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Abstract

In this paper we examine solutions in the Gaussian integers to the Diophantine equation ax4 + by4 = cz2

for different choices of a, b and c. Elliptic curve methods are used to show that these equations have a
finite number of solutions or have no solution.
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1. Introduction and historical background

Through consideration of the question as to whether or not a right triangle with rational
sides can have area the square of an integer, Fermat was led to the quartic equation
x4 − y4 = z2. Lagrange showed that this is equivalent to solving equations of the form
ax4 + by4 = cz2 [2]. Fermat considered the related equation x4 + y4 = z2 and showed,
by infinite descent, that this equation has no nontrivial rational solutions. Hilbert
extended this result to Gaussian integers.

Pocklington proved by descent the impossibility of

x4 − py4 = z2, x4 − p2y4 = z2, x4 − y4 = pz2, x4 + 2y4 = z2,

where p is a prime of the form 8k + 3. The local and global solvability of the
Diophantine equations ax4 + by4 + cz2 = 0 in the integers was studied in [1, Ch. 6].
Some of these fourth-degree Diophantine equations were studied in Chapter 4 of
Mordell’s book [3], as equations with only trivial solution in integers. In [7], Szabó
studied the Diophantine equation ax4 + by4 = cz2 for special integer values of a, b and
c. Using elliptic curve techniques, Najman [4] proved that x4 + y4 = iz2 has a finite
number of solutions in the Gaussian integers and x4 − y4 = iz2 has no solution in Z[i].
Also, he gave a new proof of Hilbert’s result. Using elliptic curves, Najman proved
that the Diophantine equation x4 ± y4 = z2 has only trivial solutions in the Gaussian
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integers. Similarly, in this note we examine some Diophantine equations of degree
four in Z[i], by using elliptic curve techniques.

Note 1.1. Note that the obvious mapping z 7→ iz shows that the nonsolvability of
az4 + by4 = cz2 over Z[i] implies the nonsolvability of az4 + by4 = −cz2 and so only
the former equation will be studied.

2. Elliptic curves

In this section we prove some results about the rank of elliptic curves over Q(i) for
later use.

Let E(Q) be an elliptic curve overQ defined by the Weierstrass equation of the form

E(Q) : y2 = x3 + ax + b, a, b ∈ Q.

By the Mordell–Weil theorem, the set of rational points on E(Q) is a finitely generated
abelian group, that is,

E(Q) ' E(Q)tors ⊕ Z
r,

where E(Q)tors is a finite group called the torsion group and r is a nonnegative integer
called the Mordell–Weil rank of E(Q).

In order to determine the torsion subgroup of E(Q(i)), we use the extended Lutz–
Nagell theorem [6], which is a generalisation of the Lutz–Nagell theorem from E(Q)
to E(Q(i)).

Theorem 2.1 (Extended Lutz–Nagell theorem). Let E : y2 = x3 + Ax + B with A, B ∈
Z[i]. If a point (x, y) ∈ E(Q(i)) has finite order, then:

(1) both x and y ∈ Z[i]; and
(2) either y = 0 or y2 | 4A3 + 27B2.

Remark 2.2. It is well known (see, for example, [5]) that if an elliptic curve E is
defined over Q, then the rank of E over Q(i) is given by

rank(E(Q(i))) = rank(E(Q)) + rank(E−1(Q)),

where E−1 is the (−1)-twist of E over Q. We also use this fact in the following proofs.

2-descent method. In this section we describe the method which we use for
determining the rank of an elliptic curve. Let E(Q) denote the group of rational points
on the elliptic curve E : y2 = x3 + ax2 + bx. Let Q∗ denote the multiplicative group of
nonzero rational numbers and Q∗

2
the subgroup of squares of elements of Q∗. Define

the group 2-descent homomorphism α from E(Q) to Q∗/Q∗
2

as follows:

α(P) =


1 (modQ∗

2
) if P = O =∞,

b (modQ∗
2
) if P = (0, 0),

x (modQ∗
2
) if P = (x, y) with x , 0.
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Similarly, take the isogenous curve Ê : y2 = x3 − 2ax2 + (a2 − 4b)x with group of
rational points Ê(Q). The group 2-descent homomorphism α̂ from Ê(Q) to Q∗/Q∗

2

is given by

α̂(P̂) =


1 (mod Q∗

2
) if P̂ = O =∞,

a2 − 4b (mod Q∗
2
) if P̂ = (0, 0),

x (mod Q∗
2
) if P̂ = (x, y) with x , 0.

