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Abstract

A dam is considered with independently and identically distributed
inputs occurring in a renewal process, and in particular a Poisson process,
with a general release rate r( • ) depending on the content. This is related to a
G//G/1 queue with service times dependent on the waiting time. Some
results are obtained for the limiting content distribution when it exists; these
are more complete for some special release rates, such as r(x) = (ii° and
r(x)= a + /ix, and particular input size distributions.

1. Introduction

The waiting time X(t) at time t in a single server queue GI/G/1, or the
content of an equivalent dam, has been extensively studied [12]; there are
more complete results for a Poisson arrival process (M/G/l). More general
release rules than unit rate per unit time have also been considered [4], [7],
[10], [11], [14], [15]; we consider an instantaneous release rate r(X(/)), which
is a function of the content X(t), at time t, such that r (0 - ) = 0, and r(x) is
continuous and positive on (0,°°). For illustrative and numerical examples we
shall consider the two special cases (i) r(x) = /xx", 0 < /x < °°, 0 § a < °°, so
that the instantaneous release rate is proportional to the ath power of the
content, and (ii) r(x) = a + /xx, 0 g a < °°, 0 < /* < °° [10]. Case (i) with a = 0
and fi = 1 is GI/G/1, and with a = 1 there is an exponential decay [8], [9],
[14]; a variety of other values, such as a = 1/2 for a parallel sided sink, might
be appropriate in particular circumstances. If (ii) r(x)= 1 + fix, then the
second factor gives a way of providing faster service for large waiting times or
content, and it also guarantees ergodicity.

We consider a stochastic process X(t), 0 g / < », called the content of a
dam of capacity K ^ °°, defined on [0, K). Inputs, at /, < t2 < • • • (fi > 0 = f0)
occur in a renewal process with T, = fI+1 - t,, i = 0,1,2, • • • being indepen-
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dently and identically distributed (i.i.d.) random variables with P(T, I X ) =
A(x), 0 S x < « , E(T , ) = 1/A, 0 < A < O ° ) and with Laplace transform (LT)
a *(0). The inputs Sn, n = 1,2, • • •, are i.i.d. random variables with P(Sn S
x) = G(x), 0 g x < » G(0) = 0, E(Sa) = (3 < oo, and LT g*(0). When A (x) =
1 - e x p ( - AJC), we have a compound Poisson input process.

The content X(t) of a dam with infinite capacity and unit release rate is
equivalent to the virtual waiting time in a single server queue. For a general
release rate this is no longer the case; the time a customer would wait for
service depends on his own service time and possible subsequent arrivals.
However, we may take X(t) as a workload process and it is similar to the
potential waiting process defined by Rubinovitch [13]. Let

D(x)= [* -j-dy 0<*<oo (i.i)

whenever the right-hand side is finite. Put W(t) = D(X(t)), 0S(<<». Then
W(t) is a process with slope-1 except when inputs or overflow occur or when
W{t) = 0; W(t) i= 0 for all r s 0 and W(t) = 0 if and only if X(t) = 0 [2]. The
process may be interpreted as the virtual waiting time in a modified G//G/1
queueing system with service times depending on waiting times; it is thus an
example of the important class of state dependent queueing systems.

We let X(tn -)= Xn, W(tn - ) = Wn, and let S*n(Wn) be the size of the
nth input in the transformed process, i.e., "the service time of the nth
customer" in the sense that it would take time Wn + S*( Wn) before the server
became idle if no arrivals occurred in (/„, tn + Wn + S*( Wn)). As Wn = D(Xn)
and Wx + S*n{Wn) = D(Xn + Sn) we find

- Wn (1.2)

n)^x\ Wn = w}= G(D-\x + w)-D-'(w)), CKx <oo,

0 ^ w <oo,

where D~' is the (unique) inverse function of D(x), such that D~'(D(x))= x;
S*(Wn) is an increasing function of D(x) and a decreasing function of Wn.
For K = °o we have

+ S n ) - T n n , (1.3)

and

which is Lindley 's [12] form. Any results obtained for the original X ( )
process may b e interpreted in terms of the transformed W( •) process.
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In the special case (i) r(x) = /xx° (0 ̂  a < 1) and (ii) r(x) = a + fix, we
have respectively

11/(1-0)

S*n(Wn) =

(ii) D(x) = ± In ( f) , ()

*(Wn) = - In f 1 + ^
M i a

If the integral in (1.1) is infinite, e.g., r(x) = y.x°, a § 1, then the dam can not
empty in finite time from any positive value of the content. For any e > 0 we
put

Dr(x) = j^-^dy 0<x<co (1.5)

with D(x) = limf i0 Dr (x) whenever the limit exists and is finite; in this case
DE(x) = D(x)- D(e). For x < E we have Dr(x)<0, but Dr(x) is still
monotone in x. If we put W, (t) = Dr (X(t)), then Wr (t) may be negative.
However, at all relevant points in the argument below (also in [15]) De(x)
actually occurs as a difference Dr (x) — DF (y) (x > 0, y > 0), which eliminates
the dependence on e. Consequently results can be justified for the more
general case, although we shall argue only for the case D(x)<^ and shall
leave the generalization to the reader.

