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Abstract

SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gai-protein-coupled receptor GPR41

by SCFA in b-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in

stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis

in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose

tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced

in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female

GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure

were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in

male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.
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The gut contains sensors for a wide range of nutrients, a

number of them being G-protein-coupled receptors (GPCR/

GPR). Among these GPCR are a group that respond to fatty

acids, including GPR40 (FFA1), GPR43 (FFA2), GPR84 and

GPR120(1–3). GPR41 (FFA3) is a GPCR that is activated by

SCFA(4,5). GPR43 is the only other member of this group that

is activated by SCFA; GPR42, which is expressed in some

human subjects(6) but not in rodents, is closely related to

GPR41 and GPR43, but it is not activated by SCFA(4).

SCFA are produced in the gut by bacterial fermentation of

undigested carbohydrates. Concentrations of propionate and

butyrate in peripheral and portal blood may, especially after

feeding, be sufficient to activate GPR41(4,5,7–11). GPR41

couples to Gai, lowering the intracellular concentration of

cyclic AMP. This may affect both energy balance and glucose

homoeostasis, owing to the expression of GPR41 in various

tissues(4,5). First, GPR41 is expressed in enteroendocrine

cells(12) where it promotes the secretion of peptide YY

(PYY)(13), which inhibits gastric emptying and food intake.

As PYY is co-expressed with glucagon-like peptide 1 in enter-

oendocrine (L) cells(14), activation of GPR41 might also

increase the secretion of glucagon-like peptide 1, which like

PYY inhibits gastric emptying and food intake, as well as

stimulating insulin secretion from islet of Langerhans

b-cells(15). Consistent with this mechanism, it was reported

recently that GPR41 knockout mice exhibit reduced gluca-

gon-like peptide-1 secretion, both in vivo and from primary

colonic cultures. Secretion of glucagon-like peptide-1 was

not via a Gai-mediated pathway, however, which is not con-

sistent with known signalling pathways for GPR41. Moreover,

glucagon-like peptide-1 secretion is stimulated by elevation,

not reduction, of the cyclic AMP concentration(16). Second,

GPR41 is expressed in the pancreas(4), including human and

mouse islets of Langerhans(17–19), and in the insulin-secreting

cell line MIN6(18,20). Direct activation of GPR41 in b-cells of

the islets of Langerhans would be expected to inhibit insulin

secretion(17), contrasting with any possible stimulatory effect

mediated by glucagon-like peptide-1.

Third, some workers have reported that GPR41 mRNA

is expressed in murine adipose tissue, where it mediates

leptin secretion in response to SCFA(21). However, we(20)

and others(22) could not detect expression in murine
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adipose tissue. Fourth, GPR41 is expressed in sympathetic

ganglia where its activation by SCFA promotes sympathetic

outflow(23), which would be expected to promote resistance

to obesity and improve insulin sensitivity.

Although it is difficult to predict from these reports how

the absence of GPR41 would affect glucose homoeostasis,

they are largely consistent in predicting that absence of

GPR41 should promote obesity. Others have reported, how-

ever, that the absence of GPR41 promotes leanness, provided

mice are raised conventionally and therefore have a gut micro-

biota that is able to produce SCFA. Absence of GPR41 was

associated with increased intestinal transit rate and reduced

absorption of energy(13). The aim of this work was, therefore,

to reinvestigate energy balance in GPR41 knockout mice and

to determine how the various possible influences on glucose

homoeostasis of an absence of GPR41 balance out in the

whole animal. We have compared male and female GPR41

knockout and wild-type mice fed on low- and high-fat diets,

up to 40 weeks of age. By contrast with a previous report(13),

we find that male knockout mice have increased body fat

mass, coupled with decreased energy expenditure, consistent

with a role for GPR41 in the regulation of sympathetic outflow.

Methods

Housing and procedures were conducted in accordance with

the UK Government Animal (Scientific procedures) Act 1986

and approved by the University of Buckingham Ethical

Review Board.

