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ERROR BOUNDS FOR AUGMENTED TRUNCATIONS
OF DISCRETE-TIME BLOCK-MONOTONE MARKOV
CHAINS UNDER GEOMETRIC DRIFT CONDITIONS
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Abstract

In this paper we study the augmented truncation of discrete-time block-monotone
Markov chains under geometric drift conditions. We first present a bound for the total
variation distance between the stationary distributions of an original Markov chain and
its augmented truncation. We also obtain such error bounds for more general cases,
where an original Markov chain itself is not necessarily block monotone but is blockwise
dominated by a block-monotone Markov chain. Finally, we discuss the application of
our results to GI/G/1-type Markov chains.
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1. Introduction

Various semi-Markovian queues and their state-dependent extensions can be analyzed thro-
ugh block-structured Markov chains characterized by an infinite number of block matrices,
such as level-dependent quasi-birth-and-death processes (LDQBDs), M/G/1-, GI/M/1-, and
GI/G/1-type Markov chains (see, e.g. [8]).

For LDQBDs, there exist some numerical procedures based on theRG-factorization, though
their implementation requires the truncation of the infinite sequence of block matrices in a
heuristic way [2], [4], [19]. Such ‘truncation in implementation’ is also necessary for level-
independent M/G/1- and GI/M/1-type Markov chains (see, e.g. [21, Section 4]), and, thus, for
GI/G/1-type Markov chains. To the best of the author’s knowledge, there are no studies on the
computation of the stationary distributions of level-dependent M/G/1- and GI/M/1-type Markov
chains and more general Markov chains. For these Markov chains, theRG-factorization method
does not seem effective in developing numerical procedures with good properties, such as space
and time saving and the guarantee of accuracy, since the resulting expression of the stationary
distribution is characterized by an infinite number of R- and G-matrices [24]. As for the
transient distribution, Masuyama and Takine [16] proposed a stable and accuracy-guaranteed
algorithm based on the uniformization technique (see, e.g. [22]).

As mentioned above, it is challenging to develop a numerical procedure for computing the
stationary distributions of block-structured Markov chains characterized by an infinite number
of block matrices. A practical and simple solution to this problem is to truncate the transition
probability matrix so that it is of a finite dimension. The stationary distribution of the resulting
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finite Markov chain can be computed by a general purpose algorithm, in principle. However,
the obtained stationary distribution includes an error caused by truncating the original transition
probability matrix. Therefore, from a practical point of view, it is significant to estimate the
‘truncation error’.

Tweedie [23] and Liu [13] studied the estimation of the error caused by truncating (stochas-
tically) monotone Markov chains (see, e.g. [6]). Tweedie [23] gave error bounds for the last-
column-augmented truncation of a monotone Markov chain with geometric ergodicity. The last-
column-augmented truncation is constructed by augmenting the last column of the northwest
corner truncation of a transition probability matrix so that the resulting finite matrix is stochastic.
On the other hand, Liu [13] assumed that a monotone Markov chain is subgeometrically ergodic
and derived error bounds for the last-column-augmented truncation.

Unfortunately, block-structured Markov chains are not monotone in general. Li and Zhao [12]
extended the notion of monotonicity to block-structured Markov chains. The new notion is
called ‘(stochastic) block monotonicity’. Block-monotone Markov chains (BMMCs) arise
from queues in Markovian environments, such as queues with batch Markovian arrival processes
(BMAPs) [14]. Li and Zhao [12] proved that if an original Markov chain is block monotone
then the stationary distributions of its augmented truncations converge to that of the original
Markov chain, which is the motivation for this study.

In what follows, we give an overview of the work of Li and Zhao [12]. To this end, we
introduce some symbols. Let N = {1, 2, 3, . . . }. Let Z

≤n
+ = {0, 1, . . . , n} for n ∈ N and

Z
≤∞
+ := Z+ = {0, 1, 2, . . . }. Furthermore, let F

≤n = Z
≤n
+ × D for n ∈ N := N ∪ {∞}, where

D = {1, 2, . . . , d}. For simplicity, we write F for F
≤∞.

The following is the definition of block monotonicity for stochastic matrices.

Definition 1.1. ([12, Definition 2.5].) Let

S = (s(k, i; l, j))(k,i),(l,j)∈F≤n

denote a stochastic matrix, where n ∈ N. A Markov chain characterized by S and S itself are
said to be (stochastically) block monotone with block size d if, for all k ∈ Z

≤n−1
+ and l ∈ Z

≤n
+ ,

n∑
m=l

s(k, i;m, j) ≤
n∑
m=l

s(k + 1, i;m, j), i, j ∈ D.

We denote by BMd the set of block-monotone stochastic matrices with block size d.

Let P = (p(k, i; l, j))(k,i),(l,j)∈F denote a stochastic matrix. Let {(Xν, Jν); ν ∈ Z+} denote
a bivariate Markov chain with state space F and transition probability matrix P . The following
result is obvious from the definition. Its proof is thus omitted.

Proposition 1.1. If P ∈ BMd then ψ(i, j) := ∑∞
l=0 p(k, i; l, j), i, j ∈ D, is constant with

respect to k ∈ Z+ and {Jν; ν ∈ Z+} is a Markov chain whose transition probability matrix is
given by � := (ψ(i, j))i,j∈D, i.e. ψ(i, j) = P(Jν+1 = j | Jν = i) for i, j ∈ D.

Proposition 1.1 implies the following pathwise ordered property of BMMCs (see LemmaA.1):
if P ∈ BMd then there exist two BMMCs, {(X′

ν, J
′
ν); ν ∈ Z+} and {(X′′

ν , J
′′
ν ); ν ∈ Z+}, with

transition probability matrix P on a common probability (�,F ,P) such that X′
ν ≤ X′′

ν and
J ′
ν = J ′′

ν for all ν ∈ N if X′
0 ≤ X′′

0 and J ′
0 = J ′′

0 .
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Let (n)P∗ = ((n)p∗(k, i; l, j))(k,i),(l,j)∈F, n ∈ N, denote a stochastic matrix such that, for
i, j ∈ D,

(n)p∗(k, i; l, j) ≥ p(k, i; l, j), k ∈ Z+, l ∈ Z
≤n
+ ,

(n)p∗(k, i; l, j) = 0, k ∈ Z+, l ∈ Z+ \ Z
≤n
+ ,

n∑
l=0

(n)p∗(k, i; l, j) =
∞∑
l=0

p(k, i; l, j), k ∈ Z+.

The stochastic matrix (n)P∗ is called a block-augmented first-n-block-column truncation (for
short, block-augmented truncation) of P .

Remark 1.1. The block-augmented truncation (n)P∗ can be partitioned as

(n)P∗ =
( F

≤n
F \ F

≤n

F
≤n

(n)P
≤n∗ O

F \ F
≤n ∗ O

)
, (1.1)

where O is the zero matrix and (n)P
≤n∗ is equivalent to the block-augmented truncation defined

by Li and Zhao [12]. Our definition facilitates the algebraic operation for the original stochastic
matrix P and its block-augmented truncation (n)P∗ since they are of the same dimension.

Throughout this paper, unless otherwise stated, we assume that P is irreducible and positive
recurrent, and we denote its unique stationary probability vector by π = (π(k, i))(k,i)∈F > 0
(see, e.g. [3, Theorem 3.1, Section 3.1]). However, (n)P∗ may have more than one positive
recurrent (communication) class in F

≤n.
Let (n)π∗ = ((n)π∗(k, i))(k,i)∈F, n ∈ N, denote a stationary probability vector of (n)P∗.

Equation (1.1) implies that (n)π∗(k, i) = 0 for all (k, i) ∈ F \ F
≤n (see, e.g. [5, Theorem 1,

Section I.7]) and (n)π
≤n∗ := ((n)π∗(k, i))(k,i)∈F≤n is a solution of (n)π

≤n∗ (n)P
≤n∗ = (n)π

≤n∗ and
(n)π

≤n∗ e = 1, where e denotes a column vector of 1s with an appropriate dimension. It is also
known that if P ∈ BMd then limn→∞ (n)π∗ = π , where the convergence is elementwise (see
[12, Theorem 3.4]).

Let (n)Pn = ((n)pn(k, i; l, j))(k,i),(l,j)∈F, n ∈ N, denote a block-augmented truncation of
P such that, for i, j ∈ D,

(n)pn(k, i; l, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(k, i; l, j), k ∈ Z+, l ∈ Z

≤n−1
+ ,

∞∑
m=n

p(k, i;m, j), k ∈ Z+, l = n,

0, otherwise,

(1.2)

which is called the last-column-block-augmented first-n-block-column truncation (for short,
the last-column-block-augmented truncation). Let (n)πn = ((n)πn(k, i))(k,i)∈F, n ∈ N, de-
note a stationary probability vector of (n)Pn, where (n)πn(k, i) = 0 for all (k, i) ∈ F \ F

≤n.
We obtain the following result.

