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SOME INEQUALITIES FOR PLANAR CONVEX SETS
CONTAINING ONE LATTICE POINT

M.A. HERNANDEZ CIFRE AND S. SEGURA GOMIS

We obtain two inequalities relating the diameter and the (minimal) width with the
area of a planar convex set containing exactly one point of the integer lattice in its
interior. They are best possible. We then use these results to obtain some related
inequalities.

1. INTRODUCTION AND RESULTS

Let A" be a compact convex set in the Euclidean plane E2, having area A{K) = A,
(minimal) width OJ(K) = u> and diameter d(K) = d.

In [6], Scott established two "dual" inequalities, relating d, u> and A for compact
convex sets containing no points of the integer lattice Z2 in its interior:

(« - \)A < \o?

{d - \)A ^ -d2, providing d < 2.

In this paper we prove two similar inequalities, but in the case that K contains one
lattice-point of Z2 in its interior, and some related inequalities.

Let us define the family of the triangles Tt:

r=|cont;|(-2,-l),(l+e,-l),(^i,r|7)J/ee [o, N/2 - l] } .

Note that the triangles of the family T are the triangles "intermediate between" the
isosceles triangles To and Tsy^_1, which are shown in Figure 1.
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0

Figure 1: Extremal triangles

Now, we may establish the following theorems:

THEOREM 1 . If K contains the origin O, but no other point of the integer lattice
in its interior, then

with equality when and only when K = T£ € T, for alle G [0, \/2 — l] (up to congruence).

THEOREM 2 . If K contains the origin O, but no other point of 7? in its interior,
and d < 2\/2, then

with equality when and only when K is a square of side length 2.

COROLLARY 1 . IfK contains the origin 0, but no other point of 7? in its interior,

then

d2 < 2y/2A,

with equality when and only when K = Te £ T, for alle € [0, y/2 — l] (up to congruence).

COROLLARY 2 . IfK contains the origin 0, but no other point of 7? in its interior,

then

2,

with equality when and only when K = T^_1 (up to congruence).

2. SOME PRELIMINARY RESULTS

We shall require the following lemmas:
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LEMMA 1 . Let Q be the quadrilateral with vertices XYZU. Let XZ = t, and
S be the width of Q in a direction perpendicular to XZ. Then, any square which is
inscribed in Q and has a vertex on each side of Q has side length s, satisfying:

tS
s^t+~s-

PROOF: Let A, B, C, D be the vertices of the inscribed square, which lie on the
sides UX, XY, YZ, ZU respectively (see Figure 2).

Figure 2

Let AD make an angle 0 with XZ, let DC make an angle $i with UY, and let XZ

meet UY in 0.

Now, it is clear that the area of Q is tS/2. But this area is also given by adding the
areas of quadrilaterals ODZC, OBXA to the areas of quadrilaterals OCYB, OAUD.

Then, we obtain:

So,

-tS = -st cos 6 + -sUY cos 0X sj -s (t cos 9 + 6).

tS tS
tcos9 + S ' t + S'

•
LEMMA 2 . Let A, B, C, D be the vertices of a square with side length s, and let

Q be the quadrilateral XYZU, with sides XY, YZ, ZU, UX, passing through B, C, D
A respectively. Let di < d2 be its diagonals. Then, di ^2s.

https://doi.org/10.1017/S0004972700032093 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032093


162 M.A. Hernandez Cifre and S. Segura Gomis [4]

PROOF: Using Steiner symmetrisation (see [3], Lemma 3), it is easy to see that Q
can be transformed into a "kite" (a quadrilateral which is symmetric with respect to one
of its diagonals) Q', such that

(i) Q! has its symmetry axis along the line x = s/2 (for a suitable choice of
coordinate axis).

(ii) The sides of Q' pass through A, B, C, D respectively,

(iii) The minor diagonal of Q', d[, satisfies d\ ^ d\.

It is clear that for Q', d\ < 2s, and hence, dx < 2s. D

3. PROOF OF THEOREM l

Let r = r(K) be the inradius of K. It is shown in [5] that for any bounded convex
set K,

So, it follows that if r < \ /2/2, then

f u> - V2J A ^ (w - 2r) A < —cv2r < — ur <
\ / 0 0 ^

Hence, we may assume that K contains a disc De of radius ——\- e, e > 0.

It is no loss of generality to assume that the centre of D€ is interior to the square
with vertices Qi = (1,1), Q2 - ( -1,1) , Qz = ( - 1 , - 1 ) , QA = (1, -1 ) (we suppose that
int(K) HZ2 = {0}).

Let /C£ denote the class of compact convex sets K containing a disc De placed as
above, with int(K) l~l Z2 = {0} . It will be sufficient to prove the theorem for fCc.

Let now e > 0 be given. Since Qi, i — 1,2,3,4 are not interior to the sets of 1CC, we
deduce that £ c is uniformly bounded in the plane. As \/2(w — y/2)A/u>2 is a continuous
function of u>, A for w > 0, Blaschke's selection theorem [1] guarantees the existence of
a maximal set in £E, that is, a set K £ K€ for which \f%y> — \/2)A/LJ2 is as large as
possible.

