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Pure quotients and Morita’s theorem for
kω-spaces
Aldo J. Lazar and Douglas W.B. Somerset

Abstract. A kω-space X is a Hausdorff quotient of a locally compact, σ-compact Hausdorff space.
A theorem of Morita’s describes the structure of X when the quotient map is closed, but in 2010 a
question of Arkhangel’skii’s highlighted the lack of a corresponding theorem for nonclosed quotient
maps (even from subsets ofRn). Arkhangel’skii’s specific question had in fact been answered by Siwiec
in 1976, but a general structure theorem for kω-spaces is still lacking. We introduce pure quotient
maps, extend Morita’s theorem to these, and use Fell’s topology to show that every quotient map can
be “purified” (and thus every kω-space is the image of a pure quotient map). This clarifies the structure
of arbitrary kω-spaces and gives a fuller answer to Arkhangel’skii’s question.

1 Introduction

A kω-space—or a hemicompact k-space—is a Hausdorff space which is the image
of a locally compact, σ-compact Hausdorff space under a quotient map. The class
of kω-spaces was extensively studied from the 1940s and the literature of the subject
(see [10] for a useful summary) contains some famous names: R. Arens, M. Graev,
E. Michael, J. Milnor, K. Morita, N. Steenrod, and others. Since then kω-spaces have
become a standard tool (like locally compact Hausdorff spaces).

For general topologists, the class of kω-spaces has good closure properties (under
quotients, closed subspaces, and finite products). In the study of spaces of continuous
functions, the kω-spaces are those for which the space Ck(X) of continuous real-
valued functions on X, with the compact-open topology, is completely metrizable
(see [16] for example). In C∗-algebras (the authors’ interest) the Glimm spaces of
σ-unital C∗-algebras belong to this class [14, Theorem 2.6]. In topological algebras,
the spectrum of a Fréchet algebra is usually (but not always) a kω-space; and kω-spaces
crop up, too, in the study of topological groups and semi-groups, and in mathematical
economics, see [7] for example.

A kω-space is paracompact and normal [20, Lemma 5], but can be nowhere first
countable, even when it is the quotient of a second countable space. The standard
example is the countable space Sω introduced by Arkhangel’skii and Franklin [6].
One well-known weakening of first countability is the Fréchet-Urysohn property:
a topological space X is Fréchet-Urysohn at x ∈ X if A ⊆ X and x ∈ A implies the
existence of a sequence (xn)n≥1 ⊆ A with limn xx = x. If X is Fréchet-Urysohn at each
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point then X is a Fréchet-Urysohn space. The sequential fan (consisting of countably
many convergent sequences with the non-isolated points identified to a single point) is
a countable Fréchet-Urysohn kω-space with first countability failing at a single point.
Attempts to build more complicated examples run into difficulties, however, and in
2010, in exhibiting “a countable Tychonoff Fréchet-Urysohn space which is nowhere
first countable,” Arkhangel’skii raised the question of whether a quotient of a locally
compact second countable metric space could be found with all these features [5].
In point of fact this question had already been answered negatively by Siwiec in 1976
[22], but the fact that the question was even asked is significant because it highlights
a basic gap in the understanding of kω-spaces.

The general picture is as follows. Recall that a point x in a topological space X is a
k-point if E ⊆ X and x ∈ E implies that there is a compact set K such that x ∈ E ∩ K.
Clearly every point with a compact neighborhood is a k-point. As temporary notation,
for a kω-space X, let L denote the set of points with compact neighborhood, F the set
of k-points without compact neighborhood, and N the set of non-k-points. Then L is
obviously an open set, and Morita and Arkhangel’skii (Theorems 2.1 and 2.3) showed
that if X is the image of a closed quotient map then L is dense, F is discrete, and N
is empty. Furthermore, the points of L are characterized by the fact that their inverse
images have compact boundary.

When a kω-space X is the image of a general (nonclosed) quotient map q, the
set L can still be characterized by the biquotient property and L ∪ F by pseudo-
openness (definitions below), but there is no explicit extension of Morita’s theorem
relating these properties to q being locally closed or attempting to describe the sets
F and N.

In this paper, we introduce pure quotients maps—a partial generalization of closed
quotient maps—and show that whenever X is the image of a quotient map q from a
locally compact σ-compact Hausdorff space Y, there is a corresponding pure quotient
map q∗ ∶ Y∗ → X where Y∗ is a locally compact σ-compact Hausdorff space derived
from Y using Fell’s topology on closed sets. Thus, every kω-space is the image of a
pure quotient map.

For pure quotient maps, N is precisely the set of points at which the map is not
locally closed, and we extend Morita’s theorem by showing that F is contained in the
set of P-points of N ∪ F and is thus a P-space with empty interior in X (Theorem 4.5).
Thus a general kω-space X decomposes as the disjoint union L ∪ F ∪ N where L is
open and F has empty interior and is contained in the set of P-points of the closed
set F ∪ N . If X is countably tight (in particular if X is a quotient of a locally compact
subset of Rn) then the P-points of F ∪ N are isolated points of F ∪ N , lying in the
closure of L; so N is closed, L ∪ F is open with L dense, and F is discrete (Corollary
4.6). For general X, however, F need not be discrete, nor N closed, nor F lie in the
closure of L; and we show by example that F ∪ N can be any compact Hausdorff space
with F as its set of P-points (Example 4.7). A Fréchet-Urysohn space is countably
tight with N empty, so the answer to Arkhangel’skii’s question quickly follows from
the description just given (see Corollary 5.3 and Theorem 5.4, where more general
results are obtained).

The authors encountered pure quotient maps in work on Glimm spaces of C∗-
algebras, where they occur naturally (indeed Theorem 4.5, in the second countable
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case, was originally proved entirely using C∗-algebras). They look less obvious when
translated into a topological context, but perhaps that is part of their wider interest.