Proposition 1.2. ([12, Theorem 3.6].) If P ∈ BMd and (n)πn is the unique stationary
distribution of (n)Pn, then there exists an infinite increasing sequence {nk ∈ N; k ∈ Z+}
such that, for all k ∈ Z+,

0 ≤
nk∑
l=0

∑
i∈D

((n)πn(l, i)− π(l, i)) ≤
nk∑
l=0

∑
i∈D

((n)π∗(l, i)− π(l, i)).
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Based on Proposition 1.2, Li and Zhao [12] stated that the last-column-block-augmented
truncation (n)Pn is the best approximation to P among the block-augmented truncations of P ,
though they did not estimate the distance between (n)πn and π .

In this paper we consider some cases where P satisfies the geometric drift condition (see
Section 15.2.2 of [17]) but may be periodic. We first assume that P ∈ BMd and then present a
bound for the total variation distance between (n)πn and π , which is expressed as follows:

‖(n)πn − π‖ :=
∑
(k,i)∈F

|(n)πn(k, i)− π(k, i)| ≤ Cm(n),

where Cm is some function on Z+ with a supplementary parameter m ∈ N such that Cm
is nonincreasing for any fixed m. The bound presented in this paper is a generalization of
that of Tweedie [23] (see Theorem 4.2 therein). We also obtain such error bounds for more
general cases, where P itself is not necessarily block monotone but is blockwise dominated by
a block-monotone stochastic matrix.

The rest of this paper is divided into four sections. In Section 2 we provide preliminary
results on block-monotone stochastic matrices. The main result of this paper is presented in
Section 3, and some extensions are discussed in Section 4. As an example, these results are
applied to GI/G/1-type Markov chains in Section 5.

2. Preliminaries

In this section we first introduce some definitions and notation, and then provide some basic
results on block-monotone stochastic matrices.

2.1. Definitions and notation

Let I denote an identity matrix whose dimension depends on the context (we may write Im
to represent the m×m identity matrix). For any square matrix M , let M0 = I . Define

Td =

⎛⎜⎜⎜⎜⎜⎝
Id O O O · · ·
Id Id O O · · ·
Id Id Id O · · ·
Id Id Id Id · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ , T −1
d =

⎛⎜⎜⎜⎜⎜⎝
Id O O O · · ·

−Id Id O O · · ·
O −Id Id O · · ·
O O −Id Id · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

where TdT
−1
d = T −1

d Td = I . Let T
≤n
d , n ∈ N, denote the |F≤n| × |F≤n| northwest corner

truncation of Td , where | · | denotes set cardinality. Note that Td = T
≤∞
d and (T ≤n

d )−1, n ∈ N,
is equal to the |F≤n| × |F≤n| northwest corner truncation of T −1

d .
We now introduce the following definitions.

Definition 2.1. ([12, Definition 2.1].) For n ∈ N, let f = (f (k, i))(k,i)∈F≤n denote a column
vector with block size d . The vector f is said to be block increasing if (T ≤n

d )−1f ≥ 0, i.e.
f (k, i) ≤ f (k+ 1, i) for all (k, i) ∈ Z

≤n−1
+ ×D. We denote by BId the set of block-increasing

column vectors with block size d .

Definition 2.2. For n ∈ N, let μ = (μ(k, i))(k,i)∈F≤n and η = (η(k, i))(k,i)∈F≤n denote proba-
bility vectors with block size d . The vector μ is said to be (stochastically) blockwise dominated
by η (denoted by μ≺dη) if μT

≤n
d ≤ ηT

≤n
d .
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Definition 2.3. For n ∈ N, let Ph = (ph(k, i; l, j))(k,i),(l,j)∈F≤n , h = 1, 2, denote a stochastic
matrix with block size d . The matrix P1 is said to be (stochastically) blockwise dominated by
P2 (denoted by P1≺dP2) if P1T

≤n
d ≤ P2T

≤n
d .

Remark 2.1. The columns of T
≤n
d are linearly independent vectors in BId , and, thus, every

vector f ∈ BId is expressed as a linear combination of columns of T
≤n
d . Therefore, μ≺dη and

P1≺dP2 if and only if μf ≤ ηf and P1f ≤ P2f , respectively, for any f ∈ BId . According
to this equivalence, we can establish the definition of the blockwise dominance relation ‘≺d ’
(see [12, Definitions 2.2 and 2.7]).

2.2. Basic results on block-monotone stochastic matrices

In this subsection we present three propositions on |F≤n|× |F≤n| stochastic matrices, where
n ∈ N. The first two (Propositions 2.1 and 2.2 below) hold for any |F≤n| × |F≤n| stochastic
matrix S = (s(k, i; l, j)) in BMd . The first proposition is immediate from Definition 1.1 and,
thus, we omit the proof. The second proposition is an extension of Theorem 1.1 of [10]. The
third proposition (Proposition 2.3 below) is a fundamental result for any two |F≤n| × |F≤n|
stochastic matrices P1 = (p1(k, i; l, j)) and P2 = (p2(k, i; l, j)) such that P1 ≺d P2, which
is an extension of Lemma 1 of [7].

Proposition 2.1. It holds that S ∈ BMd if and only if (T ≤n
d )−1ST

≤n
d ≥ O.

Proposition 2.2. The following conditions are equivalent.

(a) S ∈ BMd .

(b) μS≺dηS for any two probability vectors μ and η such that μ≺dη.

(c) Sf ∈ BId for any f ∈ BId .

Proof. The equivalence of conditions (a) and (c) was shown in Theorem 3.8 of [12].
However, for the readers’ convenience, we give a complete proof. First, we prove that con-
dition (a) implies condition (b). To this end, we assume that S ∈ BMd and μ ≺d η. It then
follows from Proposition 2.1 and Definition 2.2 that (T ≤n

d )−1ST
≤n
d ≥ O and μT

≤n
d ≤ ηT

≤n
d .

Thus, it follows that

μST
≤n
d = μT

≤n
d (T

≤n
d )−1ST

≤n
d ≤ ηT

≤n
d (T

≤n
d )−1ST

≤n
d = ηST

≤n
d ,

which shows that μS ≺d ηS, i.e. condition (b) holds.
Next, we prove that condition (b) implies condition (a). For (k, i) ∈ F

≤n, let ξ(k,i) =
(ξ(k,i)(l, j))(l,j)∈F≤n denote a 1 × |F≤n| unit vector whose (k, i)th element is equal to 1. Let
η = ξ(k,i) and μ = ξ(k−1,i) for any fixed (k, i) ∈ (Z≤n

+ \ {0})× D. It then follows that μ ≺d η

and, thus, condition (b) yields (η − μ)ST
≤n
d ≥ 0, where η − μ is equal to the (k, i)th row of

(T
≤n
d )−1. Furthermore, ξ(0,i)ST

≤n
d ≥ 0 for i ∈ D, where ξ(0,i) is equal to the (0, i)th row of

(T
≤n
d )−1. Consequently, condition (b) implies that (T ≤n

d )−1ST
≤n
d ≥ O, i.e. condition (a) is

satisfied (see Proposition 2.1).
To complete the proof, we prove the equivalence of conditions (a) and (c). We now assume

that condition (a) holds. According to Definition 2.1, (T ≤n
d )−1f ≥ 0 for any f ∈ BId .

Combining this with (T ≤n
d )−1ST

≤n
d ≥ O (by condition (a)), we obtain

(T
≤n
d )−1Sf = (T

≤n
d )−1ST

≤n
d (T

≤n
d )−1f ≥ 0,

and, thus, Sf ∈ BId , which shows that condition (c) is satisfied. Finally, we assume that condi-
tion (c) holds, and we fix f ∈ BId to be a column of T

≤n
d (see Remark 2.1).
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It then follows that Sf ∈ BId , i.e. (T ≤n
d )−1Sf ≥ 0. Therefore, (T ≤n

d )−1ST
≤n
d ≥ O. The

proof is completed.

Proposition 2.3. If P1≺dP2 and either P1 ∈ BMd or P2 ∈ BMd , then the following state-
ments hold.

(a) For all k ∈ Z
≤n
+ and i, j ∈ D,∑

l∈Z
≤n
+

p1(k, i; l, j) =
∑
l∈Z

≤n
+

p2(k, i; l, j),

which is constant with respect to k.

(b) Pm
1 ≺dP

m
2 for all m ∈ N.

(c) Suppose that P2 is irreducible. If P2 is recurrent or positive recurrent, then P1 has
exactly one recurrent or, respectively, positive recurrent class that includes the states
{(0, i); i ∈ D}, which is reachable from all the other states with probability 1. Thus, if
P2 is positive recurrent then P1 and P2 have the unique stationary distributions π1 and
π2, respectively, and π1≺dπ2.

Proof. We consider only the case in which P1 ∈ BMd because the case in which P2 ∈ BMd

is discussed in a very similar way. We first prove statement (a). It follows from P1 ∈ BMd

and Proposition 1.1 that
∑
l∈Z

≤n
+ p1(k, i; l, j) is constant with respect to k for each (i, j) ∈ D

2,
which is denoted by ψ1(i, j). Furthermore, from P1≺dP2, it follows that

ψ1(i, j) =
∑
l∈Z

≤n
+

p1(k, i; l, j) ≤
∑
l∈Z

≤n
+

p2(k, i; l, j), k ∈ Z
≤n
+ , i, j ∈ D. (2.1)

Since P1 and P2 are stochastic matrices,
∑
j∈D

ψ1(i, j) = ∑
j∈D

∑
l∈Z

≤n
+ p2(k, i; l, j) = 1

for all (k, i) ∈ F
≤n. From this and (2.1), we obtain ψ1(i, j) = ∑

l∈Z
≤n
+ p2(k, i; l, j) for all

k ∈ Z
≤n
+ and i, j ∈ D.