Mice and diet

GPR41 knockout mice were generated by Deltagen, trans-

ferred via AstraZeneca to the University of Buckingham and

bred, genotyped and further backcrossed to the C57Bl/6

strain, as described previously(20). The mice used in the

present experiments had been backcrossed to the C57Bl/6

strain at least seven times.

Mice were housed in groups of three at 21 ^ 18C with lights

on from 07.00 to 19.00 hours. There were nine mice in each of

eight groups, divided by genotype, sex and diet (wild-type

or GPR41 knockout; male or female; low-fat or high-fat

diet). They were given ad libitum access to tap water and

all initially fed on a standard low-fat diet that provided, by

energy content, 5 % fat, 75 % carbohydrate and 20 % protein

(14·0 kJ/g metabolisable energy; Rat and Mouse Diet 1,

BK001E, Beekay Feed; B&K Universal Limited). The high-fat

diet-fed mice were fed on this diet until 15 weeks of age

and then given a high-fat diet that provided, by energy con-

tent, 45 % fat, 35 % carbohydrate (of which half was sucrose)

and 20 % protein (D12451; Research Diets, Inc.). Further infor-

mation on the composition of the diets is given in Table 1.

Food and water intake for each cage and individual body

weights were measured weekly from 6 or 15 weeks of age

in the low- or high-fat diet experiments, respectively. Mice

were killed by cervical dislocation following CO2 anaesthesia

when they were 40 weeks old, after being fasted for 5 h

from 08.00 hours.

Glucose tolerance test

Glucose tolerance was measured in all eight groups of mice

when they were 27 weeks old. It was also measured in low-

fat-fed mice when they were 10 weeks old. The mice were

fasted for 5 h from 08.00 hours before administration of glu-

cose (2 g/kg body weight, intraperitoneally). Blood samples

were taken from the tip of the tail at 30-min intervals after

topical application of a local anaesthetic (lignocaine gel). Glu-

cose and insulin were measured as previously described(24).

Total areas under the glucose tolerance curve were calculated

for 120 min after administration of glucose using GraphPad

Prism software (version 5; GraphPad Software, Inc.).

Plasma and blood analytes

Plasma and blood samples were taken from male and female

mice after they had been fasted for 5 h from 08.00 hours,

except as described earlier for glucose and insulin in the glu-

cose tolerance test. Plasma adiponectin (Bridge International,

Inc.), insulin and leptin (Crystal Chem, Inc.) were measured

by mouse-specific ELISA. Blood glucose, cholesterol, TAG

(Thermo Fisher Scientific), NEFA (Wako Chemicals) and

HDL-cholesterol (Trinity Biotech) were measured by

colorimetry.

Energy expenditure

Energy expenditure was measured by open-circuit indirect

calorimetry, as previously described(25), when the high-

fat diet-fed mice were 15, 27 and 40 weeks old. Energy

expenditure of all the different genotypes in a group was

measured in a single run over 24 h at room temperature

(21 ^ 18C). The mice had free access to food. Energy

expenditure was calculated by customised software using

the equation of Weir(26).

Body composition

Body composition was determined using a dual-energy

X-ray absorptiometry (Lunar Piximus densitometer; Lunar

Corporation) scanner at 10, 22 and 40 weeks of age in

the low-fat-fed mice and at 22, 27 and 40 weeks of age

in the high-fat diet-fed mice. Mice were anaesthetised with

Table 1. Composition of diets*

Low-fat diet High-fat diet

Metabolisable energy (kJ/g) 14·0 17·0
Fat (% of metabolisable energy) 5 45†

% SFA 21 36
% MUFA 25 45
% PUFA 54 19

Carbohydrate (% of metabolisable energy) 75 35
% Of carbohydrate as sugars 10 50‡

Protein (% of metabolisable energy) 20 20
Fibre (% by weight) 3·5 5·8

* % Fatty acids in fat and sugars in carbohydrate are by weight.
† 88 % as lard; 12 % as soya bean oil.
‡ As added sucrose.
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isoflurane (1·5 %) during data acquisition. Body composition

was calculated using the manufacturer’s software (version 1.45).

