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DISTRIBUTION OF ITERATES OF
FIRST ORDER DIFFERENCE EQUATIONS

JAMES B. MCGUIRE AND COLIN J. THOMPSON

An invariant measure which is absolutely continuous with respect

to Lebesgue measure is constructed for a particular first order

difference equation that has an extensive biological pedigree.

In a biological context this invariant measure gives the density

of the population whose growth is governed by the difference

equation. Further asymptotically universal results are obtained

for a class of difference equations.

1. Introduction

First order difference equations expressed in the form

(1.1) xt+1 = F(xt)

have been used to model a variety of situations in the social and

biological sciences [4]. In modelling the growth of populations with

separate generations for example, x, in (l.l) represents the size of the

population in the tth generation and F(x) typically has the form shown

in Figure 1 (see p. 13^). For such functions F , the detailed dynamics of

(l.l) may be quite exotic with bifurcating harmonics or cycles and

eventually completely chaotic behaviour as the slope of F at the non-

trivial fixed point x* becomes large and negative [4].

The microscopic behaviour of difference equations has been the subject
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FIGURE 1. Typical form of F(x) .

of much recent work and many interesting results have been found, including

various universal phenomena such as the order of appearance of cycles [5]

and the behaviour of successive intervals of stability of bifurcating

harmonics [7].

In this paper we will be concerned rather with macroscopic behaviour

of difference equations and in particular with the existence and form of

averages

(1.2)

where the x+

</> = l imn-1
/(**)'

= 1, 2, ... , are obtained from (l.l). This is a simple

form of the ergodic problem and it is well known that if / is integrable,

(/"> exists and is independent of x for almost all x . Moreover, if

F maps a finite set E onto itself (and we will see that this covers
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almost all cases of interest) there exists a measure p which is invariant

with respect to F such that p{E) = 1 and

(1.3) </> = [ fdp .
IFE

This type of problem, namely the existence of "ensemble averages" such

as (1.3), and invariant measures p , was studied some thirty or more years

ago by such people as Kac [2] and Ulam and von Neumann [6]. Two particular

examples are:

1 . For

2x , 0 < x < % ,

(1.1*) F(x) = •

2(1-*) , % < x < 1 ,

dp(y) = dy (Lebesgue measure),

or, in other words, the distribution of iterates is uniform on the interval

(0, 1) [2].

2. For

(1.5) Hx) = kx(l-x) ,

dp(y) = d(2Tr"1arsin(2y-l)) .

In this case the density of iterates is given by

P'(y) = ir

on the interval (0, l) [6].

The general question of the existence of invariant measures p for

which

(1.6) dp(y) = p'(y)dy

has received only scant attention since the above two examples. Recently,

however, there has been renewed interest in such problems. Lasota and

Yorke [3] for example proved that such measures exist for piecewise

continuous F such that inf|F'| > 1 . More recently, Jacobson (Private

Communication) has proved that for the generalization

F(x) = Xz(l-x)
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of (1.5), the set of A for which an absolutely continuous measure exists

has positive measure.

While such existence theorems are valuable, it is, nevertheless,

useful to have explicit examples of invariant measures at hand. This is

particularly true in the ecological context where p'(y) represents the

density of iterates for a population whose growth is governed by difference

equations (l.l). When an invariant measure which is absolutely continuous

with respect to Lebesgue measure exists, one is not generally interested in

the microscopic details of the population generation by generation; rather

one would be interested in the statistics of the population. It is

precisely this sort of information which can be calculated from the

invariant measure.

The particular, and probably the most usual case, where difference

equations (l.l) possess "limit cycles" is, of course, included in this

description, but in the context of invariant measures the "ergodic problem"

posed above is both trivial and uninformative. In particular, if the

difference equation (l.l) has a "p-cycle" x , x , x , ..., x ,

x = x. , the "expectation" value

(1-7) </> =P'X £ f[x)

and the appropriate invariant measure is the "atomic measure"

(1.8) dp(y) = p"1 £ &{y-x,)dy ,
t=l

where 6(x) is the Dirac delta-function.

