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OVERRINGS OF HALF-FACTORIAL DOMAINS 

DAVID F. ANDERSON, SCOTT T. CHAPMAN AND WILLIAM W. SMITH 

ABSTRACT. An atomic integral domain D is a half-factorial domain (HFD) if for 
any irreducible elements ct\,..., an, f}\,..., (5m of D with ct\ • • • an = j3\ • • • /3m, then 
n = m. In [3], Anderson, Anderson, and Zafrullah explore factorization problems in 
overrings of HFDs and ask whether a localization of a HFD is again a HFD. We con­
struct an example of a Dedekind domain which is a HFD, but with a localization which 
is not a HFD. We also give an example of a Dedekind domain where each localization 
is a HFD, but with an overring which is not a HFD. 

Much recent literature has been devoted to the study of factorization properties of 
atomic integral domains. An integral domain D is atomic if every nonzero nonunit of 
D can be factored as a product of irreducible elements of D. Of particular interest has 
been the study of half-factorial domains. Recall that an atomic integral domain D is a 
half-factorial domain (HFD) if for any irreducible elements a\,..., an, f3\,..., j3m of D 
with ai • • • ocn = /?!••• /?m, then n = m. In [3], Anderson, Anderson, and Zafrullah 
consider how HFDs behave under localization and directed unions and pose the question 
of whether a localization of a HFD is again a HFD. While the authors obtain several 
positive results for specific types of multiplicative sets (see Theorem 2.4, Corollary 2.5, 
and Theorem 3.3 in [3]), they never completely resolve their question. In this note, we 
will use some of the terminology and results of [5] to construct a Dedekind HFD with a 
localization which is not a HFD. We also give an example of a Dedekind HFD for which 
each localization is a HFD, but with an overring which is not a HFD (by an overring of 
R, we mean a subring of the quotient field ofR that contains R). The interested reader is 
also directed to an additional study of overrings of HFDs in Zaks [10]. 

Define an integral domain D to be a locally half-factorial domain (LHFD) if each 
localization S~lD of D is a HFD and a strong half-factorial domain (SHFD) if every 
overring of D (including D itself) is a HFD. Clearly a SHFD is also a LHFD, and the 
converse holds if each overring is a localization. In particular, the two are equivalent 
when D is a Dedekind domain with torsion class group. A UFD is trivially a LHFD. We 
next use the D + M construction to obtain some less trivial examples. 

EXAMPLE 1. Let T be a UFD of the form K + M, where M is a nonzero maximal 
ideal of T and K is a subfield of T. Let D be a subring of K and R = D + M. Then R 
is a HFD if and only if D is a field (Proposition 3.1 of [2]). Let D — k be a subfield of 
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K. Suppose, in addition, that T is quasilocal. Then R[l/m] = T[\ jm\ for each nonzero 
m G M. Hence R is a LHFD, but not a UFD unless k = K. 

Next, specialize to T = K[[X]] = K + M, where M = XT. In this case, R = k + M 
is a quasilocal, one-dimensional HFD and each overring of R (except its quotient field) 
has the form A = B + M, where B is a subring of AT containing k. If AT//; is an algebraic 
extension of fields, then each such subring B is a field, so A is a HFD. Thus R is a SHFD. 
If, however, K/k is not an algebraic extension, then for t € K transcendental over k, 
A = k[t] + M is not a HFD. Hence R is a LHFD, but not a SHFD. One could also use 
T = K + XK[X]{X). 

In Theorem 5, we construct a Dedekind HFD which is not a LHFD (and hence not a 
SHFD), and in Example 7, we construct a Dedekind LHFD which is not a SHFD. For the 
convenience of the reader, we recall several well known facts about Dedekind domains. 
Given a Dedekind domain D, let C1(D) denote its divisor (ideal) class group, So the set 
of nonzero ideal classes of D which contain prime ideals, and 7 the ideal class of / in 
C1(D). 

THEOREM 2. Let D be a Dedekind domain with class group C1(D) and suppose that 
R is an overring ofD. 

1) R is a Dedekind domain. 
2) The map r: C1(D) —• Cl(7?) defined by r(7) = IR is a surjective homomorphism 

with kernel generated by all classes P, where P is a prime ideal ofD with PR = R. 
3) SR = T(SD) \ {0}. 
4) The following statements are equivalent. 

a) Each overring ofD is a localization ofD. 
b) C\(R) is a torsion group. 
c) Every prime ideal ofD is the radical of a principal ideal ofD. 

