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n-PRUFER DOMAINS

SANG BUM L E E

We introduce n-Priifer domains which axe generalisations of Priifer domains and give
several characterisations of them in terms of generalisations of purity, flatness and
absolute purity.

1. INTRODUCTION

Let R be a commutative domain with 1 and Q its field of quotients. R is called
Priifer if every finitely generated ideal of R is projective. Priifer domains have been
characterised in numerous ways. Classical results can be found in Gilmer [3].

Here we wish to introduce a generalisation of Priifer domains: we shall call a domain
R n-Priifer (for integers n > 0 or n = oo) if every finitely generated torsion-free .R-module
of projective dimension ^ n — 1 is projective. Note that every domain is 1-Priifer and
the oo-Priifer domains are exactly the Priifer domains. Trivially, Priifer domains are
n-Priifer for every 0 < n < oo, but the converse does not hold.

Examples of such domains R which are n-Priifer for every 0 < n < oo, but not
Priifer, are Noetherian domains of Krull dimension 1 which are not integrally closed.
The following argument verifies the claim. Let M be a finitely generated, torsion-free
i?-module of projective dimension ^ 1. Embedding of M into a finitely generated free
fl-module F yields the .R-module F/M. If the projective dimension of M is 1, then the
projective dimension of F/M is 2, which contradicts the fact that the Krull dimension
of Noetherian domain is equal to its finitistic projective dimension (see, Raynaud and
Gruson [8]). Hence M is projective, and thus R is 2-Priifer. Now, induction on the
projective dimension of M establishes our claim.

In contrast, Noetherian domains R of Krull dimension > 1 are 1-Priifer but not
2-Priifer (and thus not n-Priifer for any n ^ 2). Indeed, let n > 1 be the Krull dimension
of R. By the definition of finitistic projective dimension, there exists an ideal of R of
projective dimension n — 1. Hence R is not n-Priifer. Now the claim follows from the
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fact that coherent 2-Priifer domains are n-Priifer every 2 < n < oo, which can be easily
proved by induction argument.

In this note, we wish to prove that n-Prufer domains have a number of characterisa-
tions, in particular, in terms of generalisations of purity, flatness and absolute purity (see
Corollary 2). We also generalise a result on Priifer domains concerning the coherency of
polynomial rings to n-Priifer domains (see Theorem 2). Throughout this note, n will be
a positive integer or oo. For unexplained definitions and terminologies, we refer to Fuchs
and Sake [1, 2] and Rotman [7].

2. PRELIMINARIES

Recall that an it-module M is flat if Torf (M, N) = 0 holds for all finitely presented
i?-modules N. The following generalisation of flatness will be used. An it-module M
will be called n-flat if Torf (M, N) = 0 holds for all finitely presented it-modules N with
projective dimension ^ n. Obviously, direct sums and summands of n-flat modules are
again n-flat. An it-submodule N of M is said to be relatively divisible (or briefly RD) in
M HrN=Nr\rM for each r € R. Accordingly, an exact sequence 0—> N —> M —> L —> 0
is called an itD-exact sequence if the inclusion map embeds AT in M as an it D-submodule.

We start our discussion with a lemma.

LEMMA 1 . An R-module M is 1-Aat if and only if it is torsion-free.

P R O O F Let E be an injective cogenerator of the category of it-modules, and suppose
that the it-module M is 1-flat, that is, it satisfies Torf (N, M) = 0 for all finitely presented
i?-modules N with projective dimension ^ 1. From the natural isomorphism

Ext^TV, HomR(M, E)) <* HomR(Torf (AT, M), E),

it follows that ExtJj(Af, Homfl(M, E)) = 0 for all finitely presented i?-modules N with
projective dimension < 1. By Fuchs and Sake [1, p. 36], HomR(M, E) is then a divisible
it-module. For the torsion submodule tM of M we have the i?£>-exact sequence 0 -¥

tM —> M —> M/tM —» 0 which induces the .RD-exact sequence 0 —>• UomR(M/tM, E) -t

HomR(M, E) —> Hom;e(£M, E) —» 0. Here UomR(tM,E) is divisible as an epic image of
Hom/j(M, E) and reduced (because tM is torsion), thus it is 0. Hence tM is 0, and M is
torsion-free.