Next, we prove statement (b) by induction. Suppose that, for some m ∈ N, Pm
1 ≺dP

m
2 , i.e.

Pm
1 T

≤n
d ≤ Pm

2 T
≤n
d (which is true at least form = 1). Combining this with (T ≤n

d )−1P1T
≤n
d ≥

O (due to P1 ∈ BMd ) yields

Pm+1
1 T

≤n
d = Pm

1 T
≤n
d (T

≤n
d )−1P1T

≤n
d

≤ Pm
2 T

≤n
d (T

≤n
d )−1P1T

≤n
d

= Pm
2 P1T

≤n
d

≤ Pm
2 P2T

≤n
d

= Pm+1
2 T

≤n
d ,

and, thus, Pm+1
1 ≺dP

m+1
2 . Therefore statement (b) is true.

Finally, we prove statement (c). Note that there exist two Markov chains characterized by P1
and P2, called Markov chains 1 and 2, which are pathwise ordered by the blockwise dominance
of P2 over P1 (see Lemma A.2). Since P2 is irreducible and recurrent, Markov chain 2 and,
thus, Markov chain 1 can reach any state (0, i), i ∈ D, from all the states in the state space F

≤n
with probability 1, and the mean first passage time to each state (0, i), i ∈ D, is finite if P2 is
positive recurrent. These facts show that the first part of statement (c) holds. Finally, we prove
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that π1≺dπ2. Note here that (I + Ph)/2, h = 1, 2, is aperiodic and has the same stationary
distribution as that of Ph. Thus, we assume without loss of generality that Ph, h = 1, 2, is
aperiodic. It then follows, from statement (b) and the dominated convergence theorem, that
eπ1T

≤n
d ≤ eπ2T

≤n
d (see [5, Theorem 4, Section I.6]) and, thus, π1T

≤n
d ≤ π2T

≤n
d .

3. Main result

In this section we present a bound for ‖(n)πn − π‖, which is the main result of this paper.
To establish the bound, we use the v-norm, where v = (v(k, i))(k,i)∈F is any nonnegative
column vector. The v-norm is defined as follows: for any 1 × |F| vector x = (x(k, i))(k,i)∈F,

‖x‖v = sup
|g|≤v

∣∣∣∣ ∑
(k,i)∈F

x(k, i)g(k, i)

∣∣∣∣ = sup
0≤g≤v

∑
(k,i)∈F

|x(k, i)|g(k, i),

where |g| is a column vector obtained by taking the absolute value of each element of g. By
definition, ‖ · ‖e = ‖ · ‖, i.e. the e-norm is equivalent to the total variation distance.

We need some further definitions. For m ∈ Z+ and (k, i) ∈ F, let

pm(k, i) = (pm(k, i; l, j))(l,j)∈F and (n)p
m
n (k, i) = ((n)p

m
n (k, i; l, j))(l,j)∈F

denote probability vectors such thatpm(k, i; l, j) and (n)pmn (k, i; l, j) represent the (k, i; l, j)th
elements of Pm and ((n)Pn)m, respectively (when m = 1, the superscript ‘1’ may be omitted).
Clearly, pm(k, i; l, j) = P(Xm = l, Jm = j | X0 = k, J0 = i) for (k, i)× (l, j) ∈ F

2.
Let�(i) = ∑∞

k=0 π(k, i) > 0 for i ∈ D. Note that if P ∈ BMd then � = (�(i))i∈D is the
stationary distribution of � (and, thus, the Markov chain {Jν}; see Proposition 1.1). Note also
that if P ∈ BMd then (n)Pn≺dP and, thus, (n)πn≺dπ (by Proposition 2.3(c)), which implies
that, for all n ∈ N,

∞∑
k=0

(n)πn(k, i) =
∞∑
k=0

π(k, i) = �(i), i ∈ D. (3.1)

For any function ϕ(·, ·) on F, let ϕ(k,� ) = ∑
i∈D

�(i)ϕ(k, i) for k ∈ Z+.
In what follows, we estimate ‖(n)πn − π‖. By the triangle inequality, it follows that

‖(n)πn − π‖ ≤ ‖pm(0,� )− π‖ + ‖(n)pmn (0,� )− (n)πn‖
+ ‖(n)pmn (0,� )− pm(0,� )‖. (3.2)

The third term on the right-hand side of (3.2) is bounded as in the following lemma, which is
proved without P ∈ BMd .

Lemma 3.1. For all m ∈ N,

‖(n)pmn (k, i)− pm(k, i)‖

≤
m−1∑
h=0

∑
(l,j)∈F

(n)p
h
n(k, i; l, j)
n(l, j), n ∈ N, (k, i) ∈ F, (3.3)

where


n(l, j) = ‖p(l, j)− (n)pn(l, j)‖ = 2
∑

l′>n, j ′∈D

p(l, j ; l′, j ′), (l, j) ∈ F. (3.4)
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Proof. Clearly, (3.3) holds for m = 1. Note that, for m, n ∈ N,

((n)Pn)
m+1 − Pm+1 = (n)Pn[((n)Pn)m − Pm] + ((n)Pn − P )Pm.

It then follows that, for m = 2, 3, . . . ,

‖(n)pm+1
n (k, i)− pm+1(k, i)‖
≤

∑
(l,j)∈F

(n)pn(k, i; l, j)‖(n)pmn (l, j)− pm(l, j)‖

+
∑
(l,j)∈F

|(n)pn(k, i; l, j)− p(k, i; l, j)|
∑

(l′,j ′)∈F

pm(l, j ; l′, j ′)

=
∑
(l,j)∈F

(n)pn(k, i; l, j)‖(n)pmn (l, j)− pm(l, j)‖ +
n(k, i), (3.5)

where the last equality follows from the fact that
∑
(l′,j ′)∈F

pm(l, j ; l′, j ′) = 1. Thus, if (3.3)
holds for some m ≥ 2 then (3.5) yields

‖(n)pm+1
n (k, i)− pm+1(k, i)‖

≤
∑
(l,j)∈F

(n)pn(k, i; l, j)
[m−1∑
h=0

∑
(l′,j ′)∈F

(n)p
h
n(l, j ; l′, j ′)
n(l′, j ′)

]
+
n(k, i)

=
m−1∑
h=0

∑
(l′,j ′)∈F

( ∑
(l,j)∈F

(n)pn(k, i; l, j)(n)phn(l, j ; l′, j ′)
)

n(l

′, j ′)+
n(k, i)

=
m−1∑
h=0

∑
(l′,j ′)∈F

(n)p
h+1
n (k, i; l′, j ′)
n(l′, j ′)+
n(k, i)

=
m∑
h=0

∑
(l,j)∈F

(n)p
h
n(k, i; l, j)
n(l, j).

The following lemma implies that the first two terms on the right-hand side of (3.2) converge
to 0 as m → ∞ without the aperiodicity of P .

Lemma 3.2. Let κ denote the period of P . If P ∈ BMd and P is irreducible, then the following
statements hold.

(a) There exist disjoint nonempty sets D0,D1, . . . ,Dκ−1 such that D = ⋃κ−1
h=0 Dh and∑

(l,j)∈Z+×Dh+1

p(k, i; l, j) = 1, (k, i) ∈ Z+ × Dh, h ∈ Z
≤κ−1
+ ,

where Dh′ = Dh if h′ ≡ h(mod κ).

(b) κ ≤ d = |D|. Thus, every irreducible monotone stochastic matrix (which is in BM1) is
aperiodic.

