h .
For each α ∈ � ∪ {0}, let uα and vα be representatives in L of the elements abαcdα

and fgα, respectively. Since abαcdα has a unique representative over A by Lemma 3.2,
it is clear that uαφ = abαcdα. Similarly, vαφ = fgα. (Hence uα and vα are the words
abαcdα and fgα with some symbols 1 possibly inserted.) By its definition, the language
Le ◦ L−1

h contains (uα, vα)δC for all α ∈ � ∪ {0}.
Fix α > N. Consider the automaton A reading (uα, vα)δC , and the states it enters

immediately after reading each of the letters b from the word uα. Since the number of
letters b exceeds N, the automaton enters the same state after reading two different
letters b. Let u′ and u′u′′ be the prefixes of uα up to and including these two different
letters b. That is, u′φ = abβ , (u′u′′)φ = abβbγ , for some β, γ ∈ �. Let v′ and v′v′′ be
prefixes of vα of the same lengths as u′ and u′u′′, respectively. The subword v′′ is such that
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v′′φ = fgη or v′′φ = gη for some η ∈ � ∪ {0}. (The former possibility arises because v′

may be a string of symbols 1.)
Suppose that v′′φ = fgη. Then pumping (u′′, v′′)δC shows that

abβb2γ bα−β−γ cdαe = fgηfgαh.

This is a contradiction, since the S8-component of the left-hand side is the identity
permutation and that of the right-hand side is (1 5)(2 6).

Therefore suppose that v′′φ = gη. Again, pumping (u′′, v′′)δC implies that

abβb2γ bα−β−γ cdαe = fgηgαh.

This too is a contradiction, since γ is at least 1, but

abβb2γ bα−β−γ cdαe = [id, (α + γ + 2, α + 2, 0, 0, 0, 0, 2, 2)],

while

fgηgαh = [id, (α + η + 2, α + η + 2, 0, 0, 0, 0, 2, 2)].

Therefore S is not automatic. This completes the proof of Proposition 3.1. �
Let H be the subgroup of G generated by A. The group H, which contains S, is a

subgroup of the virtually abelian group G and is therefore itself virtually abelian. It is
finitely generated, and so is automatic by Proposition 2.5.

Furthermore, the group G satisfies the non-trivial semigroup law x8!y8! = y8!x8!.
(Recall that �8 is an index 8! normal subgroup of G.) By Proposition 2.7, the subgroup
H coincides with the universal group of S.

Therefore S is a finitely generated non-automatic semigroup that is embeddable in
a group but whose universal group is automatic.

4. Further observations.

PROPOSITION 4.1. The semigroup S from Section 3 is not finitely presented.

Proof. For all α ∈ � ∪ {0}, the relation (abαcdαe, fgαh) holds in S. Lemma 3.2
showed that fgα was represented by the word fgα alone. Similar reasoning shows that,
for each α ∈ � ∪ {0}, the element of S represented by gαh is represented by that word
alone.

Therefore no non-trivial relation in S can be applied to a proper subword of fgαh.
Therefore in any presentation for S on the generating set A, each word fgαh must
appear as one side of a defining relation. Thus S is not finitely presented. �

QUESTION 4.2. Is there a finitely presented group-embeddable non-automatic
semigroup whose universal group is automatic?
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