Conversely, if M is a torsion-free .R-module, then the injection map M -* Q 0 M

induces an epimorphism Homfi (Q$$M,E) -»• UomR{M, E). Since Q$$M is torsion-

free, the .R-module Homfl (Q <g) M, EJ is /i-divisible (that is, an epic image of an

injective it-module), and therefore so is HomR(M, E). From the exact sequence 0
—> H —> D —> HomR(M, E) —»• 0, where D is a direct sum of copies of Q, we ob-
tain Ext}j(A^,Homfi(M,£')) = Ext2

R{N,H). The second Ext is 0 whenever projec-
tive dimensionflAT ^ 1, so the same holds for the first Ext. Hence HomR(Torf(AA,
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M), E) - 0 follows. By the choice of E we conclude Torf (N, M) = 0, showing that M
is 1-flat. D

Recall that an .R-module D is said to be absolutely pure (or FP-injective) if it is a pure
submodule in every .R-module containing it as a submodule. Megibben [6] proved that
an i?-module D is absolutely pure if and only if ExtJ^iV, D) = 0 for all finitely presented
/^-modules N. Accordingly, we define an iJ-module D to be n-absolutely pure if, for all
finitely presented /^-modules N of projective dimension ^ n, we have Extjj(A^, D) = 0.
It follows at once that direct sums and summands of n-absolutely pure modules are again
n-absolutely pure. A result similar to Lemma 1 can be obtained.

LEMMA 2 . An R-module D is 1-absolutely pure if and only if it is divisible

PROOF: If D is 1-absolutely pure .R-module, then Ext^R/L, D) = 0 for all pro-

jective ideals L. By Fuchs and Sake [1, p. 36], this amounts to the divisibility of D.

Conversely, suppose D is a divisible .R-module, and N is a finitely presented .R-module

of projective dimension ^ 1. Since N has a finite projective resolution, we can apply the

natural isomorphism (see for example, Rotman [7, p. 257])

Torf (HomH(£>, £) , JV) = Hom^Ext^N, D), E)

for an injective cogenerator E. Here Hom^Z?, E) is a torsion-free fl-module, so by
Lemma 1, it is 1-flat. This implies that the Tor in the last formula vanishes, and conse-
quently, the right side is 0. This leads to the equation Ext)j(./V, D) = 0, which amounts
the 1-absolute purity of D. D

3. n-PURiTY

Recall that an .R-module A of B is said to be pure if, for all (finitely presented) R-
modules ./V, the map N(QA -* N(QB induced by the inclusion A —• B is injective. In

R R

the same spirit as flatness and absolute purity were generalised, we define a generalisation:
an .R-submodule A of B is called n-pure if, for all finitely presented i?-modules N of
projective dimension ^ n, the map N(£)A —>• NQQB induced by the inclusion A —¥ B

R R

is injective, or equivalently, the map HomR(N, B) —> Hom^N, B/A) induced by the
natural map B —> B/A is surjective.

LEMMA 3 . For every n (0 < n sj oo), the following conditions on an R-module D

are equivalent:

(a) D is n-absolutely pure;

(b) D is n-pure in any (injective) R-module E containing D as an R-

submodule;

(c) each R-homomorphism (f>: H —» D from a finitely generated R-submodule

H of projective dimension < n - 1 of a finitely generated free R-module F

is induced by a map 7 : F -> D.
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PROOF (a) <=> (b) Consider an exact sequence 0 -> D —¥ E —• E/D —> 0 where
E is an injective fl-module containing D. Let AT be a finitely presented i?-module of
projective dimension ^ n. The induced sequence 0 -> Homfi(iV, D) -> HomR(iV, E)

-> Hom«(;V, £/£>) -» Ext^AT, £>) -> Ext)j(iV, E) = 0 establishes the result.

(a) «• (c) The exact sequence 0 -> # -> F -> F / # -> 0 along with the in-
duced sequence 0 -> HomR(F/#, D) -» Homfi(F,D) -> Hom«(#,.D) -> Ext^F/tf , £>)
—• Ext}j(F, D) — 0 implies the result, since F / / / is finitely presented of projective di-
mension ^ n. D

Note that for an i?-submodule if of a flat i?-module F, H is pure in F if and only
if F/H is flat. This can be generalised easily.

LEMMA 4 . Let H be an R-submodule of an n-Bat module F. Then H is n-pure in

F if and only if F/H is n-Bat.