Let /(w) = \/2w2/2(w — \/2). As /(w) is a decreasing function of u (since w ^
1 + y/2 < 2\/2, see [7]), we seek to obtain K by initially making u> and A as large as
possible.

Let N, S, E, W denote the lattice points (0, ±1), (±1,0) respectively. As
N,S,E,W £ int(K), and K is convex, K is bounded by lines through these points.
These lines can form a convex quadrilateral Q D K or determine a triangular region
TDK. In any case, A{Q) > A{K) and A{T) > A(K).
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T H E T R I A N G L E C A S E :

Since in any triangle the width w is in a direction perpendicular to the longest side,
A{T) = du/2.

In [8], it is proved that if K contains no point of the rectangular lattice with basis
{(u,0), (0,i;)}, then

(1) (w — u)(d — v) ^ uv.

Let us consider the lattice F formed by the points

F = {(m, n) 6 Z2 / m + n is an odd number} ,

which we can identify with the lattice v^Z 2 with basis {(\/2,0) , (0, V%)}- Then,
int(K) 0 \/2Z2 = 0, and by (1), (u - s/2) (d - y/2) < 2. But this is easily seen to
be equivalent to

(2) </ ^ '"Kir > ^ V 4* i— -

W-A/2

Since the triangle T contains no points of \/2Z2, then the inequality (2) holds for T.

Then

1 \/2 u)(T)2

All ) = -all )u(l) ^ =.

But as int(T) H \/2Z2 = 0, we have [3]

w(T) < V2^ (2 + A/5) < 2\/2

and hence,

And equality holds when and only when the equality holds in (2) and K contains

one lattice point in its interior, that is, when and only when A" is a triangle of diameter

d and width w = \f2d/{d — \/2), containing a unique lattice point in its interior. Hence,

equality holds when and only when K = Tt € T (up to congruence).

T H E QUADRILATERAL CASE:

Let quadrilateral Q = XYZU have just one of the lattice points ./V, 5, E, W on
each side. Let XZ — t be its major diagonal, and let the width of Q in a direction
perpendicular to XZ be 5.

Then, Lemma 1 assures us that \/2 ^ t6/(t + S), which is equivalent to the inequality
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Further, the area of Q is given by

2 s-

Note that S ^ UY (minor diagonal), and applying Lemma 2, UY ^ 2\/2. Hence,

Since w < w(Q) < <S ^ 2\/2 and £2/(£ - %/2) is a decreasing function of J, we have
finally:

v/2 2 W - V 2

This inequality is strict for a non-degenerate quadrilateral. This completes the proof
of Theorem 1. D

4. PROOF OF THEOREM 2

Let f(d) - y/2cP/2(d - y/2). Again, f(d) is a decreasing function of d for d ^ 2\/2.

A set if for which y/2(d — \/2)ldi is as large as possible will be called a maximal
set. The existence of such a maximal set is guaranteed by Blaschke's selection theorem
[1], as the sets of diameter d ^ 2\/2 can be placed in a bounded portion of the plane.

Let us consider again the lattice T defined in the proof of Theorem 1. Then, K

contains no lattice-points of F = \/2Z2 in its interior. It is shown in [4] that A ^ \/2\d

(A ~ 1.144), with equality when and only when K = K* is the intersection set of the
disc x2 + y2 ^ <i2/4 and the square with side \/2\/2 = 2.

Using the notation of the Figure 3, and noting that d = 2 sec 0, we have:

Figure 3

A{K") = 2 sec2 9 ( | - 20 + sin 2 ^ , where 0 ^ 6 < ^ .

Since f(d) is a decreasing function of d for d ^ 2, it will be sufficient to show that
A{K*) < /(2>/5) = 4, because then, A ^ A{K") ^ f{2s/2) < f(d).
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But A(K') ^ 4 is equivalent to

g(6) = ^ - 2 0 + s i n 2 0 - 2 c o s 2 0 < 0.

Since g'(9) > 0 for the given range of 6, we have g{6) ^ 5 ( T / 4 ) = 0.

It follows that A ^ \/2<P/2(d — \/2~), with equality when and only when d — 2\/2,

and this occurs when K = K* is a square of side 2.

It is easy to see that Theorem 2 fails for d > 2\/2. We can take, for example, the

intersection set of the isosceles triangle To (shown in Figure 1), and the disc z2 + y2 ^ r2,

for any r £ (a,VE) ( a w 1.4813).

5. PROOF OF THE COROLLARIES

Corollary 2 is an immediate consequence of Theorem 1 and of inequality [7] in ^

1 + v/2, so we shall prove Corollary 1:

It is known [2] that for any convex set K,

(3) dw^2A

and if 2u> ^ y/3d, then equality holds when K is a triangle with basis d and height ui.

Corollary 1 now follows immediately from (3), since

( w - ^4- < 2y/2A.

The equality occurs here when and only when K = Te £ T, since it is easily seen

that for all Tc € T , the inequality 2w(Ts) < VZd(Ts) holds. D
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