Proposition 2.3. Using the above notation, the rank r of E(Q) is determined by

2r−2 = |Im(α)| |Im( α̂ )|.

Theorem 2.4 [1, Ch. 8]. The group α(E(Q)) is equal to the classes modulo squares of
1, b and the positive and negative divisors b1 of b such that the quartic equation

N2 = b1M4 + aM2e2 +
b
b1

e4

has a solution with M, N and e pairwise coprime integers such that Me , 0. If (M,N, e)
is such a solution, then P = (b1M2/e2, b1MN/e3) is in E(Q) and α(P) = b1.

Remark 2.5. A similar theorem is true for α̂.

Now we are ready to prove some results about the rank of the elliptic curves, which
we will use in the main results. In the following, we use the notation Eq for the elliptic
curve Y2 = X3 − qX and Fq for Y2 = X3 + qx.

Theorem 2.6.

(1) For a prime integer p ≡ 3 (mod 8), the rank of the elliptic curve Ep3 : Y2 =

X3 − p3X is zero over Q(i) and its torsion group is isomorphic to {∞, (0, 0)}.
(2) For a prime integer p ≡ 3 (mod 16) and Fp3 : Y2 = X3 + p3X, we have

Fp3 (Q(i)) = {∞, (0, 0)}.

Theorem 2.7.

(1) For a prime integer p ≡ 7 or 11 (mod 16), the rank of the elliptic curve Fp :
Y2 = X3 + pX is zero in Q(i) and its torsion points are {∞, (0, 0)}.

(2) For a prime integer p ≡ 3 (mod 8) and Ep : Y2 = X3 − pX, we have Ep(Q(i)) =

{∞, (0, 0)}.

Remark 2.8. Obviously, the (−1)-twist of each of these curves is isomorphic to itself.
By Remark 2.2, it is sufficient to show that each of these curves has zero rank in Q.

Proof of Theorem 2.6(1). The quartic equation of the homogeneous space of Ep3 is

N2 = b1M4 −
p3

b1
e4,
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where b1 ∈ {±1, ±p, ±p2, ±p3}. By the definition of α, we have 1, −p ∈ Im(α).
Considering b1 mod squares, it is sufficient to consider b1 = −1 and p. For b1 = −1,
we have −M4 + p3e4 = N2. Therefore,

−M4 ≡ N2 (mod p) =⇒ −1 ≡
( N

M2

)2
(mod p)⇐⇒ p ≡ 1 (mod 4)

which is false. Also, p < Im(α) since Im(α) is a multiplicative group. So, Im(α) =

{1,−p}.
Now consider the isogenous curve Êp3 : Ŷ 2 = X̂ 3 + 4p3X̂. The biquadratic equation

of the homogeneous space of this curve is

N̂ 2 = b1M̂4 +
4p3

b1
ê 4,

where b1 ∈ {±1,±2,±4,±p,±p2,±p3,±2p,±4p,±2p2,±4p2,±2p3,±4p3}. We have
1, p ∈ Im( α̂ ). For negative b1, the quartic equation has no solution. Considering b1
mod squares, we have to examine the equation for b1 = 2 and 2p. In the former case,
we have

2M̂4 + 2p3 ê 4 = N̂ 2 ⇒ 2M̂4 = N̂ 2 (mod p),

but then 2 is a square (mod p) so p ≡ ±1 (mod 8), which is false. Since Im( α̂ ) is a
multiplicative group, 2p < Im( α̂ ). Therefore, Im( α̂ ) = {1, p}.

