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When pushed out of a syringe, polymer solutions form droplets attached by long and
slender cylindrical filaments whose diameter decreases exponentially with time before
eventually breaking. In the last stages of this process, a striking feature is the self-similarity
of the interface shape near the end of the filament. This means that shapes at different
times, if properly rescaled, collapse onto a single universal shape. A theoretical description
based on the Oldroyd-B model was recently shown to disagree with existing experimental
results. By revisiting these measurements and analysing the interface profiles of very
diluted polyethylene oxide solutions at high temporal and spatial resolution, we show that
they are very well described by the model.
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1. Introduction

The formation of drops has become a paradigm for the study of singularities in fluid
mechanics and beyond. The formation of a drop from an orifice leads to a new length
scale, the diameter of the neck that connects the drop to the orifice, which goes to zero at
a finite time when the drop breaks off from the orifice. As a result, pinch-off is described
by a similarity solution that describes the time evolution and self-similar shape of the neck
close to breakup. In the case of Newtonian fluids of both large and small viscosity, the neck
diameter behaves like a power law as a function of the time to pinch-off. The interface is
found to have a universal shape, and profiles at different times can be superimposed onto
one another by rescaling the radial and axial coordinates by appropriate powers of the time
distance to the singularity.
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FIGURE 1. (a) Schematic of the experimental set-up used to determine the interface shape of the
polymer thread. A full-frame camera is combined with a flashlight allowing short flash duration.
The flash is triggered on the falling drop and a high-accuracy delay line allows one to follow
the breakup event in time by taking pictures at different delays. (b) Typical photograph of a
pendent drop of a very dilute polymer solution breaking from a syringe. A long tiny polymer
thread connecting the two drops is formed. Scale bar is 1 mm. (c) Self-similar thinning of the
interface profiles obtained from the experimental work of Clasen et al. (2006) and the simulations
of Turkoz et al. (2018). Here z0 is the axial location for which the profiles collapse best. The
comparison reveals a discrepancy between the two. Figure adapted from Turkoz et al. (2018).

Beyond Newtonian fluids, much work has been dedicated to the formation of drops
in non-Newtonian fluids such as polymer solutions. These fluids are characterized by
a slow time scale λ on which the constituents relax. If one takes a dilute solution of
a high-molecular-weight polymer and tries to make a droplet (Middleman 1965; Goldin
et al. 1969; Petrie & Denn 1976; Eggers 1997; Deblais, Velikov & Bonn 2018), polymers
become stretched in the extensional flow close to pinch-off, and long and slender filaments
form in between drops, where previously power-law pinch-off would have been observed
(Goldin et al. 1969; Bazilevskii et al. 1981; Entov & Yarin 1984; Wagner et al. 2004;
Clasen et al. 2006; Bhat et al. 2010). In the case of a jet, this means a long sequence
of almost circular drops form, connected by tiny threads, a phenomenon that has been
called the ‘beads-on-a-string’ structure. In the case of a dripping tap (faucet), one observes
essentially the same phenomenon, except that here only a single drop forms, with perhaps
a satellite drop in between (Wagner et al. 2004), connected to the tap (faucet) by a tiny
thread, as seen in figure 1(a,b).

This and similar phenomena are often modelled using the so-called Oldroyd-B model
(Bird, Armstrong & Hassager 1987), which describes the polymer relaxation with a single
time scale λ. The stress is written as the sum of a polymeric contribution and that of the
solvent.

The formation of filaments and their instabilities have by now become a benchmark
problem for testing viscoelastic fluid mechanics (Anna & McKinley 2001; McKinley
& Sridhar 2002; Furbank & Morris 2004; Suryo & Basaran 2006; Smith et al. 2010;
Huisman, Friedman & Taborek 2012; Miskin & Jaeger 2012). Instead of following a power
law, the filament now thins exponentially with a rate set by the relaxation time of the
polymer (Bazilevskii et al. 1981; Anna & McKinley 2001; Clasen et al. 2006). The profile
is extremely uniform over the thread, and then merges smoothly with a neighbouring drop
on either side. It was proposed by Clasen et al. (2006) that the profile at this junction
is once more a similarity solution, which yields a universal profile, if both the axial
and the radial coordinates are rescaled with the thread radius, with an exponential rise
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towards the drop (figure 1c). Clasen et al. (2006) were able to calculate the similarity
profile using a lubrication approximation, in which the interface slope is assumed small;
however, this assumption of small slopes is not satisfied throughout the profile. Indeed,
while an experiment using long flexible polymers in a viscous solvent showed collapse to
a self-similar profile, a comparison with the theoretical calculation revealed an axial length
scale in the experiment that was about twice as short as the one obtained from lubrication
theory (figure 1c). At the time, this serious discrepancy in the self-similar profile was
attributed to a failure of the lubrication approximation.