(c) If P is positive recurrent then, for k ∈ Z+,

lim
m→∞ pm(k,� ) = π , lim

m→∞ (n)p
m
n (k,� ) = (n)πn, n ∈ N. (3.6)

https://doi.org/10.1239/aap/1427814582 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814582


Augmented truncations of block-monotone Markov chains 91

Proof. We prove statement (a) by contradiction. From Proposition 5.4.2 of [17], we know
that there exist disjoint nonempty sets F0,F1, . . . ,Fκ−1 such that F = ⋃κ−1

h=0Fh and∑
(l,j)∈Fh+1

p(k, i; l, j) = 1, (k, i) ∈ Fh, h ∈ Z
≤κ−1
+ , (3.7)

where Fh′ = Fh if h′ ≡ h (mod κ). We suppose that there exist some (k∗, i∗) ∈ N × D and
h∗ ∈ Z

≤κ−1
+ such that (0, i∗) ∈ Fh∗ and (k∗, i∗) ∈ Fh∗ . We now consider coupled Markov

chains {(X′
ν, J

′
ν); ν ∈ Z+} and {(X′′

ν , J
′′
ν ); ν ∈ Z+} with transition probability matrix P , which

are pathwise ordered such that X′
ν ≤ X′′

ν and J ′
ν = J ′′

ν for all ν ∈ N if X′
0 ≤ X′′

0 and J ′
0 = J ′′

0
(see Lemma A.1). We also fix (X′

0, J
′
0) = (0, i∗) ∈ Fh∗ and (X′′

0 , J
′′
0 ) = (k∗, i∗) ∈ Fh∗ . It then

follows from (3.7) that

(X′
ν, J

′
ν) ∈ Fh implies that (X′′

ν , J
′′
ν ) ∈ Fh for all ν ∈ N. (3.8)

Furthermore, since P is irreducible, there exists some ν∗ ∈ N such that (X′′
ν∗ , J

′′
ν∗) = (0, i∗)

and, thus, (X′
ν∗ , J

′
ν∗) ∈ N × {i∗} by (3.8). This conclusion, however, contradicts the pathwise

ordering of {(X′
ν, J

′
ν)} and {(X′′

ν , J
′′
ν )}, i.e.X′

ν ≤ X′′
ν and J ′

ν = J ′′
ν for all ν ∈ N. Consequently,

statement (a) holds, and statement (b) is immediate from statement (a).
Next we prove statement (c). Fix k ∈ Z+ arbitrarily. Let q : D �→ Z

≤κ−1
+ denote a

surjection function such that i ∈ Dq(i). It then follows from [5, Theorem 4, Section I.6] that,
for h ∈ Z

≤κ−1
+ ,

lim
m′→∞

pm
′κ+h(k, i; l, j) = I{h≡q(j)−q(i) (mod κ)}κπ(l, j), (l, j) ∈ F, (3.9)

where I{·} denotes a function that takes value 1 if the statement in the braces is true and takes
value 0 otherwise. From (3.9), we obtain, for h ∈ Z

≤κ−1
+ and (l, j) ∈ F,

lim
m′→∞

∑
i∈D

�(i)pm
′κ+h(k, i; l, j) = lim

m′→∞

κ−1∑
h′=0

∑
i∈Dh′

�(i)pm
′κ+h(k, i; l, j)

= κ

κ−1∑
h′=0

∑
i∈Dh′

�(i)I{h≡q(j)−q(i) (mod κ)}π(l, j)

= κ

κ−1∑
h′=0

∑
i∈Dh′

�(i)I{h≡q(j)−h′ (mod κ)}π(l, j), (3.10)

where the last equality is due to the fact thatq(i) = h′ for i ∈ Dh′ . Note that here
∑
i∈Dh′ �(i) =∑

(k,i)∈Fh′π(k, i) = 1/κ for any h′ ∈ Z
≤κ−1
+ (see [5, Theorem 1, Section I.7]). Note also that,

for any h ∈ Z
≤κ−1
+ and j ∈ D, there exists the unique h′ ∈ Z

≤κ−1
+ such that h ≡ q(j) −

h′(mod κ). From (3.10), we then obtain, for h ∈ Z
≤κ−1
+ ,

lim
m′→∞

∑
i∈D

�(i)pm
′κ+h(k, i; l, j) = π(l, j), (l, j) ∈ F,

which leads to the first limit in (3.6). Furthermore, since (n)Pn≺dP ∈ BMd , it follows from
Proposition 2.3(c) that (n)Pn has the unique positive recurrent class. Consequently, we can
prove the second limit in (3.6) in the same way as the first.
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To estimate the first two terms on the right-hand side of (3.2), we assume that the geometric
drift condition holds.

Assumption 3.1. There exists a column vector v = (v(k, i))(k,i)∈F ∈ BId such that v ≥ e and,
for some γ ∈ (0, 1) and b ∈ (0,∞),

Pv ≤ γ v + b 10, (3.11)

where 1K = (1K(k, i))(k,i)∈F, K ∈ Z+, denotes a column vector such that 1K(k, i) = 1 for
(k, i) ∈ F

≤K and 1K(k, i) = 0 for (k, i) ∈ F \ F
≤K .

Remark 3.1. Suppose that P is irreducible. Since the state space F is countable, every subset
of F includes a small set and, thus, a petite set (see [17, Theorem 5.2.2, Proposition 5.5.3]).
Therefore, if the irreducibleP is aperiodic andAssumption 3.1 holds, then there exist r ∈ (1,∞)

andC ∈ (0,∞) such that
∑∞
m=1r

m‖pm(k, i)−π‖v ≤ Cv(k, i) for all (k, i) ∈ F, which shows
that P is v-geometrically ergodic (see [17, Theorem 15.0.1]).

The following lemma is an extension of Theorem 2.2 of [15] to discrete-time BMMCs.

Lemma 3.3. Suppose that P ∈ BMd and P is irreducible. If Assumption 3.1 holds, then, for
all k ∈ Z+ and m ∈ N,

‖pm(k,� )− π‖v ≤ 2γm
[
v(k,� )(1 − 10(k,� ))+ b

1 − γ

]
, (3.12)

‖(n)pmn (k,� )− (n)πn‖v ≤ 2γm
[
v(k,� )(1 − 10(k,� ))+ b

1 − γ

]
for all n ∈ N. (3.13)

Proof. We first prove (3.12). To this end, we consider three copies {(X(h)ν , J
(h)
ν ); ν ∈

Z+}, h = 0, 1, 2, of the BMMC {(Xν, Jν); ν ∈ Z+}, which are defined on a common
probability space in such a way that

(X
(0)
0 , J

(0)
0 ) = (0, J ), (X

(1)
0 , J

(1)
0 ) = (k, J ), (X

(2)
0 , J

(2)
0 ) = (X, J ),

where k ∈ Z+ and (X, J ) denotes a random vector distributed with P(X = l, S = j) = π(l, j)

for (l, j) ∈ F. According to the pathwise-ordered property of BMMCs (see Lemma A.1), we
assume without loss of generality that

X(0)ν ≤ X(1)ν , X(0)ν ≤ X(2)ν , J (0)ν = J (1)ν = J (2)ν , for all ν ∈ Z+. (3.14)

For simplicity, let

E(k,i)[·] = E[· | X0 = k, J0 = i], (k, i) ∈ F,

E(k,i);(0,j)[·] = E[· | (X(h)0 , J
(h)
0 ) = (k, i), (X

(0)
0 , J

(0)
0 ) = (0, j)], (k, i) ∈ F, j ∈ D,

where h = 1, 2. Furthermore, let g = (g(l, j))(l,j)∈F denote a column vector satisfying
|g| ≤ v, i.e. |g(l, j)| ≤ v(l, j) for (l, j) ∈ F. It then follows that, for m = 1, 2, . . . ,

pm(k,� )g =
∑
i∈D

�(i)
∑
(l,j)∈F

pm(k, i; l, j)g(l, j) = E[E(k,J )[g(Xm, Jm)]],

πg = πPmg =
∑
(k,i)∈F

π(k, i)
∑
(l,j)∈F

pm(k, i; l, j)g(l, j) = E[E(X,J )[g(Xm, Jm)]].
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Thus, by the triangle inequality, we obtain

|pm(k,� )g − πg|
= |E[E(k,J )[g(Xm, Jm)]] − E[E(X,J )[g(Xm, Jm)]]|
≤ |E[E(k,J );(0,J )[g(X(1)m , J (1)m )]] − E[E(k,J );(0,J )[g(X(0)m , J (0)m )]]|

+ |E[E(X,J );(0,J )[g(X(2)m , J (2)m )]] − E[E(X,J );(0,J )[g(X(0)m , J (0)m )]]|. (3.15)

Let Th = inf{m ∈ Z+;X(h)ν = X
(0)
ν for all ν ≥ m} for h = 1, 2. It holds that

g(X(1)ν , J (1)ν ) = g(X(0)ν , J (0)ν ), ν ≥ T1, (3.16)

g(X(2)ν , J (2)ν ) = g(X(0)ν , J (0)ν ), ν ≥ T2. (3.17)

Applying (3.16) and (3.17) to (3.15) and using the fact that |g| ≤ v (but not P ∈ BMd ) yields

|pm(k,� )g − πg|
≤ E[E(k,J );(0,J )[|g(X(1)m , J (1)m )− g(X(0)m , J (0)m )|I{T1>m}]]

+ E[E(X,J );(0,J )[|g(X(2)m , J (2)m )− g(X(0)m , J (0)m )|I{T2>m}]]
≤ E[E(k,J );(0,J )[v(X(1)m , J (1)m )I{T1>m}]]

+ E[E(k,J );(0,J )[v(X(0)m , J (0)m )I{T1>m}]]
+ E[E(X,J );(0,J )[v(X(2)m , J (2)m )I{T2>m}]]
+ E[E(X,J );(0,J )[v(X(0)m , J (0)m )I{T2>m}]]. (3.18)

Combining (3.18) with (3.14) and v ∈ BId , we obtain, for all |g| ≤ v,

|pm(k,� )g − πg| ≤ 2E[E(k,J );(0,J )[v(X(1)m , J (1)m )I{T1>m}]]
+ 2E[E(X,J );(0,J )[v(X(2)m , J (2)m )I{T2>m}]]. (3.19)