Liver TAG and glycogen content

Left lobe liver samples were dissected and snap-frozen into

liquid N2. Approximately, 150–300 mg of tissue were homogen-

ised in 500ml methanol. Chloroform (1 ml) was added and the

samples vortexed and then incubated at 2208C overnight.

Saline (200ml) was added and the samples were centrifuged at

300 g for 5 min. Chloroform was removed from an aliquot

(500ml) of the chloroform phase using a RapidVap evaporation

system (Cole-Parmer Instrument Company Limited). TAG was

dissolved in ethanol (200ml) and assayed colorimetrically

(TAG reagent; Thermo Fisher Scientific). Liver glycogen was

determined by homogenising tissue in KOH, precipitating

glycogen using ethanol and treating it with amyloglucosidase

before assaying glucose, as described previously(27).

Soleus muscle glucose uptake and palmitate oxidation

2-Deoxy[1-14C]glucose uptake and [1-14C]palmitate oxidation

by soleus muscle from low-fat-fed 20-week-old mice were

measured as previously described(28).

Locomotor activity

Mice were placed individually in a rectangular cage

(42 £ 25 cm) in which the bottom of the cage was divided

by black lines into six equal rectangles. Following a habitu-

ation day, video camera shots were taken every 3 s for

16 min, beginning at 45 min before and 15 min after the dark

period. Horizontal locomotor activity was assessed by two

independent observers, in a similar manner to that described

by others(29), from the number of times the mouse moved to

a different square between shots. The observers did not

know the genotype or the diet of the mice.

RNA isolation and real-time quantitative PCR analysis of
gene expression

Total RNA was isolated and complementary DNA synthesised

as described previously(20). Quantitative PCR was performed

using Assay on Demand pre-designed primer and probe sets

from Applied Biosystems. Transcript levels were quantified

in triplicate by real-time RT-PCR and normalisation to house-

keeping genes (tubulin, cyclophilin, hypoxanthine phos-

phoribosyltransferase and b-glucouronidase using geNorm

software; Primer Design Limited), as described previously(20).

Statistical analysis

Data were analysed using one- or two-way with repeated

measures ANOVA, as appropriate, using GraphPad Prism

software (version 5). If the ANOVA showed significant effects

of genotype, comparisons were made between the wild-type

and knockout mice of the same sex at specific time points

using Fisher’s least significant difference test. Two-sided

significance levels are given. Differences were considered sig-

nificant at P,0·05. Results are shown as mean values with

their standard errors.

Results

Low-fat-fed mice

Genotype had no statistically significant effect on the growth

curves of either the male or the female mice (Fig. 1). Genotype

also had no effect on food intake (males: wild-type 844

(SEM 64), knockout 857 (SEM 59); females: wild-type 821

(SEM 13), knockout 770 (SEM 25) g/mouse per 40 weeks).

Body fat mass was affected by genotype in the male knockout

mice, being higher in the knockout than the wild-type mice at

40 weeks of age. Body lean mass was not affected by geno-

type in the male mice (Table 2). Genotype did not significantly

affect the plasma leptin concentration in the male mice

(P¼0·057 by two-way repeated measures ANOVA), but

plasma adiponectin was elevated at both 22 and 40 weeks

of age (Table 3). There was no effect of genotype on body

composition or plasma leptin or adiponectin concentration

in the female mice (Tables 2 and 3).

At termination (40 weeks of age), there was no difference

between genotypes in absolute liver weights, but liver

weight relative to body weight was reduced in the male

knockout mice, because the mean body weight was higher

(but not significantly so) than in the wild-type mice

(Table 4). The TAG content of the livers of the male knockout

mice was markedly reduced (Table 4), possibly because the

plasma NEFA concentration, a source of liver TAG, was

reduced (Table 3). Genotype affected neither the liver TAG

nor the plasma NEFA concentration of the female mice

(Tables 3 and 4). Genotype did not affect plasma TAG, total

cholesterol or HDL concentration in either sex at any age

(Table 3). Soleus muscle and heart weights were lower in

the knockout than in the wild-type mice when measured in

a separate group of male mice (Table 4), but genotype did

not affect palmitate oxidation or glucose uptake relative to

tissue weight by soleus muscle (Fig. S1, available online).