However, a recent full numerical simulation of the Oldroyd-B equations (Turkoz et al.
2018) showed the same discrepancy with the experimental data of Clasen et al. (2006), and
rather agreed with the lubrication calculation (figure 1c). This left the serious possibility
that the source of the discrepancy was the Oldroyd-B model itself. One possibility was
that the experimental fluid was described by more than a single length scale, the other that
the finite extensibility of a real polymer has to be taken into account, as described, for
example, by more elaborate models such as the FENE-P model (Bird et al. 1987), which
also describes the shear-thinning behaviour of a real polymeric fluid.

More recently, the similarity theory of Clasen et al. (2006) was extended to a treatment
of the full axisymmetric Oldroyd-B equations, and the similarity profile was calculated
without any lubrication assumptions (Snoeijer et al. 2019). The robustness of these
calculations was also underlined by the observation that the universal interface shape
even holds for purely elastic filaments undergoing elasto-capillary instabilities (Snoeijer
et al. 2019; Eggers, Herrada & Snoeijer 2020) that could be dubbed sausage-on-a-string
instabilities (Mora et al. 2010; Kibbelaar et al. 2020). These findings suggest that the
specific type of viscoelastic model for the polymer solution is not crucial for calculating
the shape of the interface, and hence could not explain the discrepancy between theory
and experiment.

To clear up these questions, we investigate the breakup of very dilute polymer solutions.
We record the interface profiles of the filaments at an extremely high temporal and spatial
resolution during the experiments, and compare the results with the newly developed
similarity theory of Eggers et al. (2020), based on the full Oldroyd-B equations. Our results
convincingly show that the experimental profiles all converge to a universal self-similar
solution that in addition agrees excellently with theory.

2. Experiments

We experimentally study the extensional thinning and destabilization of filaments
of long-chain polymer solutions in water at different concentrations (figure 2). The
experiments are performed with polyethylene oxide (PEO) with a molecular weight
(Mw) of (4 ± 2)× 106 g mol−1 (Berman 1978) from Sigma-Aldrich (purity = 0.98). Four
concentrations Cp between 10 and 120 w.p.p.m. (weight parts per million) are obtained
from successive dilutions of the initial batch. This range of concentrations is chosen to be
well below the critical overlap concentration of polymer coils (Graessley 1980):

c∗ = 0.77
[η]

, (2.1)

with [η] the intrinsic viscosity of the polymer solution (see details in table 1, from Del
Giudice, Haward & Shen (2017)). The concentrations we consider allow us to work in
conditions that are very close to satisfying the Oldroyd-B model, as we will show below.
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FIGURE 2. Thinning dynamics of a filament of four concentrations of polyethylene oxide in
water. (a) Symbol colours, from light to dark: 10, 30, 60 and 120 w.p.p.m. (weight parts per
million). The minimum neck radius hmin is tracked in time and normalized by the inner radius
h0 of the syringe orifice; the longest relaxation time of the solution λ0 is deduced from the slope
of the elasto-capillary regime highlighted by the dashed black line. (b) Relaxation time λ0 as a
function of the concentration Cp. The dashed line is a power-law fit to the experimental points
λ0 ∝ C0.66

p .

A syringe pump supplies the polymer solutions to the needle tip (inner diameter
h0 = 2 mm).