2 Morita’s theorem and locally closed maps

Let Y be a locally compact, σ-compact Hausdorff space and q ∶ Y → X a quotient
map with X Hausdorff. Then, we can write Y = ⋃i≥1 Yi where each Yi is compact and
is contained in the interior of its successor. We will say that {Yi ∶ i ≥ 1} is a compact
decomposition for Y, while the compact sets {q(Yi) ∶ i ≥ 1} are a kω-decomposition
for X. The space X is hemicompact with regard to a kω-decompositon; that is, for any
compact K ⊆ X, eventually K ⊆ q(Yi) for some i (see [10, p. 113]).

One of the central results on kω-spaces is due to Morita [19, Theorem 4].

Theorem 2.1 (Morita, 1956) Let Y be a locally compact, σ-compact Hausdorff space
and q ∶ Y → X a quotient map with X Hausdorff. If q is closed then X is locally compact
except at a closed discrete set of exceptional points, namely those points x for which the
fiber q−1(x) has noncompact boundary.

As Morita observes, the discrete set of exceptional points is in fact contained in a
larger discrete set of points with noncompact fiber. For all other points, the fiber is
compact.

If q is not closed, the situation becomes more complicated, and to discuss this the
following definition is useful. Let X and Y be topological spaces. A map q ∶ Y → X
is locally closed at a point x ∈ X if for every closed set W ⊆ Y , x ∈ q(W) implies x ∈
q(W) [13, Section 13.XIV]. Clearly if q is surjective then q is closed if and only q is
locally closed at each point of x. One basic result is as follows.

Proposition 2.2 Let Y be a locally compact Hausdorff space and q ∶ Y → X a contin-
uous surjective map with X Hausdorff. Let x ∈ X and suppose that q is locally closed at x
and that the boundary of q−1(x) is compact. Then x has a compact neighborhood in X.

Proof If the boundary of q−1(x) is compact then it is contained in an open subset
O of Y whose closure is compact. The set U ∶= q−1(x) ∪ O is open and the map q
is locally closed at x. Thus V ∶= X ∖ q(Y ∖U) is an open neighborhood of x. We
have q−1(x) ⊆ q−1(V), hence V ⊆ q(U) = {x} ∪ q(O) = {x} ∪ q(O), and thus V is
compact. ∎

In general, there seems to be little relation between the compactness of the fiber
and “local closedness” of the quotient map on the one hand, and the local compactness
of the image on the other. The following example is typical. Let Y = ⋃n≥0 Ln where Ln
is the line y = n in R

2, and let q ∶ Y → X be the projection of Y onto the x-axis, which
is a quotient map. Then X is locally compact and Hausdorff but q is nowhere locally
closed and q−1(x) has noncompact boundary for every x ∈ X.

A rather similar definition to “locally closed” was introduced independently by
various authors, the earliest of whom seems to have been McDougle [17]. Let X and Y
be topological spaces. A surjective map f ∶ Y → X is pseudo-open at x ∈ X if whenever
U is an open subset of Y containing f −1(x), f (U) is a neighborhood of x. If f is
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pseudo-open at every point of X then f is said to be pseudo-open. A pseudo-open
map is easily seen to be a quotient map, and if f is locally closed at x then f is pseudo-
open at x. The example above, with q open but nowhere locally closed, shows that the
converse is not true. We will see, however, that the two conditions are equivalent if
the quotient map q is pure.

The next theorem was essentially proved in [2, Theorems 3.3 and 3.4] (see also [1])
but our statement of it is somewhat different, so we include the short proof here.

Theorem 2.3 (Arkhangel’skii, 1963) Let Y be a locally compact σ-compact Hausdorff
space and q ∶ Y → X a quotient map with X Hausdorff. Let x ∈ X. Then x is a k-point if
and only if q is pseudo-open at x.

Proof Suppose first that q is pseudo-open at x (this does not use the σ-compactness
of Y). Let E ⊆ X with x ∈ E, and set F = q−1(E). Then F meets q−1(x), at y say, because
q is pseudo-open (for otherwise there is an open set U containing q−1(x) and disjoint
from F, and then q(U) is a neighborhood of x disjoint from E). Let L be a compact
neighborhood of y and set K = q(L). Then y ∈ F ∩ L and x ∈ E ∩ K.

Conversely, suppose that x is a k-point and let U be an open subset of Y containing
f −1(x). Let E = X ∖ q(U) and F = q−1(E). Then F does not meet U. If x ∈ E then
there exists a compact set K such that x ∈ E ∩ K. By hemicompactness, there exists
compact L in Y such q(L) = K. Then F ∩ L is compact and x ∈ q(F ∩ L). Hence, F
meets q−1(x), contradicting the fact that F does not meet U. Thus x ∉ E, and q(U) is
a neighborhood of x. ∎

For a quotient map q ∶ Y → X, let Hq be the set of points in X at which q is pseudo-
open. Theorem 1.3 shows that if Y is a locally compact σ-compact Hausdorff space and
X is Hausdorff then Hq is the set of k-points in X.

Among the k-points, the points x of local compactness in a kω-space (and more
generally) can be characterized as those which satisfy the biquotient property:
every open cover U of q−1(x) has a finite subset {U1 , . . . , Un} ⊆ U such that
{q(U1), . . . , q(Un)} covers a neighborhood of x (see [18, 23]). While the charac-
terizations given by the biquotient property and by pseudo-openness are elegant and
versatile, they do not seem to lead to a structure theory for general kω-spaces along
the lines of Morita’s theorem. Something is needed to bring the ideas together.