In particular, we have

COROLLARY 1 . For an R-submodule A of a torsion-free R-module B, the following
are equivalent:

(a) A is relatively divisible in B;

(b) A is 1-pure in B;

(c) B/A is torsion-free.

Note that n-purity can also be characterised in the following way. Consider finite
systems of equations over TV,

(1) X ! rVxi = <X € N (* = 1, . . . , *),
i=i

where r^ e R and xi,...,xi are unknowns such that the i?-submodule H of the free R-

module F on {x\,..., xi) generated by the left members of (1) is of projective dimension

^ n — 1. iV is n-pure in M if and only if every such system (1) has a solution in N

whenever it has a solution in M. Such a system (1) will be called an n-finite system.

Note that an n-finite system is an m-finite system whenever n ^ m.

LEMMA 5 . Let L ^ N ^ M be R-modules.

(a) If L is n-pure in M, then it is also n-pure in N.

(b) If L is n-pure in N and N is n-pure in M, then L is n-pure in M.

(c) If N is n-pure in M, then N/L is n-pure in M/L. The converse holds if L

is n-pure in M.

PROOF: (a) Any n-finite system of equations over L which is solvable in N is

trivially solvable in M. Hence it has a solution in L by hypothesis.

(b) Any n-finite system of equations over L which is solvable in M can be viewed

as a system over N. Since N is n-pure in M, it has a solution in N. Again, since L is

n-pure in N, it has a solution in L.
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(c) Suppose 53 Tijxj = cii + L E N/L is an n-finite system of equations over N/L

which has a solution Xj = bj + L € M/L, where 1 ^ i ^ k, 1 ^ j ' ^ I. Then 53ryfy

— a,i+Pi for some Pi € L. Hence 53 TijXj — â  +pi £ N is an n-finite system of equations

over iV which has a solution Xj = bj £ M{\ ^ j ^ I). Then 53ry(fy + L) = at + L and

Xj = bj + L E M/L is a solution of the original n-finite system. To prove the converse,
let U be a finitely presented .R-module of projective dimension ^ n. Then we have a
commutative digram

> U<S>{N/L) > 0
ft R

<t>\ hi
••• > £/(g)L —?->• f / (g)M • C/(g)(M/L) > 0.

ft ft ft

Since L is n-pure in M and thus L is n-pure in N by (a), we have monomorphisms
f,g. Since h is a monomorphism by hypothesis, 0 is a monomorphism, too. D

We take a self-evident definition of an n-pure-exact sequence similar to that of an
.R£>-exact sequence. By Lemma 5, those elements of Ext)j(iV, M) which are represented
by n-pure-exact sequence form a subgroup, which will be denoted by n-PextJj(7V, M).

It is readily checked that n-Pext)j(iV, M) — 0 for all finitely presented modules N of
projective dimension ^ n and for all .R-modules M.

4. n-PRUFER DOMAINS

For n-Priifer domains we can now prove our main result.

THEOREM 1 . For a domain R and for every n (0 < n ^ oo), t ie following condi-

tions are equivalent:

(a) R is n-Priifer;

(b) 1-absolutely pure R-modules are n-absolutely pure;

(c) 1-pure R-submodules of all R-modules are n-pure.

P R O O F (C) => (b) Let D be a 1-absolutely pure .R-module. By Lemma 3, D is
1-pure in its injective hull E(D). By hypothesis, it is n-pure, which implies that D is
n-absolutely pure.

(b) =>• (a) Let N be a finitely generated torsion-free .R-module of projective di-
mension ^ n - 1. Imbed ,/V into a finitely generated free .R-module F. Then F/N is
a finitely presented .R-module of projective dimension ^ n. Therefore, by hypothesis,
ExtR(F/N, D) = 0 for all divisible .R-modules D. By Lee [5], projective dimension of
F/N is ^ 1, which implies that N is projective.
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(a) =>• (c) Let A be a 1-pure it-submodule of B and N a finitely presented it-module
of projective dimension s$ n. Consider a presentation 0—tH—tF—tN—tOofN where
H is a finitely generated torsion-free it-module of projective dimension ^ n - 1. By
hypothesis, H is projective and thus N has projective dimension ^ 1. Since A is 1-pure,
the map A$QN -» B(QN induced by the inclusion A —> B is injective. We conclude

R R

that A is n-pure. D

LEMMA 6 . 1-Bat R-modules over n-Priifer domains R are n-Bat.

