Joint meeting of the Société Française de Nutrition and The Nutrition Society, 6–7 December 2007

n-3 Fatty acid supplementation reduces hypertriacylglycerolaemia and improves lipid peroxidation and inflammation in patients with chronic renal failure

K. Mekki¹, N. Bekada¹, A. Boukaddoum¹, D. Krouf¹, A. Kaddous² and M. Bouchenak¹

¹Laboratoire de Nutrition Clinique et Métabolique, Faculté des Sciences, Université d'Oran Es-Sénia, Oran, Algeria and ²Service de Néphrologie, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria

The aim of the present study was to evaluate the effect of n-3 fatty acid supplementation on dyslipidaemia, lipid peroxidation and inflammation markers in patients with chronic renal failure (CRF).

Seventy-five patients with CRF (58 (sD 9) years) were identified in the hospital in Oran (west Algeria). Thirty patients with hypertriacylglycerolaemia (TAG>1.7 mmol/l) and/or hypercholesterolaemia (total cholesterol (TC) >5 mmol/l) were recruited for the nutritional intervention. All patients received nutritional counselling adapted for CRF (energy intake 0.12 MJ/kg body weight per d, protein intake 0.8 g/kg body weight per d, lipid intake 35% total energy intake). Fifteen patients received an *n*-3 fatty acid supplement (2.1 g/d; 33% EPA and 12% DHA) for 90 d. Fifteen patients were used as controls. Blood samples were withdrawn at the beginning (T0) and at 30 d (T1), 60 d (T2) and 90 d (T3) after initiating treatment.

TAG level was reduced by 43% at T1, and decreased with time from T1 to T3. TC, HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), apo A-I, apo B, TC:HDL-C, TC:LDL-C and apo A-I:apo B were similar for both groups, whereas apo B values were lower at T2 compared with T0 (P<0.05). Decreases in TC:HDL-C and TC:LDL-C were found at T3 compared with T0 (P<0.05). Thiobarbituric acid-reactive substances (TBARS) were lower in treated patients compared with controls (P<0.001), and decreased with time from T1 to T3 (P<0.001). Albumin concentrations were not affected by the nutritional intervention, whereas a significant reduction in C-reactive protein (CRP) was found in treated patients compared with controls.

Table. Changes in some lipid variable	s, TBARS and inflammation markers
---------------------------------------	-----------------------------------

	T0		T1		T2		Т3	
	Mean	SE	Mean	SE	Mean	SE	Mean	SE
TAG (mmol/l)	3.10	0.66	1.60*	0.56	1.55*	0.16	1.03**	0.22
TC (mmol/l)	5.13	0.73	4.83	0.23	4.55	0.14	3.58*	0.12
TBARS (mmol/l)	8.45	0.56	5.45***	0.14	2.37***	0.03	0.90***	0.07
Albumin (g/l)	42.2	5.03	44.9	3.0	42.2	3.86	39.9	4.0
CRP (mg/l)	<6		<1.5		<1.5		<1.5	

Mean values were significantly different from those at T0: *P < 0.05, **P < 0.01, ***P < 0.001.

In patients with CRF *n*-3 PUFA supplementation reduces hypertriacylglycerolaemia and improves lipid peroxidation and inflammation and can be beneficial in the prevention of CVD.