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1. Introduction. In 1926,1. J. Schur proved the following theorem on partitions [3].

THEOREM 1. The number of partitions ofn into parts congruent to ±1 (mod 6) is equal to
the number of partitions of n of the form bl + ...+bs = n, where bt — bi+l ^ 3 and, if 3 | b%,
then bj—bi+1 > 3.

Schur's proof was based on a lemma concerning recurrence relations for certain poly-
nomials. In 1928, W. Gleissberg gave an arithmetic proof of a strengthened form of Schur's
theorem [2]; however, the combinatorial reasoning in Gleissberg's paper becomes very
intricate.

Although claims of simplicity of proof are highly subjective, we shall in §2 give a proof
of Schur's theorem which is shorter than the two previous proofs and seems to exhibit the
crucial steps more clearly. This new proof depends on AppelPs Comparison Theorem
[1, p. 101]. In §3, we generalize our technique and prove a new partition theorem of which
the following is a special case.

THEOREM 4. Let A(n) denote the number of partitions ofn into parts congruent to 0, 2, 3,
4, 7 (mod 8). Let £(n) denote the number of partitions of n of the form n = bt + ... + bs,
where bs ^ 2, bt 2; bi+l, and, ifb; is odd, bi — bi+1 ^ 3. Then A(n) = B(n).

For example, if n = 15, the nineteen partitions enumerated by A(15) are 15, 12 + 3,
11+4, 11+2 + 2, 10 + 3 + 2, 8 + 7, 8+4+3, 8 + 3+2+2, 7+4+4, 7+4+2+2, 7 + 3 + 3 + 2,
7+2 + 2+2 + 2, 4 + 4+4+3, 4+4 + 3+2 + 2, 4+3 + 3 + 3+2, 4+3 + 2+2+2 + 2,
3 + 3 + 3 + 3 + 3, 3 + 3 + 3 + 2 + 2+2, 3+2 + 2+2+2 + 2+2. The nineteen partitions enumera-
ted by 5(15) are 15, 13+2, 12 + 3, 11+4, 11+2 + 2, 10 + 5, 10 + 3+2,9 + 6,9+4+2,9+2 +
2+2, 8 + 7, 8 + 5 + 2, 8+4 + 3, 7 + 4+4, 7 + 4+2+2, 7+2 + 2+2+2, 6+6 + 3, 6 + 5 + 2 + 2,
4+4+4+3.

Finally in §4, we show how Schur's lemma concerning recurrence relations for certain
polynomials is actually a direct corollary of the ^-analogue of Gauss's theorem for hyper-
geometric series.

2. Proof of Theorem 1. Let n(n) denote the number of partitions of n of the form
n = bx + ...+bs with bt—bi+l ^ 3 and 6,-6 ( + 1 > 3 if 3 | bt. Let njn) denote the number of
partitions just described, with the added condition that b^ ^m. By breaking the set of par-
titions enumerated by nm(n) into two sets, those with largest part less than m and those with
largest part equal to m, we see that

(n-3m-l), (2.1)

_1(n-3m-2), (2.2)

-l(«-3m-3). (2.3)
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If

E
n = l

and
d(q)=l+ f>(n)4",

then for | q | < 1, dm{q) -> <%) as m -> oo, since

where p{n) is the

Let

Then, by (2.6),

By (2.5),

ordinary partition function. From (2.1), (2.2) and (2.3) we deduce

d3m+i(q) = d3m(q) + q3m+1d3m_2.(q),

d3m+2(q) = d3m+l(q) + q*'»+2d3m_1(q),

d3m+3(q) = d3m + 2(q) + q3m+3d3m-1(q).

d3m+i(q) = <*m(q)-q3m+2<*m-i(q)-

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

Hence, by substituting (2.7) and (2.8) into (2.4), we obtain

xm(q) = (l + q3m+1 + q3m+2)«m-i(q) + q3m(l-q3m)*m-2(q)- (2.9)

We note that am(q) is uniquely determined by (2.9) and the two initial values <Z-i((f) = 1,

Now, for | x | < 1, | q \ < 1, define sn(q) by

V 1 (2.10)
n=0 n=0

and let

Sn(q)= fl(l-q3j).sn(q)-
J = I

Calling the expression on the left-hand side of (2.10)/(x; q), we have

q). (2.11)

Hence so(q) = 1, s^q) — (l-q)'1 and, for n>\,
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Thus
( i -

Therefore

and

Hence, by the remarks following (2.6), Sn+l(q) = <xn(q).
Thus, for \x\ < 1, \q\ < 1,

oo oo / i m \

YKl + xq^'Xl + xq^Xl-xq'T1 = E ««-i(«)*"/ II (1"«W) • (2-12)
n=0 m = 0 \ / j=l /

Hence, by Appell's comparison theorem [1, p. 101, with pn = 1],

f -1)(l + g3n+2)(l-«3n+3r1 = lim(l-x) £
x->l m = 0

n
J — 1

fi
n = l

Hence

n = 0

n
n = 0

Consequently, comparing coefficients of qN on both sides of (2.13), we see that 7t(AQ is
also the number of partitions of N into parts congruent to +1 (mod 6).

A slight refinement of the above argument will yield Gleissberg's generalization of
Schur's theorem [2, p. 374].