Furthermore, it follows from (3.14) that X(h)m = 0, h = 1, 2, implies that X(h)ν = X
(0)
ν for all

ν ≥ m, which leads to Th ≤ inf{ν ∈ Z+;X(h)ν = 0} for h = 1, 2. Thus, it holds that

E[E(k,J );(0,J )[v(X(1)m , J (1)m )I{T1>m}]] ≤ E[E(k,J )[v(Xm, Jm)I{τ0>m}]], (3.20)

E[E(X,J );(0,J )[v(X(2)m , J (2)m )I{T2>m}]] ≤ E[E(X,J )[v(Xm, Jm)I{τ0>m}]], (3.21)

where τ0 = inf{ν ∈ Z+;Xν = 0}. Substituting (3.20) and (3.21) into (3.19) yields

‖pm(k,� )− π‖v ≤ 2E[E(k,J )[v(Xm, Jm)I{τ0>m}]]
+ 2E[E(X,J )[v(Xm, Jm)I{τ0>m}]]. (3.22)

Let Mm = γ−mv(Xm, Jm)I{τ0>m} for m ∈ Z+. If τ0 ≤ m then Mm+1 = Mm = 0. On the
other hand, suppose that τ0 > m and, thus, (Xm, Jm) = (k, i) ∈ N × D (from the fact that
{τ0 > m} ⊆ {Xm ∈ N}). We then have, for (k, i) ∈ N × D,

E[Mm+1 | (Xm, Jm) = (k, i), τ0 > m] =
∑

(l,j)∈N×D

p(k, i; l, j)γ−m−1v(l, j)

≤
∑
(l,j)∈F

p(k, i; l, j)γ−m−1v(l, j)

≤ γ−mv(k, i),

where the last inequality follows from (3.11). Thus, {Mm} is a supermartingale.
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Let {θν; ν ∈ Z+} denote a sequence of stopping times for {Mm;m ∈ Z+} such that 0 ≤ θ1 ≤
θ2 ≤ · · · and limν→∞ θν = ∞. Note that, for anym′ ∈ Z+, min(m′, θν) is a stopping time for
{Mm;m ∈ Z+}. It then follows from Doob’s optional sampling theorem that, for (k, i) ∈ F,
E(k,i)[Mmin(m,θν)] ≤ E(k,i)[M0], i.e.

E(k,i)[γ− min(m,θν)v(Xmin(m,θν), Jmin(m,θν))I{τ0>min(m,θν)}] ≤ v(k, i)(1 − 10(k, i)).

Thus, letting ν → ∞ and using Fatou’s lemma, we have

E(k,i)[v(Xm, Jm)I{τ0>m}] ≤ γmv(k, i)(1 − 10(k, i)), (3.23)

which leads to

E[E(k,J )[v(Xm, Jm)I{τ0>m}]] =
∑
i∈D

�(i)E(k,i)[v(Xm, Jm)I{τ0>m}]

≤ γmv(k,� )(1 − 10(k,� )), (3.24)

where we used the fact that 10(k, i) = 10(k,� ) for all i ∈ D. Note here that premultiplying
both sides of (3.11) by π yields πv ≤ b/(1 − γ ), from which, together with (3.23), we obtain

E[E(X,J )[v(Xm, Jm)I{τ0>m}]] ≤ γm
∑
(k,i)∈F

π(k, i)v(k, i) ≤ γm
b

1 − γ
. (3.25)

Substituting (3.24) and (3.25) into (3.22) yields (3.12).
Next we consider (3.13). Since P ∈ BMd , we have (n)Pn ∈ BMd and (n)Pn≺dP . Thus,

since P is irreducible and positive recurrent, Proposition 2.3(c) implies that (n)Pn has the unique
positive recurrent class, which includes the states {(0, i); i ∈ D}. Furthermore, it follows from
v ∈ BId , (3.11), and Remark 2.1 that

(n)Pnv ≤ Pv ≤ γ v + b 10 . (3.26)

Therefore, we can prove (3.13) in the same way as (3.12).

Combining (3.2) with Lemmas 3.1 and 3.3, we obtain the following theorem.

Theorem 3.1. Suppose that P ∈ BMd and that P is irreducible. If Assumption 3.1 holds, then

‖(n)πn − π‖ ≤ 4γm
b

1 − γ
+ 2m

∑
i∈D

(n)πn(n, i) for all n,m ∈ N, (3.27)

‖(n)πn − π‖ ≤ b

1 − γ

(
4γm + 2m

∑
i∈D

1

v(n, i)

)
for all n,m ∈ N. (3.28)

Remark 3.2. If d = 1, Theorem 3.1 is reduced to Theorem 4.2 of [23].

Proof of Theorem 3.1. From (3.2) and Lemma 3.3, we have

‖(n)πn − π‖ ≤ 4γm
b

1 − γ
+ ‖(n)pmn (0,� )− pm(0,� )‖. (3.29)
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From Lemma 3.1 (which does not require P ∈ BMd ), we obtain, for m ∈ N,

‖(n)pmn (0,� )− pm(0,� )‖ ≤
∑
i∈D

�(i)‖(n)pmn (0, i)− pm(0, i)‖

≤
m−1∑
h=0

∑
(l,j)∈F

(∑
i∈D

�(i)(n)p
h
n(0, i; l, j)

)

n(l, j). (3.30)

It follows from (3.1) and (n)Pn ∈ BMd that (� , 0, 0, . . . )≺d (n)πn and ((n)Pn)h ∈ BMd for
h ∈ N. Thus, Proposition 2.2 yields

(� , 0, 0, . . . )((n)Pn)
h≺d (n)πn((n)Pn)

h = (n)πn. (3.31)

In addition, P ∈ BMd and (3.4) imply that the column vector �δn := (
n(l, j))(l,j)∈F with block
size d is block increasing, i.e. �δn ∈ BId . Combining this and (3.31) with Remark 2.1, it follows
that

(� , 0, 0, . . . )((n)Pn)
h�δn ≤ (n)πn�δn.

Applying (3.4) to the right-hand side of the above inequality, we obtain∑
(l,j)∈F

(∑
i∈D

�(i)(n)p
h
n(0, i; l, j)

)

n(l, j)

≤ 2
∑
(l,j)∈F

(n)πn(l, j)
∑

l′>n,j ′∈D

p(l, j ; l′, j ′)

≤ 2
∑
(l,j)∈F

(n)πn(l, j)
∑
j ′∈D

(n)pn(l, j ; n, j ′)

= 2
∑
j ′∈D

(n)πn(n, j
′), (3.32)

where the second inequality follows from (1.2) and the last equality follows from the fact that
(n)πn · (n)Pn = (n)πn. Substituting (3.32) into (3.30) yields

‖(n)pmn (0,� )− pm(0,� )‖ ≤ 2m
∑
j ′∈D

(n)πn(n, j
′),

from which, together with (3.29), we obtain (3.27).
Next, we prove (3.28). Premultiplying both sides of (3.26) by (n)πn and using the fact that

(n)πn · (n)Pn = (n)πn, we obtain (n)πnv ≤ b/(1 − γ ), which leads to

(n)πn(n, i) ≤ b

1 − γ

1

v(n, i)
, i ∈ D.

Substituting this inequality into (3.27) yields (3.28).

4. Extensions of the main result

In this section we do not necessarily assume that P (i.e. the Markov chain {(Xν, Jν); ν ∈
Z+}) is block monotone, but do assume that P is blockwise dominated by an irreducible and
positive recurrent stochastic matrix in BMd , which is denoted by P̃ = (p̃(k, i; l, j))(k,i),(l,j)∈F.
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Let π̃ = (π̃(k, i))(k,i)∈F denote the stationary probability vector of P̃ . It follows, fromP≺d P̃ ∈
BMd and Proposition 2.3(c) that π≺d π̃ and, thus,

∞∑
k=0

π̃(k, i) =
∞∑
k=0

π(k, i) = �(i), i ∈ D. (4.1)

Let {(X̃ν, J̃ν); ν ∈ Z+} denote a BMMC with state space F and transition probability matrix
P̃ . Since P≺d P̃ ∈ BMd , we can assume (without loss of generality) that the pathwise ordering
of {(X̃ν, J̃ν)} and {(Xν, Jν)} holds, i.e. if X0 ≤ X̃0 and J0 = J̃0, then Xν ≤ X̃ν and Jν = J̃ν
for all n ∈ N (see Lemma A.2).

The following result is an extension of Theorem 5.1 of [23].

Theorem 4.1. Suppose that

(i) P̃ ∈ BMd and P̃ is irreducible;

(ii) P≺d P̃ ; and

(iii) there exists a column vector v = (v(k, i))(k,i)∈F ∈ BId such that v ≥ e and

P̃ v ≤ γ v + b 10 (4.2)

for some γ ∈ (0, 1) and b ∈ (0,∞).

Under these conditions, (3.28) holds.