P R O O F : Let A be a 1-flat .R-module and N be a finitely presented R-module of
projective dimension ^ n. In the natural isomorphism

ExtR(N, HomR(A, E)) S Homfi(Torf (N, A), E)

where E is an injective .R-module, Ext is 0 since HomR(A,E) is divisible and thus
n-sbsolutely pure by hypothesis. Hence the right Horn is 0. Since E was arbitary,
Torf (TV, .4) = 0, which implies that A is n-flat. D

In Lee [4], a domain R was called n-coherent if every finitely generated torsion-free
.R-module of projective dimension < n — 1 is finitely presented. n-Priifer domains are
trivially n-coherent, and we are going to show that the converse holds when 1-flat modules
are n-flat.

LEMMA 7 . For a domain R and for every n (0 < n ^ oo), the following are

equivalent:

(a) R is n-Priifer;

(b) R is n-coherent and all 1-Bat R-modules are n-Bat.

PROOF: In view of Lemma 6, we have only to prove (b) implies (a). Let D be a
1-absolutely pure R-module and N a finitely presented it-module of projective dimension
< n. Since R is n-coherent, N has a finite projective resolution (see Lee [4]). In the
natural isomorphism

Torf (TV, EomR(D, E)) <* Hom^Ext^ /V, D),E),

where E is an injective it-module, Tor is 0 since HomR(£>, E) is torsion-free and thus

n-flat by hypothesis. Hence ExtJj(7V, D) = 0 by the choice of E. This implies that D is

n-absolutely pure. By Theorem 1, R is n-Priifer. D

It is proved in Fuchs and Salce [2, p. 247] that if a domain it is Priifer, then the

torsion it-submodule of every it-module is pure. Now we can generalise this result.

LEMMA 8 . Over n-Priifer domains R, the torsion R-submodule of every R-module

is n-pure.

PROOF. Let t{M) be the torsion it-submodule of an it-module M. Then M/t(M)

is torsion-free and thus n-flat by Lemma 7. Hence Torf (N, M/t(M)) = 0 for all finitely
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presented .R-module N of projective dimension < n. Therefore the map t(M) ® N
R

-4 M&)N induced by the inclusion t{M) -> M is injective. This implies that t(M) is
R

n-pure in M. D

We quote a result by Sabbagh [9] which we want to generalise.

LEMMA 9 . (Sabbagh [9].) The ring of polynomials in an arbitrary number ofvari-

ables over a Priifer domain is coherent.

THEOREM 2 . If R is n-Priifer; then R[xi,.,. ,xk) is n-coherent for every integers

P R O O F : Let M be a finitely generated torsion-free R[x\,..., ZfcJ-module with projec-
tive dimensionRjxj I t ] M ^ n — 1. Since R[x\,... ,£*] is a free .R-module, M is a finitely
generated torsion-free .R-module with projective dimension^M ^ n — 1. By hypothesis,
M is a projective it-module and therefore flat. By Raynaud and Gruson [8, Theorem
3.4.6], M is a finitely presented R[xi,...,Zfc]-module. This implies that R[x\,.. .,Xk] is
n-coherent. • D

We can also verify:

LEMMA 1 0 . If RP is n-Priifer for every maximal ideal P of R, then R is n-Priifer.

P R O O F : Suppose M is a finitely generated torsion-free .R-module with projective
dimension^M < n - 1. Then MP is a finitely generated torsion-free RP- module with
projective dimensionRpMP ^ n — 1. By hypothesis, MP is a projective .Rp-module. By
Fuchs and Salce [2, p. 196], M is a projective .R-module. Hence R is n-Priifer. D

Combining all these, we have

COROLLARY 2 For a domain R and for every n (0 < n ^ oo), the following

implications hold:

(a) =• (b) o (c) ^ (d) & (e) => (f) =* (g) ,

where

(a) RP is n-Priifer for every ideal P of R.

(b) R is n-Priifer.

(c) 1-purity implies n-purity.

(d) 1-absolute purity implies n-absolute purity.

(e) R is n-coherent and 1-Qatness implies n-Qatness.

(f) 1-Qatness implies n-Qatness.

(g) In every R-module the torsion submodule is n-pure.
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