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ON PLAIN LATTICE POINTS WHOSE COORDINATES
ARE RECIPROCALS MODULO A PRIME

AKIO FUJIT anD YOSHIYUKI KITAOKA

Abstract. We consider, for a given large prime p, the problem of covering a
square [0, p] x [0, p] with discs center at the lattice point (z,y), z and y subject
to condition zy = 1 (mod p) and with radius r. We are concerned with the size
of r.

§81. Introduction

In this paper we consider, for each given large prime P, the problem
of covering a 2-dimensional box [0, P] x [0, P] with discs C(, () center at
the lattice point (z,y), * and y subject to the condition zy = 1 (mod P)
and with the least possible radius r. In other words, we wish to determine
the infimum r(P) of r satisfying

P—1
U Cuwy) >[0,P]x0,P]

z=1
zy=1 (mod P)

When r = /P, the area of the left-hand side member is roughly P?, even
if discs do not overlap. Thus it may be too optimistic to expect to have

7(P) = constant times VP,

and actually for P = 5, r = /5 is not large enough, but it would be
reasonable to conjecture that

r(P) = P3te

for every £ > 0. If this is the case, we may claim that the lattice points (z,y)
with zy = 1 (mod P) are “uniformly distributed.” Towards this conjecture,
we shall prove the following theorem.
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THEOREM. For P > 1, we have
r(P) < P1log P.

We can generalize the above problem to cover the higher dimensional

box [0, M] x [0, M] x --- x [0, M] with the spheres

Claman) (T)

center at the lattice point (x1, - - -, zy) which satisfies z1 - - - zxy=1 (mod M),
and with the radius r, where M is a natural number. We shall give only a
short notice for the generalization in the last section.

We may remark here that a related problem has been treated by
Dinaburg and Sinai [1] and Fujii [2].

82. Proof of Theorem

We shall give the following more general theorem.

THEOREM. Suppose that M, K1, Ko, Hy and Hs are integers satisfy-
mgM >3, 0< K1 < Ko< M,0<H <Hy< M, Ky —K; >2 and
Hs — Hy > 2. Then we have

H{(z,y)| z,y€Z, zy=1 (mod M), K, <z < Ky, Hi <y < Hy}
(M)
=25

+O(VMoo(M)o_y (M) log(Kz — K1) - log(Hz — H)),

(K2 — K1)(H2 — Hy)

where O does not depend on Ky, Ko, H1, Hy and M , (M) is the Euler
function and we put oo(M) =34, d*.

This implies the following corollary immediately.

COROLLARY. Suppose that M is a sufficiently large integer M and

then we have

zy=1 (mod M)
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Clearly, we get our theorem in the introduction.

To prove the theorem at the beginning of this section, we introduce
the following functions xx(z) and xg(z) on the set of integers. They are
periodic functions with period M and satisfying, for 0 < oz < M

(z) = 1 it Kh<z< Koy
XEWEI=1 ¢ otherwise,

it HH <x < Hy
otherwise,

1
and we put
M yz
Xk (T) = ZXK(y)e(M)
y=1
and

M
() = Z;XH(Q)G(%%

2mix

where e(z) denotes e“™*. Then we have

rz

1 M
X (=) = 37 3 X (e~ 1)

and

M
XK(0) =Y xk(y) = K2 — Ki.
y=1

We shall use the following lemma.

LEMMA. Let d be a natural number satisfying d | M. Then we have

M-1

5 M
Y k(@) < glog(Kz — Ky)

and

M-1
> Xk (z)| < Mlog(Ky — Ky).
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Proof. For a real number a, we put

lall = min([a] + 1 — a,a — [a]),

where [a] is the largest integer not exceeding a.
We shall prove the first inequality. Denoting by U the left hand side of

the first inequality, we have

M—-1 M-—1 M yz
U= Y Iw@l= X 1Y el
(z,:cﬂj)l:d (a:,zl\—/[:)l:d y=1
M yx yx
- SoakweHi= Y 1Y el
1<eg ML y=1 d 1<a<M=1 Ki<y<K, d
(a:,%):l (E,M):l
. 1
& min | 7, Ko — K1
1<a< Md_l ”m“
(@, M)=1
M
< > min (—,K2 —K1>
<ag bl xd
@ i=1,55,<3%
1
+ mln(l_ = ,KQ_K1>
1Sz§Md——1 M/d
=15t
M
<K Z (K2 — Kl) —+ Z E
1<e< M2 (2, M=y ISxSMd_l,(r,%):l
MI/dS% Fr B! Mz/dg%’z_ni[i<K2’K1

M M—-1 /M _, My_ M M-1 M _. My_
1< —y<==,("F —v,g)=1 1SSy —y<=g—. (g —v.g)=1
M-y 1M %*y 1 M
d
ST >34 2 KK 7T >33y <K2 K1
M
< E (KQ — Kl) + E —.
 Td
1<x<d(Kz*K1) d(K2*K1)<zéﬁ
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If m > 1, then
M M M M
U< ———+—(Ky— K 1 log(——————=)+1
€A k) B Ko+ <Og(2d) ek, — k) " )
M M e M
< + ~ 10g(§(K2 -K))) < " log(K2 — K7).
M
If m < 1 then
M M M
U< ZM T (log(5) +1) <~ log(Kz — K1),
1<z<5;
Thus we get the first inequality.
We can prove the second inequality by modifying the above argument
as follows.

