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ON PLAIN LATTICE POINTS WHOSE COORDINATES
ARE RECIPROCALS MODULO A PRIME

AKIO FUJII AND YOSHIYUKI KITAOKA

Abstract. We consider, for a given large prime p, the problem of covering a
square [0,p] X [0,p] with discs center at the lattice point (x,y), x and y subject
to condition xy = 1 (modp) and with radius r. We are concerned with the size
of r.

§1. Introduction

In this paper we consider, for each given large prime P, the problem

of covering a 2-dimensional box [0, P] x [0, P] with discs C(x^(r) center at

the lattice point (x,y), x and y subject to the condition xy = 1 (mod P)

and with the least possible radius r. In other words, we wish to determine

the infimum r(P) of r satisfying

LJ C{Xty)(r)D[O,P}x[O,P].
x — 1

xy = l (mod P)

When r = \fP, the area of the left-hand side member is roughly P 2 , even

if discs do not overlap. Thus it may be too optimistic to expect to have

r(P) = constant times v P ,

and actually for P = 5, r = γ 5 is not large enough, but it would be

reasonable to conjecture that

r(P) = Pλ2+ε

for every ε > 0. If this is the case, we may claim that the lattice points (x,y)

with xy = 1 (mod P) are "uniformly distributed." Towards this conjecture,

we shall prove the following theorem.
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138 A. FUJII AND Y. KITAOKA

THEOREM. For P » 1, we have

r(P) « p ! l o g P .

We can generalize the above problem to cover the higher dimensional

box [0, M] x [0, M] x x [0, M] with the spheres

center at the lattice point (xi, , xjy) which satisfies x\ xpj=l (mod M),

and with the radius r, where M is a natural number. We shall give only a

short notice for the generalization in the last section.

We may remark here that a related problem has been treated by

Dinaburg and Sinai [1] and Fujii [2].

§2. Proof of Theorem

We shall give the following more general theorem.

THEOREM. Suppose that M, K\, K2, H\ and H2 are integers satisfy-

ing M > 3, 0 < Kλ < K2 < M, 0 < Hλ < H2 < M, K2 - Kλ > 2 and

H2 — H\ > 2. Then we have

x,y G Z, xy = l (mod M),Kχ <x<K2,Hλ < y < H2}

+O(v /Mσ0(M)σ_ i (M)log(K2 - Kλ) \og(H2 -

where O does not depend on K\, K2, H\, H2 and M , ψ(M) is the Euler

function and we put σa(M) = Σd\M da

This implies the following corollary immediately.

COROLLARY. Suppose that M is a sufficiently large integer M and

r ^ ,/σo(M)σ_i_(M)γ

then we have
M

C(aijy)(r)D[0,M]x[0,M].
x = l

xy = l (mod M)
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Clearly, we get our theorem in the introduction.

To prove the theorem at the beginning of this section, we introduce

the following functions χκ(χ) a n d XH(X) o n t n e set of integers. They are

periodic functions with period M and satisfying, for 0 < x < M

and we put

and

where e(x) denotes e2ητιx. Then we have

-, M

and
M

( λ

Xκ[x)

XH{X)

XK

XH\

(x)

[x)

1 1 if Kλ < x < K2

1 0 otherwise,

ί 1 ήHι<x<H2

1 0 otherwise,

M

i = ^2xκ(y)e{η^)

M

— Y^ ( ) ( y x )
y=l

We shall use the following lemma.

LEMMA. Let d be a natural number satisfying d \ M. Then we have

M~ι M

and
M-l

Σ
x=l
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Proof. For a real number α, we put

||α|| = min([α] + 1 — α, a — [α]),

where [a] is the largest integer not exceeding a.

We shall prove the first inequality. Denoting by U the left hand side of

the first inequality, we have

AΓ-l M - l M

U= φ
X=l 2 C = 1 y — 1

(x,M)=d (x,M)=d

= Σ iΣχ^Mf)i= Σ I Σ eφ

+ Σ mini—
M/d

« Σ df2-/fi)+ Σ

+ y (κ2-κι)+ v —

Σ
Kx< M — <x< —

— —d(K2-Kι)
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If M K

M

κ Λ > 1, then
d{K2 — Kι) — '

M M e M

I f ΊΪK^KV) < ! ' t h e n

Thus we get the first inequality.
We can prove the second inequality by modifying the above argument

as follows.

Σl**(*)l= Σ l Σ eφ
x=l l<x<M-l Kλ<y<K2

Σ i ( ^Σ
l<x<M-l

Σ f
-X-(K2-K1)

Thus we have completed the proof of the lemma.