By Proposition 2.3, rankEp3 (Q) = 0. Using the extended Lutz–Nagell theorem,
∆Ep3 = −4p9 and so if (X,Y) is a torsion point,

Y2 = 0 or apk,

where a = ±1,±2i,±4 and k = 0, 2, 4, 8. If Y2 = 4p6, then 4p6 = X3 − p3X ⇒ 4p6 =

p3tX′3 − pt+3X′, where p - X′ and t ≥ 1. Suppose t = 1. Dividing both sides of the
equation by p3, we conclude that p | 2, which is a contradiction. Note that t ≥ 2
yields p | X′, which is again a contradiction. Similarly, we can show that Y2 ,
±p2, ±p4, ±p6, ±2i, ±2ip2, ±2ip4, ±2ip6, ±4p2, ±4p4. For Y2 = 4, suppose that q is
a prime divisor of x in Z[i]. Then q | 4 and hence q = ω = 1 + i. Comparing the powers
of ω on both sides, we deduce that Y2 , 4. In a similar way, we have Y2 , ±1,±2i.
Only for Y = 0 do we have X = 0, which means that Ep3 (Q(i))Tor = {∞, (0, 0)}. �

Proof of Theorem 2.6(2). The quartic equation of the homogeneous space of Fp3 :
Y2 = X3 + p3X is

N2 = b1M4 +
p3

b1
e4,

where b1 ∈ {±1,±p,±p2,±p3}. By definition of α, we have 1, p ∈ Im(α). For negative
b1, the equation has no solution. Considering b1 mod squares, we have Im(α) = {1, p}.
The isogenous curve of Fp3 is F̂p3 : Ŷ 2 = X̂ 3 − 4p3X̂. The biquadratic equation of the
homogeneous space of this curve is

N̂ 2 = b1M̂4 −
4p3

b1
ê 4,
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where b1 ∈ {±1, ±2, ±4, ±p, ±p2, ±p3, ±2p, ±4p, ±2p2, ±4p2, ±2p3, ±4p3}. Since
1,−p ∈ Im( α̂ ), it is sufficient to study this equation for b1 ∈ {−1,±2, p,±2p}. Similarly
to the first part of the theorem, we have −1, 2, p, −2p < Im( α̂ ). For b1 = 2p, we
have 2pM̂4 − 2p2 ê 4 = N̂2. Let (M̂, ê, N̂) be a solution of this equation such that
N̂ = pαN̂0, where p - N̂0 and α 	 0. Dividing both sides of the equation by p, we
have −2M̂4 + 2p ê 4 = p2α−1N̂ 2

0 . So, p | M̂, which is impossible, since (M̂, p) = 1.
Also, −2 < Im( α̂ ), because −p ∈ Im( α̂ ) and Im( α̂ ) is a multiplicative group. Now,
Proposition 2.3 implies that rankFp3 (Q) = 0. Similarly to the first part, Fp3 (Q(i))Tor =

{∞, (0, 0)}. �

Proof of Theorem 2.7. It is sufficient to show that rank(Fp(Q)) = rank(Ep(Q)) = 0.
The former is given in [6, Corollary 6.2.1, page 351]. The biquadratic equation
of the homogeneous space of Ep is N2 = b1M4 − pe4/b1, where b1 ∈ {±1, ±p} and
{1,−p} ⊂ Im(α). If b1 = −1,

−M4 + pe4 = N2 =⇒ −M ≡ N2 (mod p) =⇒ −1 ≡
( N

M2

)2
(mod p).

This implies that p ≡ 1 (mod 4), which is not true. Also, b1 = p < Im(α) and thus
Im(α) = {1, −p}. Consider the isogenous curve to E−p, Êp : Ŷ 2 = X̂ 3 + 4pX̂, with
the quartic equation N̂ 2 = b1M̂4 + (4p/b1) ê 4 for its homogeneous space, where
b1 ∈ {±1, ±2, ±4, ±p, ±2p, ±4p}. Clearly, it has no solution for negative b1 and
{1, p} ⊂ Im( α̂ ). Let b1 = 2; then

2M̂4 + 2p ê 4 = N̂ 2.