The fasting blood glucose concentration (at both 230

and 0 min) was not affected by genotype in either sex,
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Fig. 1. Growth curves for wild-type (X and O) and G-protein-coupled receptor

41 knockout (W and K) male (K and O) and female (W and X) mice (n 9).

Two-way repeated-measures ANOVA did not show a significant effect of

genotype on body weight in either male or female mice.

Metabolic phenotype of GPR41-null mice 1757

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114512003923  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114512003923


but intraperitoneal glucose tolerance was impaired in

27-week-old male but not female knockout mice (Fig. 2). It

was not impaired in 10-week-old male knockout mice – an

age when they did not have a raised body fat con-

tent (AUC: wild-type 1382 (SEM 158); knockout 1338

(SEM 123) mM £ 120 min). Genotype did not affect the plasma

insulin concentration in either male or female mice 30 min

before or after administration of glucose (Fig. 2(c) and (f)).

High-fat diet-fed mice

Mice were fed on a high-fat diet from 15 weeks of age.

The growth curves of the knockout and wild-type mice

were similar (Fig 3). Genotype did not affect the food intake

of either sex (males: wild-type 336 (SEM 16), knockout 300

(SEM 36); females: wild-type 243 (SEM 12), knockout 248

(SEM 248) g/mouse per 15 weeks). Although the body weight

of the male mice was unaffected by genotype, body fat mass

and plasma leptin concentration were affected by genotype

in male mice, being higher in 27-week-old male knockout

than in the wild-type mice (Tables 5 and 6). Body lean

mass, by contrast, was decreased at 22, 27 and 40 weeks of

age (Table 5). Genotype did not affect the body composition

of the female mice (Table 5). Genotype did not affect liver

weight in either sex in mice fed on the high-fat diet, nor did

it affect plasma NEFA or lipids (Tables 4 and 6).

The fasting blood glucose concentration (at both 230 and

0 min) and glucose tolerance were not affected by genotype

in either the male or female mice (Fig. 4), but the plasma insu-

lin concentration 30 min after the glucose load was higher in

the knockout than the wild-type mice of both sexes (Fig. 4).

Energy expenditure and muscle metabolism

Energy expenditure was measured over 24 h in the high-fat-

fed mice in their home cages in an attempt to understand

why the males became obese without their having a detect-

able increase in energy intake. Energy expenditure was

lower in the male knockout than in the male wild-type mice

throughout the 24 h measurement period (Fig. 5). It was not

low in the female knockout mice, consistent with only the

male knockout mice becoming obese.

Observation of individually housed male mice, aged

35–39 weeks, for 15 min during the light and dark periods

showed that low energy expenditure in knockout mice was

not due to reduced horizontal locomotor activity (Table S1,

available online).

Table 2. Body composition of low-fat-fed mice†

(Mean values with their standard errors)

Fat (g) Lean (g)

Wild-type Knockout Wild-type Knockout

Sex Age (weeks) Mean SEM Mean SEM Mean SEM Mean SEM

Male 10 3·41 0·11 3·41 0·14 23·56 0·65 22·82 0·57
22 4·58 0·51 6·64 0·79 25·68 0·70 25·36 0·73
40 7·01 0·78 10·89*** 1·28 26·14 1·02 26·76 0·78

Female 10 3·10 0·14 3·06 0·10 18·60 0·40 18·42 0·26
22 3·96 0·27 4·56 0·33 21·06 0·61 19·98 0·39
40 7·93 1·17 9·59 1·17 22·10 0·57 21·41 0·33

***Mean values was significantly different from that of the wild-type mice (P,0·001).
† Two-way repeated-measures ANOVA showed a significant (P,0·01) effect of genotype on body fat content in the male

mice.

