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A LINEAR COMPLEMENTARITY PROBLEM
INVOLVING A SUBGRADIENT

J. PARIDA, A. SEN AND A. KUMAR

A linear complementarity problem, involving a given square matrix and vector, is gener-
alised by including an element of the subdifferential of a convex function. The existence
of a solution to this nonlinear complementarity problem is shown, under various condi-
tions on the matrix. An application to convex nonlinear nondifferentiable programs is
presented.

1. INTRODUCTION

For given M £ Rn x" and r G Rn, the problem of finding an x € R" such that

(1.1) x ^ 0, Mx+r^0, (x,Mx + r) -0

is called the linear complementarity problem. The existence of solutions for (1.1) has
been investigated by many authors (see the references in [1]).

We consider the following extension of (1.1). Given a lower semicontinuous pos-
itively homogeneous finite convex function h: Rn —» R, find x £ R" and y 6 dh(x)

such that

(1.2) x^O, Mx + y + r^0, {x, Mx + y + r) = 0.

It may be observed that the problem of finding a stationary point of Kuhn-Tucker type

of a nondifferentiable programming problem in which the objective function is the sum

of a support function and a quadratic function, and the constraints are linear, becomes

a linear complementarity problem of the form (1-2).

A lower semicontinuous positively homogeneous finite convex function is the sup-
port function of a certain closed convex set. In particular (Corollary 13.2.1 of [9]) such
an h is representable as

(1.3) h(x) = max{a:Tv | v € C}

where
C = {v£Rn: vTx ^ h(x) for all x}.
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Note that since h(x) is finite for every x £ C, C is compact (Theorems 8.4 and 13.2.2
of [9]). Moreover (Corollary 23.5.3 of [9]), one has the subdifferential formula

The representation of a lower semicontinuous positively homogeneous finite convex func-
tion as a support function is illustrated [10] in the following two cases:

1 I")

(i) Let B be a symmetric positive semidefinite matrix. Then (xTBx) —

h{x), where C = {Bw: wTBw ^ 1}.

(ii) Let p and q be conjugate exponents; that is, p"1 + g"1 = 1, 1 < p < oo

and 1 < q < oo. Let E be a kxn matrix and let ||z||p = fef=i W P ) ? -

Then II^Hp = h ^ ) , where C = {ETz: \\z\\q ^ 1}.

We give some generalised sets of conditions involving M, under each of which there
exists a solution to (1.2). Several known classes of matrices M which are relevant to
linear complementarity problem (1.1) are seen to satisfy these conditions.

2. THE MAIN RESULTS

In what follows, we denote by d and e any n-vector with all components positive

and the n-vector with all components unity, respectively.

The following lemma on the variational inequality, which is a special case of Lemma

2.1 of [8], will be the basic tool for establishing our main results.

LEMMA 1. Let 5 C R " be a compact convex set, r e Rn , Me R"xrv, and let h

be as defined by (1-3). Then there exists an x 6 5 , and a y G dh(x) such that

(x - x,Mx +y + r) > 0 for all x € S.

THEOREM 1. If the system

Miu +tdi = 0 if Ui > 0

(2.1) MiU+tdi^O ifUi = 0

t = -uTMu ^ 0 0 ^ u ^ 0

is inconsistent, then (1.2) has a solution.

PROOF: Consider the compact convex sets

Sa = {x £ R": x ^ 0, dTx < a }

for real 0 < a < oo. By Lemma 1, there exists an xa and ya 6 dh(xa) such that

(x - xa, Mxa + ya + r) ^ 0 for all x € SoJa j
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and applying the duality theory of linear programming, we get a scalar £a such that

(2.2) xa > 0, Mxa +ya +r + Zad^0

(2.3) (xa,Mx°+ya+r + (,ad} = 0

(2.4) r ^ 0, dTxa < a, (a - dTxa)(a = 0.

We distinguish two cases.

Case 1. £" = 0 for some a — a, 0 < a < oo. It follows from (2.2) and (2.3) that

(1.2) has a solution {x°,y°) .

Case 2. £a > 0 for every 0 < a < oo. By (2.4), we have dTxa — a for all these a. Let
ua = xa/a. Then ua ^ 0 and dTua = 1. This shows that the set of points (ua,ya)

lies in the compact set {x: x ^ 0, dTx = 1} x C, and hence, there is a convergent
sequence of (xia,ya) with a —» oo. Let this sequence be one with a = ai ,a2, 0:3,... ,
or, briefly, with a £ F, and let (u,j/) be the limit of the sequence. Clearly, u ̂  0 and
dTu = 1, which implies it ̂  0. Further, from (2.3) and (2.2) respectively, we have

0 > -a-'C = ( t t ° ,Mt t a )+o- 1 { t t a
1 y a +r ) ,

M-«a + c r ^ j / 0 + r) + ( a - 1 ^ ) ^ ^ 0

for all a € F, which in the limit gives 0 ^ uT'Mu = —t (say) and Mu + td ^ 0.
Since dTu = 1, we also have (u,Mu + id) = 0. This shows that u is a solution to the
system (2.1), contradicting the assumption of the theorem. Hence, £a = 0 for at least
one a. |

The following corollary is a consequence of Theorem 1 and the definitions of the

matrices involved. For the definitions, we refer to Eaves [2] and Karamardian [3].

COROLLARY 1. There exists a solution to (1.2) for every r £ Rn if M is any of
the following matrices: positive definite, strictly copositive, P -matrix, strictly semi-
monotone and regular matrix (for a regular matrix, take d — e in (2.1)).