3 Pure quotient maps

In this section, we introduce pure quotient maps. They are weaker than closed
quotient maps in one important aspect, but with a compensatory strengthening in
another direction; and while they retain some of the nice properties of closed quotient
maps, they are much more general. We begin with a preparatory lemma.

Lemma 3.1 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X a
quotient map with X Hausdorff space. Then the following are equivalent:
(i) q is not closed;
(ii) there are nets (yα) (with the points yα from distinct fibers) and (zα) in Y with

yα →∞ and zα /→ ∞ such that q(yα) = q(zα) for all α; and
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(iii) there are sequences (yn) (with the points yn from distinct fibers) and (zn) in
Y with yn →∞ and (zn) contained in a compact set such that q(yn) = q(zn)
for all n.

Proof (i)⇒(ii). Let W be a closed subset of Y such that q(W) is not closed. Then
the saturation W0 of W is not closed, so there is a net (zα) in W0, which can be chosen
from distinct fibers, such that zα → w ∉W0. Let (yα) be a corresponding net in W
with yα and zα from the same fiber for each α. Then if (yα) had any convergent subnet
(yβ) with limit y ∈W , y and w would lie in the same fiber so w would belong to W0,
a contradiction. Hence yα →∞.

(ii)⇒(iii). If (ii) holds, then (zα) is frequently in some compact set K, so for each
n ≥ 1, we may choose zn from the set {zα} such the corresponding yn ∈ {yα} does not
belong to Kn (where Y = ⋃n≥1 Kn is a compact decomposition for Y). Then yn →∞
while (zn) is contained in K.

(iii)⇒(i). If (iii) holds, let K be the compact set containing (zn). Then (zn) has
subnet converging to some y ∈ K, so q(y) lies in the closure of the set {q(zn) ∶ n ≥ 1}.
But {q(zn) ∶ n ≥ 1} = q({yn ∶ n ≥ 1}), the image of a closed set, so q is not a closed
map. ∎

Definition Let Y be a locally compact σ-compact space and q ∶ Y → X a quotient
map with X Hausdorff. We say that q is pure if there is a subset D of Y such that (i) D
is dense in Y and the restriction of q to D is injective, and (ii) for every net (dα) in D,
if dα →∞ (i.e., eventually escapes from every compact set in Y) then eα →∞ for any
other net (eα) for which q(dα) = q(eα) for all α.

Condition (ii) is equivalent to requiring that if dα →∞ then the net q−1(q(dα))
converges to infinity in the Fell topology. Lemma 3.1 shows that condition (ii) is
automatically satisfied whenever q is a closed quotient map.

On the other hand, condition (i) implies that for every x ∈ X, the interior of q−1(x)
is either empty or consists of an isolated point. In fact, condition (i) is equivalent to
this when Y is second countable. To see this, let D0 be the (countable) set of isolated
points in Y and fix a countable base {U i}i≥1 for Y ∖ D0. Inductively chose a point
from each U i which does not belong to any fiber with nonempty interior or any fiber
previously chosen. This is possible because U i contains no isolated point and hence is
an uncountable Baire space, and every fiber intersects U i in a closed set with empty
interior. Let D1 be the set thus obtained, and set D = D0 ∪ D1. Then D is dense in Y
and q restricted to D is injective.

Here is an alternative description of pure quotient maps that will be useful later.

Lemma 3.2 Let Y be a locally compact, σ-compact Hausdorff space and q ∶ Y → X a
quotient map with X Hausdorff. Then the following are equivalent:
(a) q is pure and
(b) there is a subset D in Y such that (i) D is dense and the restriction of q to D is

injective, and (ii) whenever Y = ⋃i≥1 Yi is a compact decomposition of Y, the sets
D i ∶= {d ∈ D ∶ q(d) ∈ q(Yi)} have compact closure in Y.
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Proof (a)⇒(b). Let W be the closure of D i . If W is not compact, then there is a
sequence (d j) in D i with d j →∞ as j →∞. But for each j, there exists y j ∈ Yi such
that q(y j) = q(d j). Since Yi is compact, y j /→ ∞, contradicting condition (ii) for pure
quotient maps.

(b)⇒(a). Let (dα) be a net in D with dα →∞. Let (yα) be any net in Y such
that q(yα) = q(dα) for each α. Then for any Yi , if (yα) were frequently in Yi then
(dα) would frequently be in the compact closure of D i , contradicting the conver-
gence of (dα) to infinity. Hence, (yα) is eventually outside each compact set Yi , so
yα →∞. ∎

Thus, if q is a pure quotient map and Y = ⋃i≥1 Yi is a compact decomposition of Y,
then for each Yi we may find Yd(i) with d(i) ≥ i such that D i ⊆ Yd(i).

The usefulness of pure quotient maps appears in the following converse to Propo-
sition 2.2 (note that because a fiber of a pure quotient map has at most a singleton as
its interior, the fiber is compact if and only if its boundary is compact).

Theorem 3.3 Let Y be a locally compact, σ-compact Hausdorff space and q ∶ Y → X
a pure quotient map with X Hausdorff. If x ∈ X has a compact neighborhood then q is
locally closed at x and q−1(x) is compact.

Proof If Y is compact then q is closed and q−1(x) is compact for all x ∈ X, so we
may suppose that Y is noncompact. Let Y = ⋃i≥1 Yi be a compact decomposition
for Y. Suppose first that q is not locally closed at x. Let W be a closed subset of Y
such that x ∈ q(W) but W does not meet q−1(x). Then for any neighborhood U of x,
q(W) ∩U is not closed in U, so W ∩ q−1(U) is not contained in any of the compact
sets Yi . Thus for each i, there exists w i ∈ (W ∩ q−1(U)) ∖ Yi . By the density of D, there
exists d i ∈ (D ∩ q−1(U)) ∖ Yi . Then the set F = ⋃i q−1(q(d i)) is a saturated subset of
Y, and F is closed by condition (ii) for pure quotient maps. Hence q(F) is an infinite
closed discrete subset of U, so U is not countably compact.