Table 3. Plasma hormone and metabolite concentrations in low-fat-fed mice†

(Mean values with their standard errors, n 9)

Males Females

Wild-type Knockout Wild-type Knockout

Analyte Age (weeks) Mean SEM Mean SEM Mean SEM Mean SEM

Leptin (ng/ml) 22 12·8 3·4 19·8 4·5 7·8 2·2 9·0 2·6
40 18·8 5·1 31·3 5·7 17·9 3·4 22·1 5·0

Adiponectin (mg/ml) 22 7·1 0·5 11·8*** 0·8 15·7 0·4 13·7 0·6
40 7·6 0·6 10·4* 0·8 13·7 1·8 13·7 0·9

NEFA (mM) 22 1·52 0·10 1·19* 0·12 1·01 0·07 1·06 0·18
40 1·61 0·11 1·17** 0·10 1·73 0·11 1·77 0·17

TAG (mM) 40 0·83 0·09 0·64 0·08 0·69 0·08 0·79 0·08
Total cholesterol (mM) 40 2·28 0·17 2·31 0·12 1·74 0·10 2·00 0·07
HDL-cholesterol (mM) 40 0·97 0·05 1·00 0·07 0·71 0·14 0·88 0·04

Mean values was significantly different from that of the wild-type mice: *P,0·05, **P,0·01, ***P,0·001.
† Two-way repeated-measures ANOVA did not show a significant effect of genotype on plasma leptin (P¼0·057 in males), but in male mice

there were significant effects of genotype on plasma adiponectin (P,0·001) and NEFA (P,0·01).
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Gene expression

There were no effects of genotype in male, 10- to 12-week

old, low-fat-fed mice on levels of mRNA in liver, muscle,

epididymal white adipose tissue or interscapular brown adi-

pose tissue for GPR40, GPR120, PPARg coactivator-1a sarco

(endo)plasmic reticulum Ca2þ ATPase 1, type 2 deiodinase

or carnitine palmitoyl transferase-1a; in liver only for sterol

regulatory element-binding protein-1c, fatty acid synthetase

or acetyl CoA carboxylase-1; or in brown adipose tissue for

the b3-adrenoceptor (data not shown). We have reported else-

where(20) a reduction in the expression of GPR43 in white adi-

pose tissue of GPR41 knockout mice.

Discussion

Most reports on the expression and function of GPR41 in

murine tissues lead to the prediction that its absence should

promote obesity. Evidence has been presented, however,

Table 4. Liver composition and tissue weights†

(Mean values with their standard errors, n 8 or 9)

Males Females

Wild-type Knockout Wild-type Knockout

Mean SEM Mean SEM Mean SEM Mean SEM

Low-fat diet
Liver weight (g) 1·74 0·07 1·65 0·06 1·3 0·04 1·29 0·05
Relative liver weight (%) 4·91 0·20 4·31* 0·11 4·31 0·22 4·33 0·14
Liver TAG (mmol/g tissue) 7·9 1·5 2·3*** 0·9 14·22 2·1 15·2 2·4
Liver glycogen (mmol/g tissue) 154 10 156 7 91 31 264 20
Soleus weight (mg) 9·5 0·3 8·5* 0·2 – – – –
Heart weight (mg) 171 10 139* 5 – – – –

High-fat diet
Liver weight (g) 1·58 0·18 1·78 0·28 1·07 0·06 1·17 0·04
Relative liver weight (%) 3·59 0·32 4·15 0·58 2·98 0·18 3·25 0·18

Mean value was significantly different from that of the wild-type mice (one-way ANOVA and Fisher’s least significant difference test):
*P,0·05, ***P,0·001.