3. Generalizations. We may extend our previous argument to prove the following
theorem.

THEOREM 2. Let q be real with 0 < q < 1, and at ^ Q for 1 g i ^ r. Ifto = 1, tn = Ofor
n < 0, and for n > 0

*• = (i+«!«")',,-1+ I fltfV/fl(WO, (3-1)

lim r n = n 2
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Proof. If here we let

fr(x; q)=f[ (l + a1xqm + a2xq2m + ... + arxq"")(l-xqm-Tl, (3.2)
m = l

and write

Ux;q)=tpn(q)x", (3.3)
n = O

then from
+ ... +arxqr)fr(xq;q) (3.4)

we deduce that

qJ). (3.5)

Now t0 = 1 > 0. Suppose that, for 0 g « < m, tn > 0; then

r j -1

»m-«m-l =fll«m/m-l+ £ ^ X - y Ft (I-?"1" ')

;> o. (3.6)

Thus, by mathematical induction, tm (m > 0) is a non-decreasing sequence of positive numbers.
Consequently,

r

+ar)<TK-1- (3-7)
Hence, for all m ^ 0,

fl+ -+«r)«"). (3-8)
n = 0

Thus tm is a non-decreasing bounded sequence of positive terms, and therefore tm con-
verges to a limit L.

Hence, by Appell's comparison theorem [1, p. 101 with/?,, = 1], we deduce as in Theorem 1
that

iim tn = L = fl (l + aiq
m+a2q

2™+ ... +atq'm). (3.9)
n-»0 m = l

Thus Theorem 2 is proved.
As an example of Theorem 2, we prove the following partition theorem.

THEOREM 3. Let r ̂  2 be an integer. Let P\(n) denote the number of partitions of n into
parts which are either even and not congruent to 4r—2(mod4r) or odd and congruent to
2r— 1, 4 r - 1 (mod 4r). Let P2(n) denote the number of partitions of n of the form n — bx + ...
+bs, where bt ̂  bi+l, and for bt odd, bt~bi+l ^ 2r— 1 (1 ^ / $ s, where bs+l = 0). Then
P1(n)=P2(n).
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Proof. Let p(n, m) denote the number of partitions of n of the type enumerated by
pi(n)> with the added restriction that b^ g 2m. Let

l
n = l

First we shall prove that

p(n,m)—p(n,m — l) = p(n—2m, m)+p(n—2m + l,m — r). (3.10)

Now p(n, m) —p(n, m — 1) denotes the number of partitions of the type enumerated by
p(n, m) with the added restriction that either 2m or 2m —\ is the largest part. If 2m is the
largest part, remove it. This yields a partition of the type enumerated by p(n—2m, m). If
2m — 1 is the largest part, then the next largest part does not exceed 2m—2r. Hence, if 2m -1 is
removed from the partition under consideration, we obtain a partition of the type enumerated by
p(n—2m + l,m—r). Thus the above procedure establishes a one-to-one correspondence
between those partitions enumerated by p(n, m) —p(n, m — l) and the totality of partitions
which are enumerated either by p(n—2m, m) or by p(n —2m +1, m — r). Thus (3.10) is estab-
lished.

Equation (3.10) implies that

(l-q2m)Bm(q) = Bm_1(«) + g2"-1B111_r(4). (3.11)

Now in Theorem 2 replace q by q2, then set ax = a2 =... = ar-i = 0, ar = # - 1 . This yields

n—\. m-+oo

= 1+ £Pi(n)«". (3.12)
ln = l

Comparing coefficients on both sides of (3.12), we obtain Theorem 3.
Theorem 4 (stated in the introduction) is obtained from Theorem 3 directly; set r = 2

in Theorem 3.

4. Schur's recurrence lemma. The following theorem is a strengthened form of the
result Schur originally used to prove Theorem 1. We shall show that the result is a consequence
of the ^-analogue of Gauss's theorem for hypergeometric series [4, p. 97, (3.3.2.5)].

THEOREM 5. IfP0=l,

Pn=f\(l+*qi+zq2J),
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and Dn is defined by Do = 1, Dt = 1+aq,

l-q''-1)Dn_2 (n > 1),
then

t \n~\_m, (4.1)
m = O | ' n

where

ft
n = l

Proof. Let /?t and f}2 be the roots of the equation x2+ax+z = 0. Then, by (3.3) and (3.4),

fl(l-P1xq")(l-p2xq")(l-xq'-lr1 = f Dnx" f[ (l-^)"1. (4.2)
n = l n=0 y = l

But, by the ^-analogue of Gauss's theorem [4, p. 97, (3.3.2.5)],

ft (1 -/W1) (1 -/WX1 - *<T V '
l

= f *" fl(Wi«')(i-i»29J)(i-«'r1 na-«4*+w+2)
= E f PNxN(-l?zWN+2)k+iHk-l)xk U d-9")"1 f

N=0k=0 m=l

= if z ^(-^y^+w-^na-o-1 n
n = 0\JV + * = n m = l 7 =

where the penultimate expression is obtained by expanding the infinite product in the sum
and by applying Euler's theorem [4, p. 92, (3.2.2.15)].

Comparing coefficients of x" in the series expansion of (4.2) and (4.3), we obtain

N+k=n

k=0
n-t

* = 0
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