Now suppose instead that q−1(x) is noncompact, and let U be a neighborhood of
x. Then for each i ≥ 1, there exists y i ∈ q−1(x) ∖ Yi , so by the density of D, there exists
d i ∈ q−1(U) ∖ Yi . Then again the set F = ⋃i q−1(q(d i)) is a saturated subset of Y, and
F is closed by condition (ii) for pure quotient maps. Hence q(F) is an infinite closed
discrete subset of U, so again U is not countably compact. ∎

Pure quotient maps are not uncommon. Clearly, every locally compact σ-compact
Hausdorff space X admits the trivial pure quotient, taking Y = X and q as the identity
map, and we now show that every kω-space X admits a pure quotient. Specifically,
we show that if Y is a locally compact, σ-compact Hausdorff space, and q ∶ Y → X a
quotient map with X Hausdorff, then q can be “purified”: that is, a locally compact
σ-compact space Y∗ can be derived from Y such that the quotient map q∗ ∶ Y∗ → X
is pure (and induces the same topology on X as q).

For a topological space X, let Cl(X) be the hyperspace of closed subsets of X with
the Fell topology. A base for the Fell topology consists of the family of all sets

U(K , Φ) = {S ∈ Cl(X) ∶ S ∩ K = ∅, S ∩ O ≠ ∅, O ∈ Φ},
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where K is a compact subset of X and Φ is a finite family of open subsets of X. Then
Cl(X) is a compact space [9, Lemma 1], and is Hausdorff if X is locally compact
[9, Theorem 1]. The next lemma is presumably standard.

Lemma 3.4 Let X be a locally compact σ-compact space. Then Cl(X) ∖ {∅} is
σ-compact.

Proof We may write X = ⋃i X i where each X i is compact. For each i, set K i = {K ∈
Cl(X) ∶ K ∩ X i ≠ ∅}. Let (Kα) be a net in K i . Then by the compactness of Cl(X),
(Kα) has a convergent subnet (Kβ) with limit W. But W ∩ X i must be nonempty,
since each Kβ meets X i and hence W ∈ K i . Thus K i is compact, and Cl(X) ∖ {∅} =
⋃i K i is σ-compact. ∎

Lemma 3.5 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X a
quotient map with X Hausdorff. Let Cl(Y) be the hyperspace of closed subsets of Y with
the Fell topology, and let Y∗ be the closure of the set D = {q−1(x) ∶ x ∈ X} in Cl(Y) ∖
{∅}. Then for each F ∈ Y∗ there exists F′ ∈ D such that F ⊆ F′.

Proof Let (Fα) be a net in D with limit F ≠ ∅ in Cl(Y). Let y ∈ F and set F′ =
q−1(q(y)). Then there is a net (yα) with yα ∈ Fα such that yα → y. Hence, q(yα) →
q(y). Let y′ ∈ F. Then there is another net (y′α)with y′α ∈ Fα such that y′α → y′. Hence,
q(yα) = q(y′α) → q(y′), so y′ ∈ F′. Thus F ⊆ F′. ∎

It follows from Lemma 3.5 that, in the context of the lemma, we may consistently
define a map q∗ ∶ Y∗ → X by q∗(F) = q(y)(y ∈ F).

Theorem 3.6 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X a
quotient map with X Hausdorff. Let Cl(Y) be the hyperspace of closed subsets of Y with
the Fell topology, and let Y∗ be the closure of the set D = {q−1(x) ∶ x ∈ X} in Cl(Y) ∖
{∅}. Then Y∗ is a locally compact, σ-compact Hausdorff and the map q∗ ∶ Y∗ → X is a
pure quotient map inducing the same topology on X as q.

Proof It follows from Lemma 3.4 that Y∗ is σ-compact.
Let C be a subset of X. We must show that q−1

∗ (C) is closed if and only if q−1(C)
is closed. Suppose first that q−1(C) is closed, and let F ∈ Y∗ with q∗(F) = y ∉ C. Then
the complement of q−1(C) defines an open subset of Y∗ containingF, and thus no net
in q−1

∗ (C) can converge to F. Thus q−1
∗ (C) is closed. Conversely, suppose that q−1

∗ (C) is
closed. Let (yα) be a net in q−1(C)with limit y. Set Fα = q−1

∗ (q(yα)). Then Fα /→ ∞, so
by local compactness of Y∗ there exists a convergent subnet of (Fα)with limit F ∈ Y∗,
and y ∈ F. Then F ∈ q−1

∗ (C) by assumption, and q∗(F) = q(y) ∈ C. Thus y ∈ q−1(C)
as required.

Finally, it is immediate that the restriction of q∗ to D is injective, while condition
(ii) of pure quotient maps follows from Lemma 3.5. ∎

Note that q−1
∗ (x) is the set consisting of q−1(x) and a family of closed subsets of the

boundary of q−1(x), obtained as limits of nets of fibers; see Lemma 3.5. (Thus in the
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example after Proposition 2.2, D is homeomorphic toR and is closed in Cl(Y) ∖ {∅}).
If the boundary of q−1(x) is compact then q−1

∗ (x) is also compact because Y∗ is
the closure of D in Cl(Y) ∖ {∅}. On the other hand, if the boundary of q−1(x) is
noncompact then a net of its closed subsets might converge to ∅ in the Fell topology,
so q−1

∗ (x)might be compact or noncompact.
Apart from the fact that its fibers are more likely to be compact (or to have compact

boundary) than those of q, a further advantage that q∗ has over q is that it is more likely
to be locally closed.