In this paper we present, in the following section, the general

problem of constructing absolutely continuous measures for "endomorphisms"

F in (l.l) (of a set E onto itself), followed in Section 3 by an

explicit example of such a function in the biological literature. The

relevance of these results for more general situations is discussed in the

final section.

2. Construction of invariant measures

For functions F of the form shown in Figure 1, that is, with a
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single maximum at x , strictly increasing on [0, x) , strictly-

decreasing on [x, <*>) and F(0) = 0 , it is clear from Figure 2 that if

is in region J , x. will also be in I . Moreover, it is equally

clear that if x. is not in J , x, will be in I for some (small) t

I x

FIGURE 2. The interval of iterates.

There is no loss in generality then in restricting the function F to J

and further, by an appropriate contraction, taking I to be the unit

interval. Endomorphisms of the unit interval onto itself, as shown in

Figure 3 (see p. 138), then include the general case depicted in Figure 1

after an appropriate change of variables.

It is clear from Figure 3 that in order for dp(y) to be an invariant

measure (henceforth, "which is absolutely continuous with respect to

Lebesgue measure") we must have

p'{y)dy = p'[x1)dx1 + p'{x^dx^

= P'if^yfiqMdy - P'{f2{y))f^y)dy , a < y 5 1 .

That is ,

(2.1) o'(u) = o'ff.Mlf_'(v) - P'{f2(y))q(y) , a s u 2 l .
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x = x± = fx(y)

X =

0 1 x

FIGURE 3. The general case after change of variables.

and similarly,

(2.2) p'(y) = -p'[f2(y))f!jLy) , 0 < y 5 a .

(The minus s igns i n ( 2 . 1 ) and ( 2 . 2 ) , i t w i l l be no ted , a r e due t o t h e f a c t

that f2(y) < 0 .)

From ( 1 . 2 ) a n d ( 1 . 3 ) we s e e k a s o l u t i o n o f ( 2 . 1 ) and ( 2 . 2 ) s u c h t h a t

(2 .3 ) lim n"1 £ f(x) = [ f(y)p'(y)dy
n-**> t=l '0

for integrable f and almost all x~ . This clearly requires that p be

monotone increasing and p(l) - p(0) = 1 .

The Kac and Ulam and von Neumann examples of the previous section are

easily seen to satisfy (2.1) and (2.2). Another example, which is

relevant in Biology, is given in the following section.

An interesting particular case is when a is equal to unity.

Equation (2.1) is then irrelevant and on integrating (2.2) we have

(2.U) p{y) + p(/2(z/)) = c (constant).
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Replacing y by /„(*/) in (2.It) and subtracting the resu l t ing equation

from (2.It), we obtain

(2.5)

and since p is monotonic, (2.5) implies that

(2.6) y = f2{f2(y))

which in turn implies that on (0, l) ,

(2.7) f2iy) = i - y •

The invariant measure from (2.it) is then also linear.

This result (Kac, Private Communication), which is of some interest in

itself, states that the only monotonic decreasing endomorphism possessing

an invariant measure is a straight line.

3. Invariant measure for a biological example

A particular spiked form of the difference equation (l.l) that has

appeared extensively in the biological literature [4] to model population

growth is

(3.1) x
t+1

Xx , 0 < x < 1

(X > 1, m > 2) .

The maximum population size is clearly X and after some small finite

number of generations the population size never falls below X . In

accordance with the general situation shown in Figures 2 and 3, the

transformation

(3.2) xt = exp{[(m-l)st-(m-2)]log X}

converts (3.1) to the piecewise linear endomorphism

I , 0 < z

Assuming for convenience that p(0) = 0 and p(l) = 1 , integration of

(2.1) and (2.2) results in the functional equations
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and

( 3 . 5 ) p(y) + p | l - = r V | = 1 , O $ j S (m-1)'

In the particular case where m is an integer, these equations have the
solution

(3.6) p(y) = {2kym-1-Uk-l)[m(m-l)r1 :

( k - l H m - l ) " 1 S j S k ( m - l ) " 1 ; k = 1 , 2 , . . . , m - l } .