† Plasma lipids and liver weight were measured after a 5 h fast during the light period in 40-week-old mice. Soleus muscle and heart
weights were measured in 20-week-old mice.
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Fig. 2. (a, d) Glucose tolerance, (b, e) area under the glucose tolerance curve and (c, f) plasma insulin before and after administration of glucose in 27-week-old

male (a–c) and female (d–f) mice fed on a low-fat diet. Wild-type mice are shown with or , and knockout mice with or (n 6). Values are means, with

standard errors represented by vertical bars. Two-way, repeated-measures ANOVA showed a significant (P,0·01) effect of genotype on blood glucose in the

male mice. **Mean value was significantly different from that of the wild-type mice (P,0·001).
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that its absence is associated with leanness, owing to

increased intestinal transit rate and reduced absorption of

energy(13). We found, by contrast, that absence of GPR41

was associated with increased body fat content in male mice

fed on either a low-fat or a high-fat diet, including when the

mice were of the same age (10 weeks) as those used in the

previous report. Nevertheless, we do not rule out the possi-

bility that increased intestinal transit rate and reduced absorp-

tion of energy might have mitigated obesity in the GPR41

knockout mice used in the present study.

The male GPR41 knockout mice used in the present study

also displayed impaired glucose tolerance, elevated plasma

adiponectin and lowered plasma NEFA and liver TAG concen-

trations when fed on a low-fat diet. They displayed reduced

lean body mass, elevated plasma leptin and elevated plasma

insulin following administration of glucose when fed on a

high-fat diet. The only effect of an absence of GPR41 in the

female mice was an increase in the concentration of insulin

after administration of glucose in the high-fat-fed mice.

A surprising finding was that the phenotype of the

male GPR41 knockout mice was not exacerbated by feeding

on a high-fat diet. Indeed, body fat content was elevated

in 27-week-old but not in 40-week-old high-fat-fed knockout

mice. Usually, a high-fat diet exacerbates the metabolic

phenotype of GM mice. It is feasible that replacement of

carbohydrate with fat in the high-fat diet reduced the pro-

duction of SCFA in the gut and thereby the exposure of

GPR41 to SCFA.

It has been claimed that the GPR41 gene is expressed in

murine adipose tissue, where it mediates the stimulation of

leptin secretion by SCFA(21). However, it is unlikely that the

increased body fat content of male GPR41 knockout mice

was primarily due to the regulation of leptin secretion by

GPR41. We(20) and others(22) have been unable to detect

GPR41 mRNA in murine adipose tissue. Moreover, the

plasma leptin concentration was increased rather than

decreased in the male GPR41 knockout, high-fat-fed mice

compared to wild-type mice. A similar trend (P¼0·057) was

observed in male GPR41 knockout mice fed on the low-fat

diet. Obesity in rodents is normally associated with elevated

plasma leptin, because, with the exception of the Lep ob/

Lep ob mouse, increased adipocyte number and, especially,

adipocyte size are associated with increased leptin secretion.

Activation of GPR41 stimulates the secretion of PYY from

L cells(12,13), which would tend to decrease food intake.

Others have suggested that propionate might enhance satiety

by activating either GPR41 or GPR43(30). However, we could

not detect increased food intake in GPR41 knockout mice.

It is therefore unlikely that decreased secretion of PYY from

enteroendocrine L cells played an important role in the

obese phenotype of GPR41 knockout mice.

The feature of the GPR41 knockout mice that seems most

likely to link to an increased body fat mass is reduced

energy expenditure. The male, but not the female, high-

fat-fed knockout mice became obese and only the males

exhibited low energy expenditure. A possible explanation

for the reduced energy expenditure is suggested by a recent

report that SCFA promote sympathetic outflow by activating

GPR41(23). The mice used for that work were males (Professor

Gozoh Tsujimoto, personal communication). It does not

follow, however, that SCFA must fail to promote sympathetic

outflow in female mice, because, as discussed later, female

mice are often less susceptible than males to other genetic
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Fig. 3. Growth curves for wild-type (X and O) and G-protein-coupled receptor

41 knockout (W and K) male (K and O) and female (W and X) mice (n 9).

Two-way repeated-measures ANOVA did not show a significant effect of

genotype on body weight in either male or female mice.