PROOF. 1) is Corollary 13.2 of [7]. 2) is a special case of Nagata's Theorem 
([7, Theorem 7.1]) since each overring of a Dedekind domain is a subintersection. 3) 
follows from 2). 4) is a special case of Proposition 6.8 of [7]. • 

Notice that by 3), if every nonzero ideal class of a Dedekind domain D contains a 
prime ideal, then the same holds true for any overring R of D. A simple generalization of 
a well known Theorem of Carlitz [4] states that a Dedekind domain D with the property 
that each nonzero ideal class contains a prime ideal is a HFD if and only if | C1(Z))| < 2. 
The ring of integers in a finite algebraic number field over the rationals is an example of a 
Dedekind domain which satisfies the condition of having a prime ideal in each ideal class. 
Combining Theorem 2 with Carlitz' Theorem leads us to the following observation. 

THEOREM 3. Let D be a Dedekind domain with class group C1(D) such that ev­
ery nonzero ideal class ofD contains a prime ideal. Then D is a SHFD if and only if 
I C1(D)| £ 2 (and hence if and only ifD is a HFD). 

PROOF. (=>) If D is a SHFD, then D itself is a HFD and Carlitz's Theorem implies 
that | C1(D)| < 2 (<=) If | C1(D)| < 2 then by Theorem 2 part 2), every overring R of D 
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has the property that | C\(R)\ < 2. Carlitz's Theorem then implies that each overring is a 
HFD, and hence D is a SHFD. • 

We now construct an example of a Dedekind domain which is a HFD, but not a LHFD. 
Let D be a Dedekind domain with class group Z^ and suppose that SD = {1,2,3} (such 
a Dedekind domain exists by Corollary 1.5 of Grams [8]). The domain D is a HFD by 
Theorem 3.8 in [5]. Let Q = {Q | Q is a prime ideal of D which lies in the class 1 or 2} 
and fix P3 to be a prime ideal of D which lies in class 3. We now claim the following: 

LEMMA 4. P3 g \JQeCi Q. 

PROOF. Assume that P3 Ç IJgeQ, Q- Since D has the property that every prime ideal 
is the radical of a principal ideal, the main Theorem of [9] implies that P3 = Q for 
some g € Q. But P3 and Q are in different ideal classes in Cl(D) (for any Q E Q), a 
contradiction. Hence P3 g UgeQ Ô- • 

Notice in the proof that it is necessary to cite the Theorem from [9] rather than the 
usual finite covering condition since the number of prime ideals in the set Q, may be 
infinite. 

Now, let teP3\ U(2eQ Ô- S e t T = 0» ', ?>...} and/? = TlD = D[l/i\. We claim 
that R is the desired example. The important property of the element t just selected is 
that if (ft) = M\ - - Mj, where M\,..., Mj are prime ideals of Z>, then each M/ must be 
an ideal in class 3 (otherwise, if Mw is not in class 3, for some 1 < w <j, then Mw is in 
Q , and hence ft E Mw implies f E Mw, which contradicts the fact that t g UgeQ, Ô)- We 

are now ready to prove the claim. 

THEOREM 5. The localization R ofD is a Dedekind domain with class group Z3 such 
that every nonzero ideal class ofR contains a prime ideal Hence, R is not a HFD, and 
thus D is not a LHFD. 

PROOF. By Theorem 2 part 3), the kernel of r is generated by primes Q with QDT ^ 
0. Thus, if Q is such a prime, then there exists a positive integer k such that t* E Q. Thus 
Q is in the prime ideal factorization of (ft), and by the property discussed just prior to this 
Theorem, Q is in class 3. Thus, r: Z6 —• C\(R) with kerr = {0,3}. Hence C\(R) ^ Z3. 
Notice that if Pi and P2 are prime ideals of D taken from the ideal classes 1 and 2 (of 
ZÔ) respectively, then P\R and P2R will lie in different non-trivial ideal classes in R. 
Consequently, each nonzero ideal class of R will contain a prime ideal, and hence R is 
not a HFD. • 

We offer an alternate view of the last result, this time considering the factorizations 
of elements directly. Let Pi, P2, and P3 be the prime ideals of D already cited above. 
Notice that there exist irreducible elements a, /?, 7, and SofD such that (a) = P1P2P3, 
(P) = P<j\ (7) = p3? a n ( J (g) = p2 j n D w e h a v e m a t 