We wish to study the distribution function (d.f.) F(x, t;xn)= F{X(0 =
x | X(0) = Xo} and Hn (x; x0) = P{Xn g x | X(0) = x«} of the content at time /
and before the nth input respectively, and the corresponding limiting d.f.'s
F(x) = lim,_ooF(x, /; x0) = P(X S x) and H(x) = limn_ooHn(x;x0), whenever
they exist. By renewal theoretic arguments it follows [7] that F(x) and H(x)
form proper d.f.'s whenever K <<» or limJC_ocr(x)> A/3. Further from (1.3) we
have

Hn+I(x;x0) = f dHn(y;xo)F(y,x) = - f Hn(y;xo)dyP(y,x)
JyO Jy-0

H(x)=-(~ H(y)dyP(y,x) (1.6)
Jy-0

where

= f { 1 - A(D(y + w)- D(w))}dG(w). (1.7)
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For GI/G/l we have P(y,x) = P{Sn - rn ^ x - y) ([12]), p. 49), and the
Wiener-Hopf equation (1.6) can be solved by known methods; in general
(1.6) presents a much more complex problem.

Except for the special case r(x) = /xx we consider an exponential
inter-input distribution; the input process is then compound Poisson (class 1
in [2]). Some general results are given in the next section, with more explicit
and numerical examples for some special input size distributions in Sections 3
and 4.

2. Compound Poisson input process

In the case of an exponentially distributed time between inputs we can
formally obtain an integro-differential equation [7] for F(x, t), which for
K = 0° has been solved in some special cases, such as for r(x) = 1(M/G/1) [12]
and in terms of LT's for r(x) = ixx [8], [9]. For the limiting content
distribution we have

r(x)F'(x)= AF(x)-A f F(x-y)dG(y) 0<x<K, (2.1)
Jy-0

provided K < oo or lim»^« r{x) > A/3. For the transformed process W = D(X)
with L(w)= P j l V g w} we have

L'(w) = AL(w)-A f L(u)dG(D-'(w)-D''(u)), 0<w<D(K).
Ju-0

(2.2)

For the remainder of this section we suppose K = oo. We define ip(6) =
Jo exp( - dx) dF(x) (0 ̂  6 < oo) as the LT of the limiting content; from (2.1)

f" r(x)e-°*dF(x)=r(0)F(0)+<t,(8)£(d) (2.3)

a0)=p{l-g*(0)}/0. (2.4)

The LT tp(0) is known in the special cases r(x) = 1 [12] and r(x) = /LAX [8]. In
the combined case r(x) = a + fix (2.3) gives

where y = a/ft, p = \/fi. Using i//(0) = 1 we obtain

Uy)dy.
y-0
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As a consequence of E(S)= /3 < °° we find - J(0)-» +°°as 6-*°°, so that

The procedure can be used for more general input processes [3]. When
g*(0)= vl(v + 0) this gives (3.6) at x = 0, while for g*(0) = exp(- 0/3) F(0)
can be evaluated numerically. Moments may be obtained by

= p /3 -y ( l -F (0 ) ) (2.5)

From (2.1) it follows that

E(r(X))=A/3 + r(0 + )F(0), (2.6)

which gives for r(x)= px" (a >0) that

etc., which involves finding the moments of integer order. For a = 0 (and
p/3 < 1) and a = 1 all moments can be obtained in this way by recurrence.
Further if r(x)= fix all moments can be found for inputs occurring in a
renewal process; if X* is the content just before an input occurs, then,(see [6])

In the case of r(x) = \ixa (0 < a < 1) we can use a fractional LT ([5], Section
4.7) to obtain

lim I
'— J.-e

=-«*)*(«)•

By differentiation we obtain formally

which gives known results as a —*0 or 1.
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3. Exponentially distributed inputs

We assume that the size of an input has a negative exponential
ditribution with mean /3 = l/v, 0 < v < <», so G(x)= 1 - e x p ( - we), Ogx <
oo. From (2.1)

r(x)F'(x) = AF(x)- vXe-" [ F{y)e"ydy, 0<x<K, (3.1)
Jy-0

and hence by differentiation

^ ) F'(X) = 0, 0 < X < K
r(x) r(x)

Thus

F'(x)=cr(x)- 'eO ( ' ) (3.2)

Q(x) = -vx+\D(x),

and using F(K) = 1 and (2.6) we find

eow+v\" eOMdy
F(x) = ^ OgxSiK, (3.3)

eOiK)+v\ eO(y)dy
Jy-0

which has been obtained by McNeil [10], p. 253, using a limiting result of
another problem. From (3.3) or (2.3) the equivalent result for L(z) can easily
be found.