Proposition 3.7 Let Y be a locally compact, σ-compact Hausdorff space and
q ∶ Y → X a quotient map with X Hausdorff. Let q∗ be the pure quotient constructed in
Theorem 3.6, and let x ∈ X. If q is locally closed at x, then so is q∗.

Proof Suppose that q is locally closed at x and let C be a closed subset of Y∗ disjoint
from q−1

∗ (x). Set W = ⋃K∈C K. Then W is disjoint from q−1(x). Let (yα) be a net in W
with limit y ∈ Y . Then there is a net (Kα) in C with yα ∈ Kα for each α, and Kα /→ ∞,
so by the local compactness of Y∗ there is a net (Kβ) converging to some K, which
belongs to C since C is closed. Since y ∈ K, it follows that y ∈W , and hence that W is
closed. Since q(W) = q∗(C), it follows that x ∉ q∗(C). ∎

In particular, if q is closed then q∗ is closed. Note, however, that in this case if the
boundary of q−1(x) is noncompact then x does not have a compact neighborhood
in X by Theorem 2.1, and hence q−1

∗ (x) is noncompact by Proposition 2.2 applied
to q∗.

Proposition 3.7 raises the question of whether q∗∗ might be locally closed at even
more points of X than q∗ is, but we will see in the next section that q∗ already reaches
the limit.

4 An extension of Morita’s theorem

In this section, we use pure quotient maps to extend Morita’s theorem to general
kω-spaces.

Given a quotient map q from a locally compact σ-compact Hausdorff space Y onto
a Hausdorff space X, we partition X into three sets as follows:

(i) Lq = {x ∈ X ∶ q is locally closed at x and q−1(x) has compact boundary};
(ii) Fq = {x ∈ X ∶ q is locally closed at x and q−1(x) has noncompact boundary};

and (iii) Nq = {x ∈ X ∶ q is not locally closed at x}.
We saw in Proposition 2.2 that if x ∈ Lq then x has a compact neighborhood in X,

and in Theorem 3.3 that if q is a pure quotient map then Lq is precisely the set of points
in X which have a compact neighborhood. We now show that if q is a pure quotient
map, the sets Fq and Nq can similarly be characterized in terms of the topology of X.

Theorem 4.1 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X a
pure quotient map with X Hausdorff. Then q is locally closed at x ∈ X if and only if x is
a k-point.
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Proof We have seen that if q is locally closed at x then it is pseudo-open at x, and
hence x is a k-point by Theorem 2.3.

Conversely, suppose that q is not locally closed at x, and let N be a closed subset
of Y disjoint from q−1(x) with x ∈ q(N). Let W be a closed subset of Y disjoint
from q−1(x) with N in its interior. Let D be the dense subset of Y from the pure
quotient property, and set M =W ∩ D and E = q(M). Then M ⊇ N , so x ∈ E ∖ E.
Let Y = ⋃i Yi be a compact decomposition for Y and set K i = q(Yi). Then for
any i, q−1(K i ∩ E) = {d ∈ M ∶ q(d) ∈ K i} so q−1(K i ∩ E) ⊆ Yd(i) (in the terminology
introduced after Lemma 3.2). Thus

K i ∩ E ⊆ q(Yd(i) ∩M) ⊆ q(Yd(i) ∩M) ⊆ q(Yd(i) ∩W)

and this latter set is compact and does not contain x. Since every compact subset of
X is contained in some K i by hemicompactness, it follows that there does not exist
compact K with x ∈ E ∩ K. Hence x is not a k-point. ∎

Thus if q is a pure quotient map, q is locally closed at x if and only if q is pseudo-
open at x. The following corollary is immediate from Theorem 4.1.

Corollary 4.2 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X
a pure quotient map with X Hausdorff. Let x ∈ X. Then

(i) x ∈ Lq if and only if x has a compact neighborhood in X;
(ii) x ∈ Fq if and only if x is a k-point without a compact neighborhood in X; and
(iii) x ∈ Nq if and only if x is not a k-point.

In particular, for any quotient map with domain a locally compact, σ-compact
Hausdorff space and Hausdorff range, Nq∗∗ = Nq∗ , answering the question raised in
Section 3. It follows from Corollary 4.2 that for a kω-space X, the sets Lq∗ , Fq∗ , and
Nq∗ are independent of the original quotient map q, and in future we may use this
notation even when there is no particular original quotient map in mind.

The next corollary is also immediate from Theorem 4.1 (applied to q∗) and
Theorem 2.3 (applied to q). Recall that Hq denotes the set of points of X at which
q is pseudo-open.

Corollary 4.3 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X
a quotient map with X Hausdorff. For x ∈ X, x ∈ Hq if and only if q∗ is locally closed at
x. Hence, q is pseudo-open if and only if q∗ is closed.

We turn now to consider the topology of the sets Lq , Fq , and Nq when q is pure
(in which case Hq = Lq ∪ Fq by Corollary 4.3). It follows from Corollary 4.2 that Lq
is open, and hence that Fq ∪ Nq is closed in X.

Recall that a point x in a Tychonoff space X is a P-point if the intersection of any
countable family of neighborhoods of x is a neighborhood of x. If every point is a
P-point then X is a P-space. If U is an open subset of X and x is a P-point in U then
x is P-point in X. Conversely, a P-point in X is a P-point in any subspace of X, and
hence the set of P-points of X forms a P-space. If X is a compact P-space then X is
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finite [11, 4K]. The next theorem shows that Fq is contained in the set of P-points of
Fq ∪ Nq . For this, we need the following observation.

Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X a quotient
map with X Hausdorff. Then q extends to a continuous map q ∶ βY → βX, and q is
continuous and surjective from a compact Hausdorff space, and is therefore also a
quotient map. If x ∈ X and q is not locally closed at x, then there is a closed set N ⊆ Y
disjoint from q−1(x) such that x ∈ q(N). Hence, there is a point y ∈ N βY such that
q(y) = x.

Lemma 4.4 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X a
pure quotient map with X Hausdorff. Let x ∈ Nq and let y ∈ βY ∖ Y such that q(y) = x.
Let V be any neighborhood of x in X. Then Y has a zero set Z ⊆ q−1(V) with y ∈ Z

βY
.

Proof Let U ⊆ V be a cozero set containing x with complement W in X. Then
q−1(W) is a saturated zero subset in Y. If Z is a zero set in Y contained in q−1(W)
then q(Z) is contained in W, so y ∉ Z

βY
. Hence, by the z-ultrafilter property [11, 2.6

Theorem], there is a zero set Z in Y with y ∈ Z
βY

such that Z ∩ q−1(W) is empty. ∎

Theorem 4.5 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X
a pure quotient map with X Hausdorff.

(i) If x ∈ X is a P-point then q is locally closed at x.
(ii) Let W be the set of P-points in Fq ∪ Nq and V the interior of Fq ∪ Nq in X. Then

V ∩W ⊆ Fq ⊆W .

(iii) Fq is a P-space and has empty interior in X.

Proof (i) (This does not require q to be pure). Let C be a closed subset of Y disjoint
from q−1(x). Then

C = ⋃
n≥1

C ∩ Kn ,

where Y = ⋃n≥1 Kn is a compact decomposition for Y, so q(C) = ⋃n≥1 q(C ∩ Kn).
Since q(C ∩ Kn) is compact, hence closed in X, the P-point x does not lie in q(C).
Thus q is locally closed at x.

(ii) It follows from (i) that Fq ⊇ V ∩W . Now suppose that x0 ∈ Fq ∪ Nq is not a P-
point of Fq ∪ Nq . Let {E i ∶ i ≥ 1} be a countable family of closed sets in Fq ∪ Nq ∖ {x0}
with x0 ∈ ⋃i E i . Fix i, and let U i be a closed neighborhood of x0 in X that does not
meet E i . For each x ∈ E i choose y ∈ q−1(x) with y ∉ Yi+1 if this is possible (as it is for
each x ∈ Fq since q−1(x) is noncompact). Otherwise, by the observation preceding
Lemma 4.4, there exists y ∈ βY ∖ Y such that q(y) = x. By Lemma 4.4, there is a zero
set Z in Y with y ∈ Z

βY
and Z ∩ q−1(U i) empty, and we may also arrange that Z ∩ Yi+1

is empty.
Let N ′i be the union of the collection of elements y and zero sets Z thus obtained,

and let N i be the closure of N ′i in Y. Then N i does not meet Yi since Yi is contained
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in the interior of Yi+1, and q(N i) ⊇ E i , but q(N i) ∩U i is empty (so in particular x0 ∉
q(N i)). Set N = ⋃N i . Then N does not meet q−1(x0), and N is closed in Y because, for
any Yj , only finitely many of the sets N i meet Yj , so N ∩ Yj is closed. But q(N) ⊇ ⋃i E i ,
so x0 ∈ q(N) ∖ q(N). Hence, x0 ∈ Nq , so Fq ⊆W .

(iii) Fq is a P-space by (ii). Let U be the interior of Fq in Fq ∪ Nq . Then O ∶= q−1(U)
is open in Y, hence a locally compact Hausdorff space, and q∣O is a quotient map.
Thus U is a k-space, so a subset of U is closed if and only if its intersection with every
compact subset of U is closed. But U is P-space, so compact subsets are finite [11, 4K].
Thus, every subset of U is closed, so U is discrete. Hence, each point in U lies in the
closure of Lq (for otherwise it would be an isolated point of X and would belong to
Lq itself). Thus, Fq has empty interior in X. ∎

Theorem 4.5 is an extension of Morita’s theorem (1.1) because if q is a closed
quotient map then q∗ is closed (Proposition 3.7), so Nq and Nq∗ are both empty.
Furthermore Fq = Fq∗ by the remark after Proposition 3.7, so Fq is closed, and thus
σ-compact. Being a P-space by Theorem 4.5, Fq must be a countable discrete set in
the closure of Lq , and thus we recover Morita’s theorem.

In some cases, we can go further. Recall that a topological space X has countable
tightness at x ∈ X if for each A ⊆ X with x ∈ A, there is a countable subset B ⊆ A with
x ∈ B; and X is countably tight if it is has countable tightness at every point. Clearly
every metric space is countably tight.

Corollary 4.6 Let Y be a locally compact σ-compact Hausdorff space and q ∶ Y → X
a pure quotient map with X Hausdorff.

(i) If x ∈ Fq is a point of countable tightness in X then x is isolated in Fq ∪ Nq and
lies in the closure of Lq .

(ii) If X is countably tight then Nq is closed in X, and Fq is discrete and lies in the
closure of Lq .

Proof (i) follows immediately from the fact that x is a P-point in Fq ∪ Nq , and (ii)
follows from (i). ∎

Corollary 4.6 seems to be new even for quotients of locally compact subsets of Rn .
We have just seen that if X is countably tight then there are no points of Fq in the

interior of Nq ∪ Fq , but if X is not countably tight, such points may occur. For example,
let X be the quotient of ω1 + 1 × Sω (where Sω is the Arkhangel’skii–Franklin space [6]
obtained by identifying {ω1} × Sω to a point x0. Then Lq is empty and Fq = {x0}.