(1) a6 = uxpi2è\ 

where wi is a unit of D. Since P3R = # and (5) = P3, we also have that£P = (P3P)2 = P, 
so 6 is a unit in P. Now, aP = P1P2P3R = (PiP)(P2P). Since PiP and P2P are in 
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nonprincipal ideal classes in R, a is an irreducible element of R. A similar argument 
works for 7. However, (3 is neither a unit nor irreducible in R. To see this, note that 
P\R is principal in R and setting P]R = fiR (where \x is irreducible in R) we have that 
PR = (PiR)6 = [(PiR)3]2 = v>2R. Thus, in /?, (1) reduces to 

a6 = u2 • fi
2 • 72, 

where m is some unit of R. Notice also that 

a3 = «3 • \x • 7, 

where U3 is some unit of R. Considering either of the above factorizations, R is clearly 
not a HFD. 

The example we have constructed is minimal in the sense that if D is any Dedekind 
HFD such that | C1(D)| < 6, then D is a SHFD (and hence a LHFD). This of course 
follows since any proper overring RofD would have either 

i) C\(R) = C1(D) with the same distribution of prime ideals in C\(R) and C1(D), 
hence forcing R to be a HFD, or 

ii) I Cl(/?)| < 2, in which case the before mentioned Theorem of Carlitz forces R to 

be a HFD. 

We state this result in terms of class numbers. 

THEOREM 6. Let D be a Dedekind domain with \ C1(D)| < 5. The following state­
ments are equivalent: 

1) D is a HFD. 

2) D is a SHFD. 

3) D is a LHFD. • 

The Grams result [8], along with results from [5], [6] and Theorems 3 and 6 above, 
allow us to characterize the Dedekind domains with | C1(D)| < 5 which satisfy the three 
equivalent conditions of Theorem 6. They are as follows: 

1) any Dedekind domain D with trivial class group or C1(D) = Z2 (by Theorem 3). 

2) any Dedekind domain D with C1(D) = Z3 or Z5 with all the nonprincipal prime 
ideals of D in one ideal class (Corollary 3.3 of [6]). 

3) any Dedekind domain D with C1(D) ^ Z2 0 Z2 and SD ^ {(1,0), (0,1), (1,1)} 
(Theorem 4.8 of [5]). 

4) any Dedekind domain D with C1(D) = Z4 with SD equal to one of the following: 
{!}, {3}, {1,2}, {2,3} (Corollary 4.7 of [5]). 
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Using similar techniques, we can characterize the Dedekind domains with class group 
ZÔ which are SHFDs (and hence LHFDs since ~L^ is a torsion group). The Dedekind 
domains D with C1(D) = Ze which are HFDs are those with sets So of the form: {1}, 
{5}, {1,2}, {5,4}, {1,3}, {5,3}, {2,3}, {4,3}, {1,2,3}, or {5,4,3}. We have shown 
that the HFDs above with So = {1,2,3} are not SHFDs. A similar argument works when 
SD = {5,4,3}. The remaining possibilities for So all produce Dedekind domains which 
are SHFDs. To see this, notice that the class group of any overring R of such a domain 
will either be trivial, Z2, or Z3. In the last case all the nonprincipal prime ideals ofR will 
be in one ideal class, and again by Corollary 3.3 of [6], R is a HFD. 

We next give an example of a Dedekind LHFD R which is not a SHFD (notice, as 
remarked earlier, that such an R cannot have torsion class group). 

EXAMPLE 7. Let R be the Dedekind domain constructed in [1, Example 3.4] via 
Claborn's Theorem. Using the notation from that example, C\(R) = (e~l) = Z. Let "ël = 
- 1 E Z. Then S* = {-1,1,4,6}. By Theorem 4.9 of [6], R is HFD. Since each proper 
localization of R is a PID, R is a LHFD. The only overrings of/? which are not PIDs are 
the three subintersections R\, R2, and T (see [1] for the description of these overrings). 
Note that T is a HFD since Cl(T) = Z2. However, R{ and R2 are not HFDs. C\(R{) ^ 

Z4 and SRX = {3,2,1} by part 3) of Theorem 2. Hence R\ is not a HFD by Carlitz's 
Theorem. By the discussion before this example, R2 is not a HFD since Cl(/?2) — ~%-6 and 
SR2 = {5,1,4}. Thus R is a Dedekind LHFD which is not a SHFD. • 

We close by mentioning a problem which previous work and the results of this note 
clearly suggest. 

PROBLEM. Let G be a abelian group. Characterize the subsets S Ç G — {0} such 
that any Dedekind domain with C1(D) ^ G and SD = S is a HFD, a LHFD, or a SHFD. 
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