T. Ishizawa Department of Astronomy, University of Kyoto

Self-consistent simulations of seven groups are performed from the maximum expansion to the present using Aarseth's N-body code. An initial galaxy consists of 100 stars. Its mass, half-mass radius, and central velocity dispersion are 1, 0.41, and 0.96. Units of mass, length, velocity, and time are 1.4x10 12 Mo, 100 kpc, 245 kms $^{-1}$ and 4.0x10 8 y. Table 1 gives the elapsed time from the Big Bang to the formation of a multiple merger tm+Tc*/2. For $\rm H_{0}=80~kms^{-1}Mpc^{-1}$, the Hubble time $\rm H_{0}^{-1}=30.6$ in our units. Dense groups except B form multiple mergers in a Hubble time.

No. of galaxies	radius	velocity dispersion	β *	-E ₀ *	tm+Tc*/2	cD now expected?
10	10	0.12	0.01	6.21	18.6	Yes
e 10	20	0.	0.	2.99	61.6	No
10	10	0.10	0.006	8.35	13.8	Yes
e 10	10	0.10	0.009	5.88	22.5	Yes
e 10	10	0.18	0.03	5.09	31.2	Yes
e 10	10	0.58	0.34	4.99	31.6	Yes
e 50	20	1.52	0.80	71.86	30.0	Yes
	galaxies 10 e 10 10 e 10 e 10 e 10 e 10 e 10	galaxies radius 10 10 e 10 20 10 10 e 10 10 e 10 10 e 10 10 e 10 10	galaxies radius dispersion 10 10 0.12 e 10 20 0. 10 10 0.10 e 10 10 0.10 e 10 10 0.18 e 10 10 0.58	galaxies radius dispersion 0.01 10 10 0.12 0.01 e 10 20 0. 0. 10 10 0.10 0.006 e 10 10 0.10 0.009 e 10 10 0.18 0.03 e 10 10 0.58 0.34	galaxies radius dispersion 8* -E ₀ * 10 10 0.12 0.01 6.21 e 10 20 0. 0. 2.99 10 10 0.10 0.006 8.35 e 10 10 0.10 0.009 5.88 e 10 10 0.18 0.03 5.09 e 10 10 0.58 0.34 4.99	galaxies radius dispersion

Table 1. Initial Parameters of Simulated Groups

 $E_0*=$ the initial total energy of a group when galaxies are point masses, $\beta*=$ the initial ratio of the random kinetic energy to $-E_0*$ when galaxies are point masses, $Tc*=2\pi(3/5)^{3/2}GM^{5/2}/(-2E_0*)^{3/2}$, tm=the epoch of merger formation when at least four galaxy cores are merging.

Figure 1 shows the virial diagram for Geller-Huchra's(1983) groups. The loci of A, E, F and I are obtained using the projected positions and line-of-sight velocities of surviving cores in the merging phases. They fall along a line of constant density $3\text{Tc}^*/2=\text{H}_0^{-1}$. Thus, almost compact groups with $3\text{Tc}^*/2<\text{H}_0^{-1}$ are expected to have cD galaxies now. However the frequency of cD galaxies in Geller-Huchra groups is 7% in the range $3\text{Tc}^*/2<\text{H}_0^{-1}$ and M<10¹⁴Mo. The scarcity of cD's requires us to reduce such a high merging rate by decreasing the size of halos.

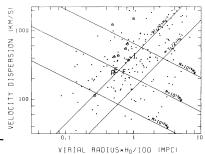


Figure 1

Thus, if galaxies in a group have been formed with not a large velocity dispersion by the phase of maximum expansion and if $\rm H_0<80~kms^{-1}Mpc^{-1}$, the half-mass radii of the halos should be less than 41 kpc.

REFERENCE

Geller, M. J. and Huchra, J.P.: 1983, <u>Astrophys. J. Suppl.</u> **52,**61.

J. Kormendy and G. R. Knapp (eds.), Dark Matter in the Universe, 281. © 1987 by the IAU.