We used a Phantom V1 fast camera (frame rate 10 000 frames per second) to record
the dynamics of the filament thinning at a high temporal resolution, and a full-frame
camera (8256 pixel × 4640 pixel, Nikon D850) equipped with a 5× microscope lens to
obtain a very good spatial resolution of the polymer interface during its detachment. In
order to be able to capture high-quality pictures of the interface during the fast thinning
(∼ milliseconds), we use a flashlight (Vela one) with 1 µs flash duration. The camera
and the flashlight are coupled to a trigger to which we can control the delay to the next
breakup event with a very good accuracy. The delay between two flashes is controlled
through a precise delay line (Digital Delay Generator, DG535 Stanford Research Systems)
that delays the initial trigger pulse (the event is triggered electronically on each bottom
edge of droplets falling in repetition) and allows a delay resolution from 5 ps to 1000 s.
The limiting factor here is the flash duration of 1 µs of the flashlight itself. The shutter
of the camera is open for a ‘long’ time during the flash, and so the read-out time of the
camera is not a limiting step. This allow us to obtain a sequence of very highly resolved
pictures (10 µm pixel−1) as one would obtain with a fast camera but with a much better
resolution (see sequence of pictures in figure 3).

Typical results are shown in figures 2 and 3. The thinning dynamics (figure 2) of PEO
show an initial thinning similar to that of a low-viscosity Newtonian fluid. Subsequently,
a very long and slender cylindrical filament is formed. In this elasto-capillary thinning
regime, the dynamics slows down dramatically. Both the Oldroyd-B model and
experiments show that in this regime the minimum neck radius hmin as a function of time
can be described as

hmin = h0 e−t/3λ0, (2.2)

with λ0 the longest relaxation time of the polymer solution (Amarouchene et al. 2001;
Anna & McKinley 2001). In the range of (very) diluted concentrations studied here,
λ0 varies with concentration between ∼1 and 50 ms. Even though in the dilute limit
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FIGURE 3. High-resolution photographs of a pendent drop of PEO solution (Mw =
4 × 106 g mol−1, Cp = 10 w.p.p.m.) breaking from a nozzle of diameter h0 = 2 mm. The time
between subsequent panels (a–d) is 1 ms. Scale bar is 2 mm. Panel (e) highlights the region of
interest from which we extract the profile shown in panel ( f ). Scale bar is 1 mm.

a variation of the relaxation time is not predicted by theory, this is in fact commonly
observed in experiments (Clasen et al. 2006). This is confirmed by plotting the dependence
of the relaxation time λ0 with the polymer concentration Cp in figure 2(b), showing that
it follows a power-law dependence as reported by Clasen et al. (2006) for dilute polymer
solutions.

Figure 3 shows a typical sequence of pictures of a droplet’s interface, obtained using
the combination of fast camera and triggered flash to increase the resolution. We use these
photographs to extract the interface profile with a homemade algorithm in MATLAB;
this procedure allows determination of the edges of the polymer solution as shown in
figure 3( f ).
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FIGURE 4. (a) Time evolution of PEO filament profiles near the onset of the filament. Data
are shown for subsequent times between each profile that are highlighted in figure 2(a) (star
symbols) and for Cp = 10 w.p.p.m. (b) Same profiles but rescaled by the minimum neck radius
hmin and with z0 the location for which the experimental profiles beyond a time threshold collapse
onto each other. The inset shows the convergence of the quantity Δ(t) towards the self-similar
solution. (c) Post-threshold profiles for four polymer concentrations in the dilute regime. In
panels (b) and (c), the solid black line indicates a universal self-similar solution calculated using
the Oldroyd-B model.

Cp (w.p.p.m.) [η] (m3 kg−1) c∗ Cp/c∗ n (1018 m−3)

10 1.408 0.071 0.014 1.51
30 1.408 0.071 0.042 4.52
60 1.408 0.071 0.084 9.03
120 1.408 0.071 0.169 18.1

TABLE 1. Physical parameters of the polymer solutions investigated (PEO) with a molecular
weight of Mw = 4 × 106 g mol−1.

3. Results

In figure 4(a) we show the evolution of the interface profile during filament thinning,
near the drop that forms due to destabilization. Here, r is the filament radius and z the
direction along the filament. In figure 4(b), we plot the same profiles but rescaled by the
minimum neck radius hmin and with z0 an adjustable parameter that represents the location
for which the experimental profiles collapse best. As time progresses, the interface shape
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FIGURE 5. (a) Shear rheology of a PEO solution (green symbols; Mw = 4 × 106 g mol−1,
Cp = 120 w.p.p.m.) compared to water (blue symbols) for shear-rate values allowed by our
experimental set-up. (b) Magnitude of the first normal stress difference N1 as a function of shear
rate for a PEO solution (Cp = 120 w.p.p.m.). Dashed line is a fit of the Oldroyd-B model (3.1).