Not every P-point of Fq ∪ Nq need belong to Fq . For example, let Y = R and for
n ≥ 1, identify the pairs of points n and 1/n. Let X be the resulting quotient space and
q ∶ Y → X the quotient map, which is obviously pure. Then Fq ∪ Nq consists of the
singleton {q(0)}, but Fq is empty. The following example, however, has the satisfying
feature that Fq consists precisely of the P-points in Fq ∪ Nq .

Example 4.7 Let Z be a locally compact σ-compact Hausdorff space and V a closed
subset with empty interior (so that V ⊆ Z ∖ V). We shall find a locally compact
σ-compact Hausdorff space Y and a pure quotient map q ∶ Y → X with X Hausdorff
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such that V is homeomorphic to Fq ∪ Nq , with Fq corresponding to the P-points
in V.

Let Y = ⋃i Z i be the disjoint union of countably many copies of Z. Set W = ⋃i Vi ,
and for each i let ϕ i be a homeomorphism from V to Vi . Let O be the complement
of W in Y. Let ∼ be the equivalence relation defined on points y ∈ Y by y ∼ y′ if and
only if either (i) y = y′; or (ii) y, y′ ∈W and there exists v ∈ V such that ϕ i(v) = y and
ϕ j(v) = y′ for some i and j. Set X = Y/ ∼ and let q be the quotient map. Then q is pure
because V has empty interior in Z. Note that q(W) is homeomorphic to V, and that
q∣Vi is a homeomorphism from Vi onto q(W) for each i. For ease of notation, we will
identify q(W) with V, so that ϕ i ∶ V → Vi is the inverse of q∣Vi .

Clearly q∣O is a homeomorphism from O onto q(O), so if x ∈ q(O) then x is a
point of local compactness. Now let x ∈ V and suppose first that x is not a P-point in
V. Let {N i} be a countable family of closed subsets of V such that x ∉ N i for all i but
x ∈ ⋃i N i . Set N = ⋃i ϕ i(N i). Then N is a closed subset of Y disjoint from q−1(x),
but x ∈ q(N). Hence x ∈ Nq .

Now suppose that that x is a P-point in V. Let N be a closed subset of Y not meeting
q−1(x). Then the sets q(N ∩ Vi) are a countable family of closed set in V (since q∣Vi

is a homeomorphism), and they each miss x, so M ∶= ⋃i q(N ∩ Vi) also misses x. Set
N ′ = N ∪⋃i ϕ i(M). Then N ′ is a closed saturated set in Y containing N and missing
q−1(x), so x ∉ q(N). Hence x ∈ Fq .

Thus in Example 4.7, Nq is closed in X if and only if every P-point in V is an isolated
point of V. If V has a nonisolated P-point, for example, if V = ω1 + 1 (and Z is the cone
over V), then Nq is not closed. If Z = βN and V = βN ∖N, then it depends on the set
theoretic axioms adopted as to whether Fq is empty or dense in Fq ∪ Nq .

5 Arkhangelskii’s question and Fréchet-Urysohn spaces

Finally, we turn to consider first countable and Fréchet-Urysohn spaces and
Arkhangel’skii’s question (for a vast amount of information on this whole area, see
[21]).

As mentioned in the Introduction, a point x in a topological space X is a Fréchet-
Urysohn point if whenever E ⊆ X with x ∈ E there is a sequence (vn) in E with vn → x.
Clearly, every point of first countability is a Fréchet-Urysohn point. If every point is a
Fréchet-Urysohn point then X is a Fréchet-Urysohn space. A Fréchet-Urysohn point
in a kω-space is easily seen to be a a k-point (Proposition 5.1(ii)) and thus belongs
either to Lq∗ or to Fq∗ . Ordman showed that a point of first countability must belong
to Lq∗ (see [10, p. 113]) but a general Fréchet-Urysohn point may belong to Fq∗ . Being
a point of countable tightness, however, it must belong to the closure of Lq∗ , and the
set of such points must be countable (Corollary 4.6(i)).

The importance of Fréchet-Urysohn spaces is that every quotient of a compact
first countable (or Fréchet-Urysohn) space is Fréchet-Urysohn (see Corollary 5.2).
For example, let Y = [0, 1] × [0, 1] with the order topology of the lexicographic order
and let V = [0, 1] × {0, 1}. Let q ∶ Y → X be the quotient map that takes V to a
point x0. Then Y is compact, Hausdorff, and first countable, and V is closed but not
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a zero-set, so X is compact, Hausdorff and Fréchet-Urysohn but not first countable
at x0.

Recall that a topological space X is sequential if every sequentially closed sub-
set of X is closed. Every Fréchet-Urysohn space is sequential, but there are com-
pact Hausdorff sequential spaces which are not Fréchet-Urysohn. More generally,
every sequential space has countable tightness; and the famous Moore-Mrowka
problem—shown by Ostaszewski et al. to depend on set-theoretic axioms—was
whether there exists a compact Hausdorff space of countable tightness which is not
sequential.

If Y is a second countable locally compact Hausdorff then Cl(Y) is also second
countable [9, Remark 3, p. 474], but the same does not hold for first countability.
Indeed, if Y is a locally compact Hausdorff space, then the following three conditions
are equivalent: (a) Cl(Y) ∖ {∅} is first countable; (b) Y is both hereditarily Lindelof
and hereditary separable (for a locally compact space, first countability is a conse-
quence of being hereditarily Lindelof); and (c) Cl(Y) ∖ {∅} is countably tight [12],
[8, Corollary 2.16]. The unit square with the lexicographic order (above) is neither
separable nor hereditarily Lindelof. The passage from Y to Y∗ in Theorem 3.6 thus
preserves second countability but it is not clear that it will preserve first countability or
the Fréchet-Urysohn property (although we do not have specific counter-examples).
This problem, however, is easily circumvented.