M—l~ yz
Th@l= T 1 ¥ el

1<z<M-1 K;<y<Ks

< Z min(;——, Ko — K1)
<1 (Fval
M
< S (K -K)+ > —
<o <t m ey <e<

< MlOg(Kg — Kl)
Thus we have completed the proof of the lemma.
We now proceed to the proof of the theorem.
Putting
S = ﬁ{(xay) | Y = 1 (mOdM)7K1 <z S K27H1 <y < HQ}?

we have

M

S= Y xx@)xua)

=1
zy=1 (mod M)
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— Ml—z Z Z Z Yk (z1)e gjwzl)x (Zz)e(—%)

z1=1 z9=1
zy=1 (modM)

x=1
zy=1 (mod M)

1 . - Yz
+'M—2XK(O) ; . XH(zZ)e(“ﬁ)
zy=1 (mod M) 2=
1 M M—1 221
+A—/[—2XH(0) 2::1 P XK(Zl)e(_ﬁ)
zy=1 (mod M) =
1 M—-1M-1 221 + vz
T Z Z Z XK (z1)XH(22)e(————)
M z1=1 2z0=1 M

zy=1 (modM)
=51+ 5+ 53+ S, say.

It is easy to see

M-1 M -
M2 (Ko —K1)Z2Z¥1 Xu(22) ; (—‘AYQ)

rz9 Tz
Y e )= w(d) e(——)
o=1 M d|M z=1,djx M
(z,M)=1
Iz
=S uld) ¥ elq7)
d|M 1<z<M
[ Mgt i My
0 otherwise,
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where u(d) is the Mobius function. Hence, we get

M-1

d)
Sy = (Kz—KlMZ“( ST tr(ze).
M2 d|M zp=1
‘ M/d|zq
The last partial sum on z5 is equal to
. Mz
Xr(—) = xnu(0)
Mz
1< Mz <y
M
yMz
= Y Y el — (H: - )
1<z<dy=1
M 5
=> xuly) Y e(=)—(H2—Hy)
y=1 1<2<d
M
=dy xuly) — (H2— Hy)
i
Hy H
= d([=2] - [ + 0(1)) — (Ha = H)
H H
= d(~ ~ - +0(1) ~ (Hy ~ Hy)
= 0(d)
Consequently, we get
©d)

Sy = M2 (K2 - K )M Z d)

d|M

(K2 — K )M |u(d
M

<Y |p(d)] < oo(M).
M

Similarly, we get
S < oo(M).

Finally, using the estimate on the Kloosterman sum (cf. p.35 of Hooley
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(3], for example), we get

1 M-1M-1 M T2 + Y22
=2 z Z Xk (21)XH (22) Z 6(—‘—M—)
z1=1 22=1 z=1
zy=1 (mod M)
1 M—-1M-1 .
< 3 3 IRace)llRn () |VMao(M)(M, 21)3
z1=1 2z9=1
M-1 M-1
<<—V Moo(M) > Vd( Y xx(20)( Y [Xa ()]
d[M (ZIIV:I;yd zo=1
zy, =

M
< —\/ Maoo(M) > \/EE log(Ky — K1) - M log(Hy — H)y)
d|M

< VMoo(M)o_1 (M) log(Ky — K1) - log(Hz — Hi).

All of these estimates lead to the theorem at the beginning of this
section.

§3. Concluding remark

3-1. It is clear that our theorem could be refined slightly, if we take
care of the condition

(xag") =1

in the process of the proof of our lemma, or by replacing (M, zl)% by
(M, 2z, 22)% in the estimate of Sy.

3-2. To get a higher dimensional analogue of our theorem, it is enough
to apply the esimate on the higher dimensional Kloosterman sum due to
Deligne.

3-3. As a final remark, we mention a slightly different approach.
It is to reduce our problem to the following estimate on the incomplete
Kloosterman sum:

) e(—%) < VMoo(M)y/(z, M) - log(Ks — K1),

Ki<z<K,
(z,M)=1
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where 2 < Ko — K1 < M, z is an integer in 1 < z < M — 1 and T satisfies
Tz =1 (mod M). The above estimate can be obtained by modifying the

proof of Lemma 4 on p.36 of Hooley [3].
Now

H(z,y) | zy =1 (mod M), Ky <z < Kz,Hl y < Hz}

= Z XH(j):]_\l/[— Z ZXH

Ki<z<Kj Ki<z<Kgy z=1
(z,M)=1 (z,M)=1
1 Nl Tz
= X +—ZXH >, el=3p)
K1<z§K2 Ki<z<Kj
(z,M)=1 (z,M)=1

It is easy to see

(M) — Ko (Hy — Hy) + 02T

Using the above estimate on the incomplete Kloosterman sum and

W) =

Lemma, we get

M-—1 _
1 Tz
Wy € — Ixu(2)] | e(——)
M ; I(1<§z:§1(2 M
(z,M)=1
VMo log(Ky — K7) M)
< o(M )M 2= K1) Z 1Xu(2)y/ (2, M)
VMoo(M)log(Ky — K7) M1
< UO( )Aog( 2~ 1 Z\/_ Z
d|M
(M ) d

< \/MO‘Q(M)U_%(M) log(KQ — Kl) : log(Hg - Hl).

Thus we get

tH{(z,y) | zy=1 (mod M), K; <z < Ky, H; <y < Hs}
= ae(M)(K; — K)(Hy — H)
O(\/MUO(M)U_%(M) log(Ky — K1) - log(Hy — Hy)),
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which is the same as the assertion in the section 2.

If we assume a strong conjecture on the above incomplete Kloosterman
sum, then we can certainly replace % in the theorem in the introduction by
a better constant.
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