Proof. We first prove the two bounds (3.12) and (3.13). Let (X, J ) and (X̃, J̃ ) denote two
random vectors on a probability space (�,F ,P) such that P(X = k, J = i) = π(k, i) and
P(X̃ = k, J̃ = i) = π̃(k, i) for (k, i) ∈ F. Note that, since π≺d π̃ , it follows that∑∞
l=kπ(l, i)/�(i) ≤ ∑∞

l=k π̃(l, i)/�(i) for (k, i) ∈ F. According to this inequality and
(4.1), we can assume that X ≤ X̃ and J = J̃ (see [18, Theorem 1.2.4]). We then introduce
the copies {(X̃(h)ν , J̃

(h)
ν )} and {(X(h)ν , J

(h)
ν )}, h = 0, 1, 2, of the Markov chains {(X̃ν, J̃ν)} and

{(Xν, Jν)}, respectively, on the common probability space (�,F ,P), where

(X̃
(0)
0 , J̃

(0)
0 ) = (0, J̃ ), (X̃

(1)
0 , J̃

(1)
0 ) = (k, J̃ ), (X̃

(2)
0 , J̃

(2)
0 ) = (X̃, J̃ ),

(X
(0)
0 , J

(0)
0 ) = (0, J ), (X

(1)
0 , J

(1)
0 ) = (k, J ), (X

(2)
0 , J

(2)
0 ) = (X, J ).

From the pathwise ordering of {(X̃ν, J̃ν)} and {(Xν, Jν)}, it holds that, for h = 0, 1, 2,

X(h)ν ≤ X̃(h)ν , J (h)ν = J̃ (h)ν , for all ν ∈ Z+. (4.3)

In addition, by the pathwise-ordered property of P̃ ∈ BMd (see Lemma A.1), we assume that

X̃(0)ν ≤ X̃(1)ν , X̃(0)ν ≤ X̃(2)ν , J̃ (0)ν = J̃ (1)ν = J̃ (2)ν , for all ν ∈ Z+. (4.4)

Let g = (g(l, j))(l,j)∈F denote a column vector satisfying |g| ≤ v. It then follows that (3.18)
holds under the assumptions of Theorem 4.1 because (3.18) does not require that {(Xν, Jν)} is
block monotone. Furthermore, applying (4.3), (4.4), and v ∈ BId to (3.18), we obtain, for all
|g| ≤ v,

|pm(k,� )g − πg| ≤ 2E[E(k,J̃ );(0,J̃ )[v(X̃(1)m , J̃ (1)m )I{T1>m}]]
+ 2E[E(X̃,J̃ );(0,J̃ )[v(X̃(2)m , J̃ (2)m )I{T2>m}]], (4.5)

where Th = inf{m ∈ Z+;X(h)ν = X
(0)
ν for all ν ≥ m} for h = 1, 2.

https://doi.org/10.1239/aap/1427814582 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814582


Augmented truncations of block-monotone Markov chains 97

It follows from (4.3) and (4.4) that, for each h ∈ {1, 2}, X̃(h)m = 0 implies thatX(h)m = X
(0)
m =

0 and, thus,X(h)ν = X
(0)
ν for all ν ≥ m, which leads to Th ≤ inf{ν ∈ Z+; X̃(h)ν = 0}. Therefore,

from (4.5), we can obtain the following inequality (see the derivation of (3.22) from (3.19)):

‖pm(k,� )− π‖v ≤ 2E[E(k,J̃ )[v(X̃m, J̃m)I{̃τ0>m}]] + 2E[E(X̃,J̃ )[v(X̃m, J̃m)I{̃τ0>m}]].
Here τ̃0 = inf{ν ∈ Z+; X̃ν = 0}. Furthermore, following the discussion after (3.22), we can
show that, for all k ∈ Z+ and m ∈ N,

‖pm(k,� )− π‖v ≤ 2γm
[
v(k,� )(1 − 10(k,� ))+ b

1 − γ

]
,

‖(n)pmn (k,� )− (n)πn‖v ≤ 2γm
[
v(k,� )(1 − 10(k,� ))+ b

1 − γ

]
for all n ∈ N.

Consequently, we obtain the two bounds (3.12) and (3.13).
It remains to prove that

‖(n)pmn (0,� )− pm(0,� )‖ ≤ 2mb

1 − γ

∑
i∈D

1

v(n, i)
.

Let 
̃n(l, j) = 2
∑
l′>n,j ′∈D

p̃(l, j ; l′, j ′) for (l, j) ∈ F. Since P≺d P̃ , it holds that
n(l, j) ≤

̃n(l, j) for (l, j) ∈ F. Note here that (3.30) still holds and, thus,

‖(n)pmn (0,� )− pm(0,� )‖ ≤
m−1∑
h=0

∑
(l,j)∈F

(∑
i∈D

�(i)(n)p
h
n(0, i; l, j)

)

̃n(l, j). (4.6)

We now define (n)P̃n as the last-column-block-augmented first-n-block-column truncation
of P̃ and (n)π̃n = ((n)π̃n(k, i))(n,i)∈F as the stationary distribution of (n)P̃n. We also define
(n)p̃

m
n (k, i) = ((n)p̃

m
n (k, i; l, j))(l,j)∈F as a probability vector such that (n)p̃mn (k, i; l, j) repre-

sents the (k, i; l, j)th element of ((n)P̃n)m. It then follows from (n)Pn≺d (n)P̃n and Proposi-
tion 2.3(b) that ((n)Pn)h≺d((n)P̃n)

h for h ∈ N. Therefore, Remark 2.1 and (
̃n(l, j))(l,j)∈F ∈
BId (due to the fact that P̃ ∈ BMd ) yield∑

(l,j)∈F

(n)p
h
n(0, i; l, j)
̃n(l, j) ≤

∑
(l,j)∈F

(n)p̃
h
n(0, i; l, j)
̃n(l, j). (4.7)

Substituting (4.7) into (4.6), we have

‖(n)pmn (0,� )− pm(0,� )‖ ≤
m−1∑
h=0

∑
(l,j)∈F

(∑
i∈D

�(i)(n)p̃
h
n(0, i; l, j)

)

̃n(l, j).

In addition, since (n)P̃n≺d P̃ ∈ BMd , Proposition 2.3(c) implies that (n)π̃n≺d π̃ and, thus,∑∞
k=0 (n)π̃n(k, i) = ∑∞

k=0 π̃(k, i) for i ∈ D. Combining this with (4.1), we have �(i) =∑∞
k=0 (n)π̃n(k, i) for i ∈ D. As a result, according to the discussion following (3.30) in the

proof of Theorem 3.1, we can prove that

‖(n)pmn (0,� )− pm(0,� )‖ ≤ 2m
∑
i∈D

(n)π̃n(n, i) ≤ 2mb

1 − γ

∑
i∈D

1

v(n, i)
.

We can relax (4.2) if the direct path to the states {(0, i); i ∈ D} is ‘large’ enough.
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Theorem 4.2. Suppose that conditions (i) and (ii) of Theorem 4.1 are satisfied. Furthermore,
suppose that there exists a column vector v′ = (v′(k, i))(k,i)∈F ∈ BId such that v′ ≥ e and, for
some γ ′ ∈ (0, 1), b′ ∈ (0,∞), and K ∈ Z+,

P̃ v′ ≤ γ ′v′ + b′ 1K, (4.8)

P̃ (K; 0)e > 0, (4.9)

where P̃ (k; l), k, l ∈ Z+, denotes a d × d matrix such that P̃ (k; l) = (p̃(k, i; l, j))(i,j)∈D.
Under these conditions, (3.28) holds for all n ∈ N, where

γ = γ ′ + B

1 + B
, (4.10)

b = b′ + B, (4.11)

v(k, i) =
{
v′(0, i), k = 0, i ∈ D,

v′(k, i)+ B, k ∈ N, i ∈ D,
(4.12)

and B ∈ (0,∞) such that BP̃ (K; 0)e ≥ b′e. (4.13)

Remark 4.1. Condition (4.9) ensures that there exists some B ∈ (0,∞) that satisfies (4.13).
Furthermore, since P̃ ∈ BMd , (4.9) implies that P̃ (k; 0)e > 0 for all k = 0, 1, . . . , K .