This means that 2 is a square (mod p) or, equivalently, p ≡ ±1 (mod 8), which is not
true. So, 2 and consequently 2p are not in Im( α̂ ). Therefore, Im( α̂ ) = {1, p} and
rank(Ep(Q)) = 0. Similarly to the proof of Theorem 2.6(1), the extended Lutz–Nagell
theorem yields ∆Ep = 4p3 and

Y2 ∈ {0,±1,±4,±p2,±2i,±2ip2,±4p2}.

If Y = 0, we have X = 0. Comparing the powers of p and ω, we see that the other cases
produce no solution in the Gaussian integers. This means that Ep(Q(i))Tor = {∞, (0, 0)}
and similarly for Ep. �

3. On the Diophantine equation y4 + dx4 = cz2

In this section we study the equation y4 + dx4 = cz2, where d is a power of an odd
prime integer and c is a power of 2, ω and i. Not only do we prove insolubility of the
equations in Gaussian integers, but we also prove it in Q(i).

Remark 3.1. For what follows, note that ω = 1 + i is a prime in the Gaussian integers.
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3.1. On the Diophantine equation y4 ± p3x4 = z2. In this section p is a prime
integer with p ≡ 3 (mod 16) or p ≡ 3 (mod 8). We note that p is also prime in Z[i].
A nontrivial solution of the Diophantine equations

y4 + 4p3x4 = z2, −4y4 + 4p3x4 = z2, y4 − 4p3x4 = z2

leads to a nontrivial solution of the Diophantine equations

y4 − p3x4 = z2, y4 + p3x4 = z2,

respectively, since the first two equations are y4 − p3(ωx)4 = z2, (ωy)4 − p3(ωx)4 = z2

and the third is y4 + p3(ωx)4 = z2. Thus, it is enough to show that the last two equations
have only trivial solutions in Z[i].

Theorem 3.2.

(1) Let p ≡ 3 (mod 8). The Diophantine equations y4 − p3x4 = ±z2 and y4 + p3x4 =

±iz2 have only trivial solutions in Z[i].
(2) For p ≡ 3 (mod 16), the Diophantine equations y4 + p3x4 = ±z2 and y4 − p3x4 =

±iz2 have only trivial solutions in Z[i].

Proof. First suppose p ≡ 3 (mod 8). Suppose that (x, y, z) is a nontrivial solution of the
equation y4 ± p3x4 = ±z2. Dividing the equation by x4 and considering the change of
variables s = y/x and t = z/x2, we have s4 ± p3 = t2 for s, t ∈ Q(i). Let

X = s2

X2 ± p3 = t2.

Multiplying these equations and letting Y = st, we have the elliptic curves Y2 =

X3 ± p3X. By Theorem 2.6, the rank of these curves is zero over Q(i) and the only
torsion point (0, 0) on both of them leads to trivial solutions for the original equations.

Now suppose p ≡ 3 (mod 16). As in the first part of the proof, suppose that (x, y, z)
is a nontrivial solution of the equations y4 ± p3x4 = ±iz2, so that

x4 ± p3y4 = iz2 ⇒

( x
y

)4
± p3 = i

( z
y2

)2
⇒ s4 ± p3 = it2,

where s = x/y and t = z/y2. Let r = s2; then r2 ± p3 = it2. Multiplying these equations
together, we have r3 ± p3r = i(ts)2. Now, X3 ∓ p3X = Y2, using X = ir and Y = st. On
both of these curves, the only torsion point is (0, 0) and this leads to trivial solutions
for y4 ± p3x4 = iz2. �

Corollary 3.3.