There is no guarantee or proof that this is the only invariant measure

for (3-3). Extensive numerical studies, however, confirm that p'iy) from

(3.6) is indeed the density of iterates so that from (1.2) and (1.3),

expectations for integrable functions of z are given by

(3.7) </> =limn-1 I f{z) = f f(y)p'(y)dy
n*» t=l h

Mm-1)-1

f(y)dy .

The invariant measure for the original population variable x, can be

easily obtained from the change of variables (3.2). Alternatively, various

population statistics can be obtained from (3.7) by an appropriate choice

of the function f . For example, choosing

(3.8) f(y) = exp{[(m-l)y-(m-2)]log X}

one o b t a i n s from ( 3 . 7 ) and ( 3 . 2 ) , t h a t t h e mean p o p u l a t i o n s i z e for an

ecology governed by ( 3 . 1 ) , i s given by

l n

( 3 . 9 ) <*> = l im w I x
n-xx. t=l

The asymptotic form for (3.9) as A -»• °° is of some interest and is

given by

(3.10) <x> ~ 2\/m log X as X •+ « .
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For f ixed X and m -*•<*> t h e more gene ra l e x p e c t a t i o n v a l u e ( 3 . 7 ) becomes

simply

(3.11) </> ~ 2 xf(x)dx
h

as m

The above results are, of course, only strictly valid if m is an

integer even though the asymptotic forms (3.10) and (3.11) are undoubtedly

valid for arbitrary real positive m .

4. Statistics and asymptotic forms for more general cases

One of the difficulties in studying simple first order difference

equations (l.l) is that general properties seem to require specific

conditions on the function F . An appropriate condition, that seems to

cover all biological cases as well as the aforementioned microscopic

studies [?], [5], amounts to considering equations of the form

(U.I) xt+1 = A*^(xt) .

If we require that g(0) = 1 and that g be monotone decreasing for

x > 0 , then X may be interpreted as a growth parameter which gives the

increase in population per generation for low populations. The

monotonicity of g requires that this growth is limited by the population

as the population increases. Populations whose growth is governed by such

equations might therefore be called "self-limiting".

Once the function g is chosen, X becomes the only adjustable

parameter. We show here an asymptotic universality in the behaviour of the

distribution of iterates over a wide range of g's as X -»• °° .

Following the lead from the change of variables (3.2) of the previous

section, if we take logarithms of both sides of (U.l) and divide by

log X , we obtain

(̂ •2) yt+1 = 1 + yt + cT-'-log g-(exp[ou/t]) ,

where

(k.3)' yt = (log xt)(log X)"
1 and a = log X .

Assuming that g{x) ~ x as x -*• °° , one then obtains from (J4.2)
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that

(h.k) y
t+1

l + y t if yt < 0

1 - {m-l)yt if yt > 0
a s X -»•

A simple contraction then brings th is equation to the form (3 .3 ) .

Comparison with (3.10) then gives the asymptotic form for the mean value

for population var iables governed by (4 .1) :

- 1
( U . 5 ) l i m n Y, xf ~ 2 ^ / m l o S A a s A - » • « > .

t=l

Many other s t a t i s t i c s can of course be obtained from the invariant

measure (3 .6 ) . Some asymptotic microscopic information can also be

obtained from the transformed equation (4 .4) . In pa r t i cu la r , i t wi l l be

noted tha t (4.4) as an equa l i ty , and hence (4.1) asymptotically, has an

m-cycle:

y = 0 , y = 1, y = - m + 2 , . . . , y = -m+k, . . . , y = 0 .
U X *- iS. ill

It is amusing to note for example that the difference equation

(4.6)

with m = 3 , only possesses a 3-cycle and hence "complete chaos" in the

asymptotic A -*• °° limit!
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