Table 5. Body composition in high-fat-fed mice†

(Mean values with their standard errors)

Fat (g) Lean (g)

Wild-type Knockout Wild-type Knockout

Sex Age (weeks) Mean SEM Mean SEM Mean SEM Mean SEM

Male 22 7·03 0·66 9·65* 0·92 25·77 0·71 22·78* 0·79
27 8·32 1·46 12·75* 1·10 27·70 0·64 25·15* 0·98
40 15·43 1·21 17·05 1·62 29·22 0·55 26·21* 0·99

Female 22 5·79 0·61 6·13 0·70 18·68 0·51 19·57 0·44
27 8·38 1·42 7·62 1·18 18·99 0·42 19·05 0·57
40 18·22 1·70 15·88 1·46 20·41 0·38 20·60 0·42

* Mean value was significantly different from that of the wild-type mice (P,0·05).
† Two-way repeated-measures ANOVA showed significant effects of genotype on body fat (P,0·05) and body lean content

(P,0·01) in the male mice.
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modifications that cause obesity in males. Female mice and

rats are also less susceptible than males to high-fat diet-

induced obesity and diabetes.

Another possible explanation for the reduced energy

expenditure of the male knockout mice, particularly those

fed on the high-fat diet, is that they have a reduced mass of

energy consuming tissues. Total lean body mass was reduced

in the male but not the female mice fed on a high-fat diet

compared to wild-type mice. Lean body mass is associated

with greater whole-body energy expenditure than is fat

mass(31,32). Total lean body mass did not differ between

knockout and wild-type male mice fed on the low-fat diet,

but soleus muscle and heart weights were low in knockout

mice. Therefore, the absence of GPR41 may inhibit the

development of some energy consuming tissues, particularly

red muscle.

A number of other possible explanations for this reduced

energy expenditure can be discounted. It was not associated

with reduced horizontal locomotor activity, consistent with it

occurring throughout 24 h even though locomotor activity is

greatest during the dark period. We could not detect any

alteration in gene expression that might indicate decreased

Table 6. Plasma hormone and metabolite concentrations in high-fat-fed mice†

(Mean values with their standard errors)

Males Females

Wild-type Knockout Wild-type Knockout

Analyte Age (weeks) Mean SEM Mean SEM Mean SEM Mean SEM

Leptin (ng/ml) 22 11·7 5·2 23·6 4·1 12·6 2·2 9·2 2·6
27 15·7 5·5 34·9** 5·3 23·0 3·3 17·6 2·5
40 32·6 5·0 42·5 6·9 53·2 6·3 40·7 8·2

Adiponectin (mg/ml) 22 10·1 0·9 11·0 0·9 18·8 1·1 17·8 1·3
27 9·1 1·2 10·2 0·8 18·4 0·6 14·1 1·3
40 8·2 0·8 8·3 0·5 15·7 0·8 13·8 0·3

NEFA (mM) 27 1·05 0·18 0·75 0·09 0·66 0·03 0·70 0·09
40 1·55 0·06 1·38 0·12 1·56 0·11 1·53 0·24

TAG (mM) 40 0·65 0·06 0·58 0·06 0·56 0·03 0·60 0·04
Total cholesterol (mM) 40 4·45 0·81 4·97 0·34 3·40 0·27 3·88 0·28
HDL-cholesterol (mM) 40 1·56 0·23 1·62 0·11 1·31 0·10 1·52 0·11