We now proceed to the proof of the theorem.
Putting

S = ${(x,y) \xy=l (mod M),Kλ <x < K2,Hχ <y < iJ 2},

we have

M
q — V^

xy = l (modM)
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-j M

xy=l (mod M)

χ M

M2 ^
xy = l (mod M)

+J_^(0)

1 _

+ M 2 X H

A. FUJII AND Y. KITAOKA

M M

2 1 = 1 Z2 =

Xκ(0)χ

M

1 (mod M)

M

Σ
cc=l

1 (mod M )

^X^(^i)e( M

H(0)

M - l

M - l

Σ χ^(zi)e(~~

M M - l M - l ,

As JL, Δs Xκ{zi)XH{z2)e( — )
Zι = l Z2 =

xy=l (mod M)

= Si + ̂ 2 + £3 + 54, say.

It is easy to see

5! = -^ψ(M)(K2 - KΎ){H2 - H,).

S2 is

The last

clearly equal to

1 (K , K
M2

partial sum on x

M

M - l

Ί) Σ XH(
Z2 = l

is

d\M

d\M

j M"
1 o

M

x= 1

yz2

M
xyΞΞl (modM)

M

*) Σ e (-
cc=l,cZ|ίc

l< a .<M

Cd|M ~d~

XZ2

XZ2

M/d

if M/d | z2

otherwise,
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where μ(d) is the Mόbius function. Hence, we get

± - Kl)MM2

d\M ~ -2 = i
M/d\z2

The last partial sum on z2 is equal to

M

= Σ

M

y=l l<z<d

M

y

d\y

~ V d

= O(d).

Consequently, we get

d\M

d\M

d\M

Similarly, we get

S3 < σ o ( M ) .

Finally, using the estimate on the Kloosterman sum (cf. p.35 of Hooley
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[3], for example), we get

54 = T72 Σ Σ Xκ{zι)χH(z2) e{
x=l

xy = l (mod M)

-y M-l M-l

Σ Σ \xκ(zi)\\XH(z2)\y/Mσo(M)(M,zι)τ

Zl=l Z2 — 1

M-l M-l

d\M zi = 1> * 2 = 1

-j^VMσo(M) ^2 ^~Γ l°β(^2 — Kι) - M\og(H2 - Hi)
d\M

Mσ o (M)σ_ l (M) log(jFΓ2 - K{)

All of these estimates lead to the theorem at the beginning of this

section.

§3. Concluding remark

3-1. It is clear that our theorem could be refined slightly, if we take

care of the condition
M

( ) l

in the process of the proof of our lemma, or by replacing (M, z{)ϊ by

(M, z\, Z2) 2 in the estimate of S4.

3-2. To get a higher dimensional analogue of our theorem, it is enough

to apply the esimate on the higher dimensional Kloosterman sum due to

Deligne.

3-3. As a final remark, we mention a slightly different approach.

It is to reduce our problem to the following estimate on the incomplete

Kloosterman sum:

Σ e( ) ̂  v/ΓMσo(M)J(z,M) log(K2 — Ki),
K1<x<K2
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where 2 < K2 — K\ < M, z is an integer i n l < z < M — 1 and x satisfies

xx = 1 ( m o d M ) . The above estimate can be obtained by modifying the

proof of Lemma 4 on p.36 of Hooley [3].

Now

xy = l (mod M),KX <x<K2,H1 < y < H2}

Λ M

Σ /_\ -L v—^ v—"̂  ~ / \ / XZ.

(x,M) = l (a;,M) = l

= 5 Σ Ϊ . » + Ϊ Σ Ϊ » H Σ «(-̂ )
iV j l κ1<x<κ2

 1V1

 z=ι κ1<x<κ2

 1V1

(x,M) = l (x,M) = l

= Wι + V 2̂, say.

It is easy to see

^ - Kλ)(H2 - Hx) + O(H2

M

Hl).

Using the above estimate on the incomplete Kloosterman sum and
Lemma, we get

1 M~l „ xz
W2 < T7 > . \XH(z)\ I > J

 e (~]^)l

M - l

z=l

d\M

/Mσo(M)σ_ l (M) log(i(Γ2 -
2

T h u s w e g e t

8{(x,2/) | x y = l ( m o d M ) , K i < x < ϋ C 2 , ί ί i < y < H2}

+O(VMσ0(M)σ_i_{M) \og{K2 - Kx) • \og{H2 -
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which is the same as the assertion in the section 2.
If we assume a strong conjecture on the above incomplete Kloosterman

sum, then we can certainly replace | in the theorem in the introduction by
a better constant.
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