(1) For p ≡ 3 (mod 8), the Diophantine equations y4 − p3x4 = ±2mz2 and y4 +

p3x4 = ±2miz2 have only trivial solutions in Q(i) for any natural number m.
(2) For p ≡ 3 (mod 16), the Diophantine equations y4 + p3x4 = ±2mz2 and y4 −

p3x4 = ±2miz2 have only trivial solutions in Q(i) for any natural number m.
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(3) For n ∈ N ∪ {0} and p ≡ 3 (mod 8), the Diophantine equations y4 − p3x4 = 2nz4

and y4 + p3x4 = 2niz4 have only trivial solutions in Q(i).
(4) For n ∈ N ∪ {0} and p ≡ 3 (mod 16), the Diophantine equations y4 + p3x4 = 2nz4

and y4 − p3x4 = 2niz4 have only trivial solutions in Q(i).

Proof. In the equations y4 ± p3x4 = ±2mz2, let m = 2k or 2k + 1. The equations
become y4 ± p3x4 = (2kz)2 and y4 ± p3x4 = i(iω2kz)2, respectively, with only trivial
solutions.

Similarly, y4 ± p3x4 = ±2miz2 becomes y4 ± p3x4 = (ω2kz)2 if m = 2k + 1 and
y4 ± p3x4 = i(2kz)2 if m = 2k. Both have no nontrivial solutions by the theorem. �

3.2. On the Diophantine equation y4 ± px4 = z2. In this section p is a prime
integer with p ≡ 7 or 11 (mod 16). Note that p remains prime in Z[i]. A nontrivial
solution of the Diophantine equations

y4 ± 4px4 = z2, −4y4 + 4px4 = z2, y4 − 4px4 = z2

leads to a nontrivial solution of the Diophantine equations

y4 − px4 = z2, y4 + px4 = z2,

respectively, since the first two equations are y4 − p(ωx)4 = z2, (ωy)4 − p(ωx)4 = z2 and
the third one is y4 − p(ωx)4 = z2. Thus, it is enough to show that the last two equations
have only trivial solutions in Z(i).

Theorem 3.4.

(1) For p ≡ 7 or 11 (mod 16), the Diophantine equations y4 + px4 = ±z2 and y4 −

px4 = ±iz2 have only trivial solutions in Z[i].
(2) For p ≡ 3 (mod 8), the Diophantine equations y4 − px4 = ±z2 and y4 + px4 =

±iz2 have only trivial solutions in Z[i].

Proof. First suppose p ≡ 7 or 11 (mod 16). Suppose that (x, y, z) is a nontrivial
solution of these equations. Dividing the equations by x4 and considering the change
of variables s = y/x and t = z/x2, we have s4 ± p = t2 for s, t ∈ Q(i). Let

X = s2,

X2 ± p = t2.

Multiplying these equations together and letting Y = st, we obtain the elliptic curves
Y2 = X3 ± pX. By Theorem 2.7, the rank of these curves is zero over Q(i) and the only
torsion point (0, 0) leads to trivial solutions for the original equations.

Now suppose p ≡ 3 (mod 8). As in the first part of the theorem, suppose that
(x, y, z) is a nontrivial solution of these equations, so that

y4 ± px4 = iz2 ⇒

( y
x

)4
± p = i

( z
x2

)2
⇒ s4 ± p = it2,
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where s = y/x and t = z/x2. Let r = s2; then r2 ± p = it2. Multiplying these equations
together, we have r3 ± pr = i(ts)2. Now, X3 ∓ pX = Y2 with X = ir and Y = st. On
both of these curves, the only torsion point is (0, 0), which leads to trivial solutions for
y4 ± px4 = iz2. �

As a result of this theorem, as in Corollary 3.3, we have the following result.

(1) For p ≡ 7 or 11 (mod 16), the Diophantine equations y4 + px4 = ±2mz2, y4 +

px4 = ±2nz4, y4 − px4 = ±2miz2 and y4 − px4 = 2niz4 have only trivial solutions
in Z[i] for n ∈ N ∪ {0} and m ∈ N.

(2) For p ≡ 3 (mod 8), the Diophantine equations y4 − px4 = ±2mz2, y4 − px4 =

±2nz4, y4 + px4 = ±2miz2 and y4 + px4 = ±2niz4 have only trivial solutions in
Z[i] for n ∈ N ∪ {0} and m ∈ N.
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