Proof of Theorem 4.2. According to Theorem 4.1, it suffices to prove that (4.2) holds for
some γ ∈ (0, 1), b ∈ (0,∞), and v ∈ BId with v ≥ e. Let v(k) and v′(k), k ∈ Z+, denote
d × 1 vectors such that v(k) = (v(k, i))i∈D and v′(k) = (v′(k, i))i∈D. Clearly, it holds that
v = (v(0)�, v(1)�, . . . )� and v′ = (v′(0)�, v′(1)�, . . . )�, where ‘�’ represents the transpose
operator. Thus, (4.8), (4.11), and (4.12) yield

∞∑
l=0

P̃ (0; l)v(l) ≤
∞∑
l=0

P̃ (0; l)v′(l)+ Be

≤ γ ′v′(0)+ (b′ + B)e

= γ ′v(0)+ be

≤ γ v(0)+ be, (4.14)

where the last inequality follows from γ ≥ γ ′ (by (4.10)).
Furthermore, since P̃ ∈ BMd ,

∑∞
l=1 P̃ (k; l) ≤ ∑∞

l=1 P̃ (K; l) for k = 1, 2, . . . , K . From
this result and (4.12), it follows that, for k = 1, 2, . . . , K ,

∞∑
l=0

P̃ (k; l)v(l) ≤
∞∑
l=0

P̃ (k; l)v′(l)+ B

∞∑
l=1

P̃ (K; l)e

=
∞∑
l=0

P̃ (k; l)v′(l)+ B{e − P̃ (K; 0)e}. (4.15)

Applying (4.8) and (4.13) to the right-hand side of (4.15), we obtain, for k = 1, 2, . . . , K ,

∞∑
l=0

P̃ (k; l)v(l) ≤ γ ′v′(k)+ Be + {b′e − BP̃ (K; 0)e} ≤ γ ′v′(k)+ Be. (4.16)
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Note that, (4.10) implies that supx≥1(γ
′x +B)/(x +B) = γ . Thus, since v′ ≥ e, it holds that

γ ′v′(k, i)+ B ≤ γ (v′(k, i)+ B). Combining this with (4.12) yields

γ ′v′(k)+ Be ≤ γ (v′(k)+ Be) = γ v(k), k ∈ N. (4.17)

Substituting (4.17) into (4.16) yields

∞∑
l=0

P̃ (k; l)v(l) ≤ γ v(k), k = 1, 2, . . . , K. (4.18)

Similarly, for k = K + 1,K + 2, . . . ,

∞∑
l=0

P̃ (k; l)v(l) ≤
∞∑
l=0

P̃ (k; l)v′(l)+ Be ≤ γ ′v′(k)+ Be ≤ γ v(k), (4.19)

where the last inequality follows from (4.17). Finally, (4.14), (4.18), and (4.19) yield (4.2).

5. Applications

In this section we discuss the application of our results to GI/G/1-type Markov chains. To
this end, we make the following assumption.

Assumption 5.1. (i) P is of the form

P =

⎛⎜⎜⎜⎜⎜⎝
B(0) B(1) B(2) B(3) · · ·

B(−1) A(0) A(1) A(2) · · ·
B(−2) A(−1) A(0) A(1) · · ·
B(−3) A(−2) A(−1) A(0) · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ , (5.1)

where A(k) and B(k), k = 0,±1,±2, . . . , are d × d matrices;

(ii) P ∈ BMd ;

(iii) P is irreducible and positive recurrent;

(iv) A := ∑∞
k=−∞ A(k) is irreducible and stochastic; and

(v) rA+ = sup{z > 0; ∑∞
k=0 z

kA(k) is finite} > 1.

It follows from Assumption 5.1(i), (ii), and (iv), and Proposition 1.1 that � = ∑∞
l=0B(l) =

B(−k) + ∑∞
l=−k+1A(l) for all k ∈ N, which implies that limk→∞ B(−k) = O and, thus,

A = �.
Let Â(z) denote

Â(z) =
∞∑

k=−∞
zkA(k), z ∈ (1/rA− , rA+) ∩ {1} =: IA, (5.2)

where rA− = sup{z > 0; ∑∞
k=1 z

kA(−k) is finite} ≥ 1. Let δA(z), z ∈ IA, denote the
real and maximum-modulus eigenvalue of Â(z) (see, e.g. [9, Theorems 8.3.1 and 8.4.4]).
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Let μA(z) = (μA(z, i))i∈D and vA(z) = (vA(z, i))i∈D, z ∈ IA, denote the left and right
eigenvectors of Â(z) corresponding to the eigenvalue δA(z), i.e.

μA(z)Â(z) = δA(z)μA(z), Â(z)vA(z) = δA(z)vA(z), (5.3)

which are normalized such that μA(z)vA(z) = 1 and vA(z) ≥ e for z ∈ IA. We then have
δA(z) = μA(z)Â(z)vA(z). It also follows from A = � and Assumption 5.1(iv) that δA(1) = 1,
μA(1) = c� , and vA(1) = c−1e for some c ∈ (0, 1].
Lemma 5.1. Under Assumption 5.1, there exists an α ∈ (1, rA) such that δA(α) < 1.

Proof. Since δA(1) = 1 and δA(z) is differentiable for z ∈ IA (see [1, Theorem 2.1]),
it suffices to show that δ′A(1) < 0. Indeed, δ′A(1) = μA(1)

∑∞
k=−∞kA(k)vA(1) =

�
∑∞
k=−∞kA(k)e, which is equal to the mean drift of the process {Xν; ν ∈ Z+} away from

the boundary and is strictly negative under Assumption 5.1 (see, e.g. [11, Proposition 2.2.1]).

We now define P (k; l), k, l ∈ Z+, as a d×d matrix such that P (k; l) = (p(k, i; l, j))i,j∈D.
We also fix v′ = (v′(0)�, v′(1)�, . . . )� such that

v′(k) = αkvA(α), k ∈ Z+, (5.4)

which leads to v′ ∈ BId . It then follows from (5.1) and (5.4) that
∞∑
l=0

P (0; l)v′(l) =
∞∑
l=0

αlB(l)vA(α) =: w(0), (5.5)

∞∑
l=0

P (k; l)v′(l) = B(−k)vA(α)+ αk
∞∑

l=−k+1

αlA(l)vA(α) =: w(k), k ∈ N, (5.6)

where w(0) ≤ w(0) ≤ w(1) ≤ · · · due to the facts that P ∈ BMd and v′ ∈ BId (see
Proposition 2.2). Furthermore, using (5.2) and (5.3), we can estimate the right-hand side
of (5.6) as ∞∑

l=0

P (k; l)v′(l) = w(k) ≤ B(−k)vA(α)+ αkÂ(α)vA(α)

= B(−k)vA(α)+ αkδA(α)vA(α)

< ∞, k ∈ N. (5.7)

Therefore, w(k) is finite for all k ∈ Z+. In addition, combining (5.7), limk→∞ B(−k) = O,
vA(α) ≥ e, and Lemma 5.1, we can show that there exist some γ ′ ∈ (0, 1) and k∗ ∈ N such that

∞∑
l=0

P (k; l)v′(l) ≤ γ ′αkvA(α) = γ ′v′(k) for all k ≥ k∗, (5.8)

where the last equality is due to (5.4). Consequently, from Theorem 4.2, we have the follow-
ing result.

Theorem 5.1. Suppose that Assumption 5.1 holds, and fix γ ′ ∈ (0, 1) and k∗ ∈ N to satisfy
(5.8). Furthermore, if B(−K)e > 0 for some nonnegative integerK ≥ k∗ − 1, then the bound
(3.28) holds for γ ∈ (0, 1), b ∈ (0,∞), and v ∈ BId such that (4.10)–(4.13) are satisfied,
where v′ is given by (5.4), P̃ (K; 0) = B(−K), and

b′ = inf{x > 0; xe ≥ w(k)− γ ′αkvA(α) for all k = 0, 1, . . . , K}. (5.9)
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Proof. Fix P̃ = P ∈ BMd . From (5.4)–(5.6) and (5.9), it holds that

∞∑
l=0

P̃ (k; l)v′(l) = γ ′v′(k)+ {w(k)− γ ′αkvA(α)} ≤ γ ′v′(k)+ b′e, k = 0, 1, . . . , K.

This inequality and (5.8) yield (4.8). Furthermore, (4.9) holds due to the fact that P̃ (K; 0)e =
B(−K)e > 0. Consequently, all the conditions of Theorem 4.2 are satisfied and, thus, the
bound (3.28) holds.

Finally, we consider the special case in which B(−k) = A(−k) = O for k ≥ 2, B(−1) =
A(−1) and B(k) = A(k − 1), for k ∈ Z+, i.e.

P =

⎛⎜⎜⎜⎜⎜⎝
A(−1) A(0) A(1) A(2) · · ·
A(−1) A(0) A(1) A(2) · · ·

O A(−1) A(0) A(1) · · ·
O O A(−1) A(0) · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ , (5.10)

which is block monotone with block size d . Note that P in (5.10) is an M/G/1-type transition
probability matrix and appears in the analysis of the stationary queue length distribution in the
BMAP/GI/1 queue (see [20]). From Theorem 3.1, we then have the following theorem.

Theorem 5.2. Suppose that Assumption 5.1 holds. Furthermore, if B(−k) = A(−k) = O

for k ≥ 2, B(−1) = A(−1), and B(k) = A(k − 1) for k ∈ Z+, then bound (3.28) holds for
γ = δA(α), b = (α − 1)maxi∈D vA(α, i), and v = v′ given in (5.4).

Proof. Fixing v = v′ and applying (5.2)–(5.4), Lemma 5.1, and the conditions on {B(k)}
to (5.5) and (5.6), we obtain

∞∑
l=0

P (0; l)v(l) = αδA(α)vA(α) ≤ v(0)+ (α − 1)vA(α),

∞∑
l=0

P (k; l)v(l) = αkδA(α)vA(α) = δA(α)v(k), k ∈ N,

which imply that all the conditions of Theorem 3.1 are satisfied, and thus, (3.28) holds.