converges to a universal shape. Comparing this shape to the recent viscoelastic calculations
using the Oldroyd-B model (Eggers et al. 2020), we find an excellent agreement: the
profiles converge to the same universal self-similar solution profile indicated by the black
line. We quantify the threshold to the self-similar solution by measuring the distance Δ(t)
of the experimental profiles to the self-similar curve at r/hmin = exp(1). This quantity is
shown in the inset of figure 4(b) and converges to a constant value at the moment where
the elasto-capillary regime is reached. Since the onset is set by the elasto-capillary time,
a dependence with the polymer concentration Cp is expected. In figure 4(c), we show the
profiles after converging for different polymer concentrations. They fall onto each other,
confirming the self-similarity of the polymer thread interface. Here, again, agreement with
theory (black line) is excellent; this also confirms that the profile grows exponentially, as
discussed in detail in Eggers et al. (2020).

Solving the constitutive equation for a Hookean dumbbell model, a quadratic
dependence of the first normal stress difference N1 on shear rate γ̇ can be obtained (Bird
et al. 1987):

N1(γ̇ ) = ψ1γ̇
2 = 2nkBTλ2

0,rheoγ̇
2, (3.1)

with T denoting temperature, ψ1 the first normal stress coefficient, n the number
density of polymer molecules (table 1) and kB Boltzmann’s constant. The rheology
measurements (Anton Paar, MCR 302) shown in figure 5(a) show that the increase in
polymer concentration slightly influences the shear viscosity, in agreement with Einstein
expansion, whereas it significantly affects the normal force (figure 5b), from which we
can extract the relaxation time of the solution λ0,rheo = 7.4 ms (Lindner, Vermant & Bonn
2003). This is a factor ∼2 below the value obtained with the relaxation time obtained
from the pinch-off experiment (λ0 = 14.5 ms). Such discrepancies have already been
reported before by Clasen et al. (2006). The primary reason for the discrepancy is that
high-molecular-weight polymers invariably exhibit a significant polydispersity, which may
result in multiple time scales; the elongational flow is more sensitive to the longest time
scale, whereas the shear flow probes an average time scale. We can nevertheless evaluate
the ratio between these two time constants using the multimode Zimm model:

〈λ〉 ≈ λ0,rheo = 1
N

∑

i

λi = 1
N

∑

i

λ0

i2+σ̃ , (3.2)
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where N is the total number of modes and σ̃ is a measure of the hydrodynamics
interaction, with σ̃ ≈ −0.4 in our dilute polymer solutions (Anna & McKinley 2001).
This time quickly decays for the higher modes; evaluating the ratio between the two time
scales for the five first modes gives a good approximation. In fact, this gives a value of
λ0,rheo/λ0 ≈ 3, which is a good estimate of what we find experimentally and is a value
also reported experimentally by Liang & Mackley (1994).

4. Conclusions

In conclusion, we have studied the destabilization of diluted polyethylene oxide (PEO)
solution in water using a camera set-up allowing us to visualize the droplet and filament
shapes with very high resolution. We find that, during destabilization of a polymer droplet
initially attached to a capillary, the interface converges to a self-similar shape independent
of time or polymer concentration, which agrees very well with the theoretical prediction
of Eggers et al. (2020), based on the Oldroyd-B model. This contrasts with an earlier
discrepancy, observed in Turkoz et al. (2018), between full numerical simulations of the
Oldroyd-B model and the earlier experiments of Clasen et al. (2006).

Three main differences between our experiment and that of Clasen et al. (2006) can
be mentioned that might explain the observed discrepancy. (i) In the work presented here
we are now able to work at significantly higher spatial and temporal resolution than they
could do at the time. (ii) The second important difference to note is the solvent used,
which is much more viscous than the one we use in our study (water) and also exhibits
non-Newtonian behaviour (‘Boger fluid’). (iii) They used a Caber device to impose an
extensional deformation to their samples. For that purpose, they used endplate diameters
up to 6 mm (three times our nozzle diameter Dmin). As a consequence, gravitational and
inertial effects may have an effect on the overall extensional flow: it consequently may
generate additional flows during the thinning of the filament and affect the profile of the
interface, as discussed for instance in Brady & Acrivos (1982).
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