More explicit results can be found for special cases of the release rate
r(x); for convenience we let K = oo. When r (x )= l (and \/v<l) F(x) =
1 - (A/i>) exp(v - A)x, and when r(x) = /JLX (3.3) is (truncated) gamma [8]. If
r(x) = /J.y/x, i.e., a = 1/2, and if 4>(x) and ̂ (x) are the density function and
distribution function of a standard normal random variable, and y =
py/(2/v), it follows that F(0) = <f>(y)/(<f>(y)+ y*(y)), and Y =
\/(2i>X)— y = y/vW — y is a truncated standard normal random variable on
(— y;co) with density function yF(O)</>(y)/0(y) with a jump of size F(0) at
- y. Further E(\/X) = p/3 (2.6) and

; 3)

(3.4)

where O(x2; k) is.the tail of the gamma function with index fc/2 ([1], p. 978).
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If r(x) = iix2, i.e., a = 2, then F(0 + ) = 0, and with a = pv = \v/fi we
obtain

F'{x) = „ ypC7",-, 0<x<cc, (3.5)

where K,(x) is the modified Bessel function of the second kind and of order j
([1], p. 417). The constant c"1 in (3.2) is given by the solution of a"(a) =
a(<r)/cr, where

a(tr) = I" e-ly*"rtdy =
Jy=O

In this case E(X2)= pP (2.6) and

E(X) = c f" - e-^+""^
J,-o •«

v K,(2Vo-)'

a(o-)

TABLE 1

The mean E(X), standard deviation Vv(X)and probability F(0+ ) of emptiness for
exponentially distributed (i>) inputs with r(x) = ixx", a = 0, |, 1,2, p = A/n = 0.5,

1,2,4, and r(x)= 1 + xp.

p v a E(X) VV(X) f(0 +

0.5 1 0
i
1
2

l + x/2
2

1
2

1 + x
1/2
1
2

l+2x
1
2

1
2

l + 4 x
0
2

1
2

1 + x

1
0.567
0.500
0.537
0.302
1.449

1
0.814
0.500
4.499

2
1.212
0.800

16.500
4

1.788
1.243
0.500
0.444
0.500
0.606
0.167

1.732
0.960
0.707
0.452
0.639
1.588

1
0.580
0.866
2.919
1.414
0.728
1.166
5.701

2
0.896
1.567
1.225
0.610
0.500
0.364
0.373

0.500
0.367
0
0
0.604
0.103
0
0
0.500
0.0028
0
0
0.400
0.000
0
0
0.311
0.500
0.223
0
0
0.667
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When r(x) = a + /xx we find

( 3 . 6 )

where y(x;p) and F(x;p) are respectively the density function and the
distribution function of a gamma distribution with index p (F(x;p) =
1-Q(2x ;2p) ( [ l ] , p. 978)).

For r(x) = /MX", a = 0,5, 1, 2, and r(x) = 1 + px and a selection of values
of p and ^ the probability of emptiness F(0 + ), the mean E(X) and the
standard deviation VV(X) of the content are shown in Table 1.

4. Bounded inputs

We consider inputs which have zero mass on [0,17), 0 < 17 < °°, with mean
/3; many input distributions would satisfy such a mild restriction. Further this
would give an approximation when counting only inputs of magnitude at least
17 occurring in a stable input process as denned in [2]. In this case (2.2) can be
solved iteratively over [0,77), [17, 2T/), • • • to obtain

F(x)= ^ ,C 0^§K (4.1)

1-0

where £o(x) = 1, OS x < °° and

f, (x) = A —-.—r- d<

If the inputs are constant, i.e., G(x)= 1 for x g TJ = /3, then

r * -AD(y)+AD(y-p)

,̂ (x) = A jr-j ^-,(y - (Z)dy jp S x < °°. (4.2)

For r ( x ) = ^ x ° , a =0,0.25,0.50,0.75,1,1.50,2, /3 = 1, p = 0.50,1,2,4, and x
an integer S 7 (4.2) has been evaluated [14], [15].

If the interinput is Erlang with index k ( = 2,3, •••) , then the iterative
procedure used above carries over.
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