Proposition 5.1 Let Y be a locally compact, σ-compact Hausdorff space and q ∶ Y → X
a quotient map with X Hausdorff.

(i) If Y is a Fréchet-Urysohn space and q∗ is locally closed at x then x is a Fréchet-
Urysohn point.

(ii) Suppose that q is pure. If x ∈ X is a Fréchet-Urysohn point then q is locally closed
at x.

Proof (i) Let V be a subset of X and suppose that x ∈ V . With E ∶= q−1
∗ (V), we

have E ∩ q−1
∗ (x) ≠ ∅ because q∗ is locally closed at x. Let (Cα) be a net of points

in E converging to some C ∈ q−1
∗ (x). Let y ∈ C. Then there exists a net (yα), with

yα ∈ Cα for each α, such that limα yα = y. Then the set {yα} ⊆ q−1(V), and hence
q−1(V) ∩ q−1(x) ⊇ {y}. Since Y is a Fréchet-Urysohn space, there is a sequence (yn)
in q−1(V) converging to y. Thus (q(yn)) gives the required sequence in V converging
to x.

(ii) Let x ∈ X be a Fréchet-Urysohn point and let E ⊆ X with x ∈ E. Then by
assumption there is a sequence (xn) in E such that xn → x. Let K be the compact
set {x} ∪ {x i ∶ i ≥ 1}. Then x ∈ E ∩ K, so x is a k-point, and hence q is locally closed
at x by Theorem 4.1. ∎

Corollary 5.2 Let Y be a Fréchet-Urysohn locally compact, σ-compact, Hausdorff
space and q ∶ Y → X a quotient map with X Hausdorff.

(i) The open set Hq∗ = Lq∗ ∪ Fq∗ is the set of Fréchet-Urysohn points of X.
(ii) X is a Fréchet-Urysohn space if and only if q∗ is closed.
(iii) If X is locally compact then X is a Fréchet-Urysohn space.
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Proof (i) follows from Proposition 5.1 and Corollary 4.6; (ii) from Proposition 5.1;
and (iii) from Proposition 5.1 and Theorem 3.3. ∎

Corollary 5.3 Let Y be a locally compact, σ-compact, Hausdorff space and q ∶ Y → X
a quotient map with X Hausdorff and a Fréchet-Urysohn space. Then

(i) q∗ is closed and Lq∗ is a dense open subset of X with discrete complement and
(ii) if Y is hereditarily Lindelof then X is first countable at each point of Lq∗ .

Proof (i) The first statement follows from Theorems 2.1 and 3.6 and Proposition
5.1(ii).

(ii) For second statement, note (as already mentioned) that a locally compact
hereditarily Lindelof space is first countable. Furthermore, the property of being
hereditarily Lindelof is equivalent, in the presence of local compactness, to every open
subset being σ-compact. The set Lq∗ is locally compact and open, and each open
subset of Lq∗ inherits the property of σ-compactness from its inverse image under
q. Hence, Lq∗ is first countable. ∎

Arkhangel’skii’s question. In [5, Problems 5.14 and 5.15], Arkhangel’skii asked for
a Hausdorff quotient of a locally compact second countable Hausdorff space which
is (countable and) Fréchet-Urysohn but nowhere first countable. A locally compact
second countable Hausdorff space is perfectly normal (i.e., every open set is an Fσ ),
and the same is true in every Hausdorff quotient, so every point in a quotient is
a Gδ , and it is well known that a Gδ point with a compact neighborhood is first
countable. Thus, the required example had to have Lq∗ empty and Fq∗ ∪ Nq∗ as a
Fréchet-Urysohn space, along the lines of the space Sω mentioned in Section 1.

In the absence of a structure theory for kω-spaces, Arkhangel’skii’s question is very
pertinent, but in the course of this paper, we have seen multiple reasons why such an
example cannot exist: for instance, every Fréchet-Urysohn point in a kω-space lies in
the closure of Lq∗ (Corollary 4.6(ii)). As we have mentioned, the question had, in fact,
already been answered negatively by Siwiec in 1976 [22] who showed (among other
things) that if a kω-space is Fréchet-Urysohn and has a kω-decomposition of compact
metric spaces then it is the closed image of a locally compact separable metric space
(and hence Morita’s theorem implies that Lq∗ is dense).

Since a locally compact second countable space is hereditarily Lindelof, Corollary
5.3(i) and (ii) gives a more general negative answer to Arkhangel’skii’s question. If the
Continuum Hypothesis is assumed, a still more general answer can be given.

Theorem 5.4 (CH) Let X be a sequential kω-space. Then X is first countable at a dense
subset of points if and only if the set of non-k-points of X has empty interior.

Proof The set Lq∗ of points with compact neighborhoods is open and hence
sequential. Since X is sequential it is countably tight, so it follows from Corollary
4.6(ii) that Nq∗ has empty interior if and only Lq∗ is dense. If X is first countable
at x ∈ X then x ∈ Lq∗ , see [10, p. 113]. Thus if X is first countable at a dense subset
of points, Nq∗ has empty interior. Conversely, if Nq∗ has empty interior, then Lq∗ is
dense in X, and Arkhangelski showed in 1970 ([3]; see also [4, p. 381]) that under (CH)
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every (locally) compact Hausdorff sequential space is first countable at a dense subset
of points. ∎

In particular, under (CH), every Fréchet-Urysohn kω-space is first countable at a
dense subset of points. On the other hand, in 1987 Malyhin used the method of forcing
to exhibit a compact Hausdorff Fréchet-Urysohn which is nowhere first countable
[15]. Thus Corollary 5.3 may be about as far as one can go in ZFC in answer to
Arkhangel’skii’s question.
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