** Mean value was significantly different from that of the wild-type mice (P,0·01).
† Two-way repeated-measures ANOVA showed a significant effect of genotype on plasma leptin (P,0·05) in the male mice.
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Fig. 4. (a, d) Glucose tolerance, (b, e) area under the glucose tolerance curve and (c, f) plasma insulin before and after administration of glucose in 27-week-old

male (a–c) and female (d–f) mice fed on a high-fat diet. Wild-type mice are shown with or and knockout mice with or . (n 6). Values are means, with stan-

dard errors represented by vertical bars. Two-way, repeated measures ANOVA showed significant (P,0·05) effects of genotype on plasma insulin in both male

and female mice. *Mean value was significantly different from that of the wild-type mice (P,0·05).
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fuel metabolism in muscle, liver or brown adipose tissue, and

fatty acid oxidation and glucose uptake per g soleus muscle

weight did not differ between genotypes. Plasma adiponectin

concentration, which might be expected to be associated with

increased fatty acid oxidation and weight loss(33,34), was actu-

ally elevated in low-fat-fed male knockout mice, despite their

increased body fat mass. The plasma adiponectin concen-

tration is often inversely correlated with body fat mass(35),

but we and others have previously reported positive associ-

ations between body fat mass and plasma adiponectin con-

centration(24,36–38).

There are numerous reports of sex differences in the effects

of diet or genetic manipulation on body composition and

metabolism in rodents, and it is often the males that show

the greater changes(39–43). The differing effects of male and

female sex hormones on adipose tissue distribution and the

central regulation of metabolism may be of general import-

ance(44,45), but mechanisms specific to particular genetic or

behavioural manipulations have also been proposed(40,43,46).

In the context of the present work, where obesity is linked

to low energy expenditure, it may be relevant that female

rats have greater oxidative capacity than male rats. This has

been linked to differences in oxidative capacity between the

sexes in liver, skeletal muscle and brown adipose

tissue(47–49). This may be because male and female sex hor-

mones have opposite effects on the balance of a2A- and

b-adrenoceptor expression in murine brown adipocytes(50).

However, as we were unable to identify any differences in

gene expression in male mice that might underlie the differ-

ences in energy expenditure, we could not investigate

whether any differences were absent in female mice.

Obesity is usually associated with insulin resistance. This

may partly explain why the male knockout mice fed on the

low-fat diet displayed an impaired glucose tolerance. The

male knockout mice fed on the high-fat diet, by contrast,

did not display impaired glucose tolerance. This may be

because their plasma insulin concentration was higher follow-

ing administration of glucose than in the wild-type mice.

Moreover, the plasma insulin concentration following adminis-

tration of glucose was higher in the female knockout mice fed

on the high-fat diet than in the wild-type mice, even though

their body fat content was no different from that of the

wild-type mice. Stimulation of GPR41 in b-cells of the islets

of Langerhans would be expected to decrease insulin

secretion because GPR41 is coupled to Gai. These results,

therefore, raise the possibility that the absence of GPR41 in

b-cells of high-fat diet-fed mice tends to promote insulin

secretion in response to glucose.

Liver composition was studied in the low-fat-fed mice to

investigate why liver weight relative to body weight was

lower in male knockout compared to wild-type mice. The

male low-fat-fed knockout mice had a lower liver TAG con-

tent, associated with lower plasma NEFA concentration,

than the wild-type mice. The low liver TAG content in the

livers of the male knockout mice can account, however,

for only about 5 mg of the 90 mg (non-significant) difference

in mean liver weight and so cannot explain the difference

in relative liver weights. We do not have an explanation for

the low liver TAG content and plasma NEFA concentration

of the male knockout mice, but we suggest that they are

linked. Interestingly, knockout of the GPR43 gene, another

SCFA receptor, was also associated with reduced liver weight

and TAG content, but only when mice were fed on a high-

fat diet(51). Another difference from the present study is that

GPR43 knockout mice were leaner than wild-type mice. As

in the present study, the reduced liver weight could not be

explained by the reduced liver TAG content.

In conclusion, in contrast to a previous report(13), we find

that male but not female GPR41 knockout mice have a

higher body fat mass than their wild-type littermates, when

they are fed on either a low- or a high-fat diet. This appears

as a consequence of their energy expenditure being low.

These results raise the possibility that gut-derived SCFA may

raise energy expenditure by activating GPR41.
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expenditure. Mean value of the knockout mice was significantly different from

that of the wild-type mice: *P,0·05, **P,0·01, ***P,0·001.
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