Appendix A. Pathwise ordering

In this appendix we present two lemmas on the pathwise ordering associated with BMMCs.
As in the previous sections, P = (p(k, i; l, j))(k,i),(l,j)∈F and P̃ = (p̃(k, i; l, j))(k,i),(l,j)∈F

represent |F|×|F| stochastic matrices, though they are not necessarily assumed to be irreducible
or recurrent in this appendix.

Let {Uν; ν ∈ N} and {Sν; ν ∈ N} denote two independent sequences of independent and
identically distributed (i.i.d.) random variables on a probability space (�,F ,P) such that Uν
and Sν are uniformly distributed in (0, 1). Let J ∗

0 denote a D-valued random variable on the
probability space (�,F ,P), which is independent of both {Uν; ν ∈ N} and {Sν; ν ∈ N}.
Furthermore, let J ∗

ν = G−1(Sν | J ∗
ν−1) for ν ∈ N, where

G−1(s | i) = inf

{
j ∈ D;

j∑
j ′=1

ψ(i, j ′) ≥ s

}
, 0 < s < 1, i ∈ D.
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It then follows that {J ∗
ν ; ν ∈ Z+} is a D-valued Markov chain on the probability space (�,F ,P)

such that P(J ∗
ν+1 = j | J ∗

ν = i) = ψ(i, j) for i, j ∈ D and ν ∈ Z+, where ψ(i, j) is defined
in Proposition 1.1.

Lemma A.1. (Pathwise-ordered property of BMMCs.) Suppose that P ∈ BMd . LetX′
0 andX′′

0
denote nonnegative integer-valued random variables on the probability space (�,F ,P), which
are independent of both {Uν; ν ∈ N} and {Sν; ν ∈ N}. Furthermore, letX′

ν = F−1(Uν | X′
ν−1,

J ∗
ν−1, J

∗
ν ) and X′′

ν = F−1(Uν | X′′
ν−1, J

∗
ν−1, J

∗
ν ) for ν ∈ N, where F−1(u | k, i, j), 0 < u <

1, k ∈ Z+, i, j ∈ D, is defined as

F−1(u | k, i, j) = inf

{
l ∈ Z+;

l∑
m=0

p(k, i;m, j)
ψ(i, j)

≥ u

}
. (A.1)

Under these conditions, {(X′
ν,J

∗
ν ); ν ∈ Z+} and {(X′′

ν , J
∗
ν );ν ∈ Z+} are Markov chains with a

transition probability matrix P on the probability space (�,F ,P) such that X′
ν ≤ X′′

ν for all
ν ∈ N if X′

0 ≤ X′′
0 .

Proof. Suppose that X′
ν ≤ X′′

ν for some ν ∈ Z+. It then follows from P ∈ BMd that

l∑
m=0

p(X′
ν, J

∗
ν ;m, J ∗

ν+1) ≥
l∑

m=0

p(X′′
ν , J

∗
ν ;m, J ∗

ν+1), l ∈ Z+.

Thus, from the definitions of {X′
ν} and {X′′

ν }, we have

X′′
ν+1 = inf

{
l ∈ Z+;

l∑
m=0

p(X′′
ν , J

∗
ν ;m, J ∗

ν+1)

ψ(J ∗
ν , J

∗
ν+1)

≥ Uν+1

}

≥ inf

{
l ∈ Z+;

l∑
m=0

p(X′
ν, J

∗
ν ;m, J ∗

ν+1)

ψ(J ∗
ν , J

∗
ν+1)

≥ Uν+1

}
= F−1(Uν+1 | X′

ν, J
∗
ν , J

∗
ν+1)

= X′
ν+1.

Therefore, we have proved by induction that X′
ν ≤ X′′

ν for all ν ∈ N.
Next, we prove that the dynamics of {(X′

ν, J
∗
ν ); ν ∈ Z+} are determined by P . Let σ( · )

denote the sigma-algebra generated by the random variables in the parentheses. From the
definition of {(X′

ν, J
∗
ν )}, it follows that, for ν ∈ N,

σ(X′
0, X

′
1, . . . , X

′
ν−1, J

∗
0 , J

∗
1 , . . . , J

∗
ν−1)

⊆ σ(X′
0, J

∗
0 , U1, U2, . . . , Uν−1, S1, S2, . . . , Sν−1)

=: Gν−1.

Note that, for (k, i) ∈ F and j ∈ D,

Gν−1 ∩ {X′
ν = k, J ∗

ν = i, J ∗
ν+1 = j} ⊆ σ(X′

0, J
∗
0 , U1, U2, . . . , Uν, S1, S2, . . . , Sν+1),

which implies that Uν+1 is independent of both Gν−1 and {X′
ν = k, J ∗

ν = i, J ∗
ν+1 = j} for
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(k, i) ∈ F and j ∈ D. Thus, it follows from the definition of {X′
ν} that

P(X′
ν+1 ≤ l | Gν−1, X

′
ν = k, J ∗

ν = i, J ∗
ν+1 = j)

= P

( l∑
m=0

p(k, i;m, j)
ψ(i, j)

≥ Uν+1

∣∣∣∣ Gν−1, X
′
ν = k, J ∗

ν = i, J ∗
ν+1 = j

)

= P

( l∑
m=0

p(k, i;m, j)
ψ(i, j)

≥ Uν+1

)

=
l∑

m=0

p(k, i;m, j)
ψ(i, j)

, (k, i)× (l, j) ∈ F
2. (A.2)

Also, note that Sν+1 is independent of Gν ⊇ Gν−1∩{X′
ν = k, J ∗

ν = i} for (k, i) ∈ F. Therefore,
from the definition of {J ∗

ν }, it holds that, for (k, i) ∈ F and j ∈ D,

P(J ∗
ν+1 = j | Gν−1, X

′
ν = k, J ∗

ν = i)

= P

( j−1∑
j ′=1

ψ(i, j ′) < Sν+1 ≤
j∑

j ′=1

ψ(i, j ′)
∣∣∣∣ Gν−1, X

′
ν = k, J ∗

ν = i

)

= P

( j−1∑
j ′=1

ψ(i, j ′) < Sν+1 ≤
j∑

j ′=1

ψ(i, j ′)
)

= ψ(i, j). (A.3)

Combining (A.2) and (A.3) yields

P(X′
ν+1 ≤ l, J ∗

ν+1 = j | Gν−1, X
′
ν = k, J ∗

ν = i)

= P(X′
ν+1 ≤ l | Gν−1, X

′
ν = k, J ∗

ν = i, J ∗
ν+1 = j)

× P(J ∗
ν+1 = j | Gν−1, X

′
ν = k, J ∗

ν = i)

=
l∑

m=0

p(k, i;m, j), (k, i)× (l, j) ∈ F
2,

which shows that {(X′
ν, J

∗
ν ); ν ∈ Z+} is a Markov chain with transition probability matrix

P on the probability space (�,F ,P). The same argument holds for {(X′′
ν , J

∗
ν );ν ∈ Z+}.

We omit the details.

Lemma A.2. (Pathwise ordering by the blockwise dominance.) Suppose that P ≺d P̃ and
either P ∈ BMd or P̃ ∈ BMd . Let X∗

0 and X̃∗
0 denote nonnegative integer-valued random

variables on the probability space (�,F ,P), which are independent of both {Uν; ν ∈ N} and
{Sν; ν ∈ N}. Furthermore, let X∗

ν = F−1(Uν | X∗
ν−1, J

∗
ν−1, J

∗
ν ) and X̃∗

ν = F̃−1(Uν | X̃∗
ν−1,

J ∗
ν−1, J

∗
ν ) for ν ∈ N, where F−1(u | k, i, j), 0 < u < 1, k ∈ Z+, i, j ∈ D, is defined in (A.1)

and F̃−1(u | k, i, j), 0 < u < 1, k ∈ Z+, i, j ∈ D, is defined as

F̃−1(u | k, i, j) = inf

{
l ∈ Z+;

l∑
m=0

p̃(k, i;m, j)
ψ(i, j)

≥ u

}
.
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Under these conditions, {(X∗
ν , J

∗
ν ); ν ∈ Z+} and {(X̃∗

ν , J
∗
ν );ν ∈ Z+} are Markov chains with

transition probability matrices P and P̃ , respectively, on the probability space (�,F ,P) such
that X∗

ν ≤ X̃∗
ν for all ν ∈ N if X∗

0 ≤ X̃∗
0 .

Proof. In Proposition 2.3(a) we showed that, for all k ∈ Z+ and i, j ∈ D,

ψ(i, j) =
∞∑
l=0

p(k, i; l, j) =
∞∑
l=0

p̃(k, i; l, j).

Therefore, following the proof of Lemma A.1, we can show that {(X∗
ν , J

∗
ν ); ν ∈ Z+} and

{(X̃∗
ν , J

∗
ν ); ν ∈ Z+} are Markov chains with transition probability matrices P and P̃ , res-

pectively, on the probability space (�,F ,P). Similarly, we can prove by induction that if
X∗

0 ≤ X̃∗
0 , then X∗

ν ≤ X̃∗
ν for all ν ∈ N. We omit the details.
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