THEOREM 2. If there i s a u ^ O , and a scalar /? > dTu such that

(2.5) min{(a; - u, Mx + y + r) \ y G dh(x)} ^ 0

for every x 6 {x: x ^ 0, dTx = /?} , then (1.2) has a solution.

PROOF: Consider the set 5^ = {x:.x > 0, d?x < 0}. Clearly, Sp is compact

and convex. Now, applying Lemma 1, and then proceeding as in the proof of Theorem
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1, we get vectors x £ R", y G dh(x), and a scalar £ such that

(2.6) x^O,

(2.7) (x,Mx+y + r + Zd) = 0

(2.8) £>0, dTx^p, (f3-dTx)t = 0.

If £ = 0, then (x,y) solves (1.2). Assume that £ > 0, and by (2.8), we have dTx = /?.
Consequently, from (2.5)-(2.7), it follows that

0 < (x-u, Mx + y+r) < (dTu - /?)£ < 0,

a contradiction. Therefore, we conclude that £ = 0. |

As a corollary of Theorem 2, we get the following result for a positive semidefinite
matrix M, wliich can also be obtained by specialising to the present case the result of
McLinden [4] for monotone multifunction in a general setting.

COROLLARY 2. If M is positive semidefinite and there exists a u ^ 0, and a
v £ dh(u) such that Mu + v + r > 0, then (1.2) has a solution.

PROOF: Set d = Mu + v + r, and then choose a scalar (3 > dTu. Now, for
any x ^ 0 wiht dTx = /?, it follows from the positive semidefiniteness of M and the
definition of a subgradient that

(x — u, Mx + y + r) ~£ (x — u, Mu + v + r)

= dT(x -u) = /3 - dTu > 0

for all y € dh(x). Thus, the conditions of Theorem 2 are satisfied. |

The next corollary gives an existence result for the class of copositive matrices,

which includes as a subclass the class of copositive plus matrices [2, p. 621].

COROLLARY 3. If M is a copositive matrix and r x + h(x) ^ 0 for every x ^ 0
with eTx = 1, then (1.2) has a solution.

PROOF: The result follows immediately from Theorem 2 by setting u = 0, j3 = 1
and d — e. |

3. A N APPLICATION

In a number of mathematical programming problems studied in detail, such as

those in [5,6,7,10], the objective function is the sum of a lower semicontinuous posi-

tively homogeneous finite convex function and a difFerentiable convex function, while

the constraint functions are difFerentiable. Below we consider a special case in wliich the
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objective function is the sum of a support function and a quadratic function. Though
the objective function is not differentiable, the simple form of the sub differential of a
support function is helpful in framing a stationary point problem of Kuhn-Tucker type
for this problem.

Let D G R n x n be a symmetric positive semidefinite matrix, A G R m x n , c G R",

6 £ Rm and let h be denned by (1.3). The problem then is as follows:

(P) : Minimise Q(x) = -xTDx + cTx + h(x)

subject to Ax — 6 ^ 0 , x ^ 0.

It can easily be checked that if there exists i £ R " , A G Rm and y G dh(x), satisfying

x > 0, A > 0

(3.1) Ax-b^0, Dx-AT\ + y + c^0

(X,Ax-b)=0, {x,Dx-AT\ + y + c)=0

then x is an optimal solution of (P). Now we define

-AT

M=[A 0
i o o\ Vi ( T w h( T\ -j- n

for each (x, A) £ Rn + m, and note that (y,s) £ dho(x, A) if and only if 3/ £ d/i(z) and
s = 0. Taking M, r and /!,0(x,A) as above, the stationary point problem (3.1) can
be projected into a complementarity problem of the form (1.2). Clearly, M in (3.2) is
positive semidefinite. An application of Corollary 2 yields the following theorem.

THEOREM 3. If there exist x G Rn, A G Rm and y £ dh(x) such that

x ^ 0, A ^ 0
(3-3)

Ax-b>0, Dx-AJ\ + y + c>0

then (P) has an optimal solution.

4. NUMERICAL EXAMPLES

We give below some examples to illustrate the existence results of Sections 2 and
3.

Example 1. Let h(x) = (xTBx)i/2 ,

- 1 11 r-v/3/21
_2 l 1 ' r = L - 1 ' B =

1 0
0 1

Here M is a regular matrix (see [3, p. 126]). By Corollary 1, (1.2) has a solution, and
we see that x = (l/2, v/3/2), y = (l/2, \fZ/2) is a solution.
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E x a m p l e 2. Let h(x) be as in Example 1, and let

- 2

3

Here M is positive semidefinite, and, for u = (2,0), v = (1,0) £ dh(u), we have

Mu + v + r > 0. By Corollary 2, (1.2) has a solution, and we see that x = (1,0),

y = (1, 0) is a solution.

E x a m p l e 3 . Let h(x) = j|jE7a;||2 ,

Here M is copositive, and, for x ^ 0 with eTx = 1, rTx + h(x) has values between

zero and (l + v 2 j . Consequently, Corollary 3 ensures the existence of a solution, and

we find that x = (1,0) , y = (\/2, 0) is a solution of (1.2).

E x a m p l e 4. Let h(x) be as in Example 1. Consider the problem: minimise Q(x) —

— X\ — X2 + h(x) over x\ > 0, 0 ^ x-i ^ 1. It can easily be seen that —1 is the

infimum of Q(x) over the constraint set, but the problem has no optimal solution.

Consequently Theorem 3 implies that the system (3.3) cannot be consistent. In fact,

we need A ^ 0, (j/i, j/2) € dh(ic) such that y\ > 1 and \ •&• 3/2 > 1 , which is not

possible, since y\ + y\ < 1.
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