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Abstract

Hie divisor density of an integer sequence is defined: this measures the tendency of divisors of
(almost all) integers to belong to the sequence. A proof of a conjecture of Erdos is given and
this is linked to some previous conjectures of the author's concerning distribution (mod 1) of
functions of the divisors.

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 L 10, 10 K 05.

1. Introduction

Let A be a strictly increasing sequence of positive integers. In this paper I introduce
a new definition of the density of A which is appropriate for some divisor problems.

Let r(n) denote the number of divisors of n and r(n, A) the number of these
divisors belonging to A.

DEFINITION. A possesses divisor density DA if T(«, A) ~ DA • T(«) on a sequence
of integers « having asymptotic density 1.

REMARKS. Suppose that

Then

2 r(n,A)~x 2
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488 R. R. Hall [2]

and if A has logarithmic density 8 A the right-hand side is ~ S^xlogjc, that is,

2 T(n,A)~8A S T(«).

This might suggest that DA = 8A; in fact this is quite misleading, and we shall
show that there is no connection between divisor density and logarithmic density.
More precisely, given ze [0,1], we [0,1], we can construct A so that 8A = z while
DA does not exist, and vice versa, or such that we have 8A = z, DA = w.

It is not immediate, as in the case of asymptotic and logarithmic density, that for
every ze[0,1] there exists a sequence A such that DA = z. But we may deduce
from Hall (1974b), Theorem 1 that the sequence

(0) A = {d: logrf<z(mod 1)}

has the required property. This particular A has 8A = z, but fails to have asymp-
totic density.

Let v(d) denote the number of distinct prime factors of d. For any fixed integers
a and b(b>0) consider the sequence {d: v(d)sa(mod b)}. The asymptotic density is
defined, and is l/b; and we now show that in this case DA = l/b. Notice that

(1) T(«, A) = ]• S e~Mar'b 2 e2<ri"d)r/6.

Let m be the product of those prime factors p of n such that f^Jfn. From (1), for

, .. 1 ( n\vlm) I TI\ vim)

2cos-rl =r(it)icos-r\
and the result follows from the fact that there exists a sequence of integers n of
asymptotic density 1 on which v(m)->co; indeed as a function of n, v(m) has
normal order log log n. This example leads to a simple construction of a sequence
A with both divisor and asymptotic density equal to z. Let z = -s1e2e3... be
expanded in binary form, and let

Then

has the property required.
Next, I would like to justify my earner remark that divisor and logarithmic

density are unconnected. Let B(t) = {d: v(d)<tloglogd}. Then I shall show below
that if \<t< 1, we have DB = 1 , SB = 0. Suppose for a moment that we have
proved this for some t. We can find Ax such that 8AX is either undefined or equal
to z, also A2 such that DA% is either undefined or equal to w: notice that DA% is
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undefined for any arithmetic progression other than Z+ itself. Let C = Z+\B
be the complement of B. Then A = ( ^ n Q u ^ n f i ) has the required property,
that is, 8A and DA are whatever we like. Now SB(t) = 0 for t< 1 follows from the
fact that for each t< 1 there exists rj = r)(t)>0 such that

card {B(t) n [0,x]} = O(x/(logx)"),
and hence

: deB(t))<oo.

Now we show that DB(t) = 1 for t>\. Let n = PllPl%... p?- Then

(2) 2(K</)-M«))2 = r(n)\(i - ^ - - M « ) V + £
<J|n I V l + O /

£

where ca(ri) = 2<*i- The normal order of v(n) is log log n; moreover it is plain that
a>(n)-j</!)<: ̂ (loglogn) for almost all n, since the average order of a)(ri) — v(n) is
an absolute constant. Hence for almost all n, the right-hand side of (2) does not
exceed r(n) loglogn; moreover v(n)<(l+ij) loglogn for any fixed, positive rj.
Hence v(d) <(%+rf)loglogn for all but 0(r(n)/loglogn) divisors of d of n. Let ij
be fixed so that (i+^)/(l —q) = t. When t > \, -q is positive. The result will follow
if we show that for almost all n, and all but o(r(ri)) divisors d of n, we have
loglogrf> (1 — 7]) loglogn. Let v(n, e) denote the number of distinct prime factors p
of n such that log log p>(l — e) loglogn. By the familiar variance method due to
Turan, we can show that for fixed e, 0<e< 1, v(n,e) has normal order eloglogw.
Set s = T). Then for almost all n, v(n,ij)>|i?loglogn, and if d is divisible by any
prime counted by v(n,rj), plainly Ioglog</>(1 — ̂ loglogn. The number of divisors
not so divisible is ^ 2-"<n>') r(n) = O(T(>J)), the desired result.

An interesting special case arises when A consists of relatively long blocks of
consecutive integers. Let {bj} be an increasing, unbounded sequence of positive
reals and A = {d: b2j<d^b2j+1 for some./}. Then the arithmetical properties (such
as number of prime factors) of the numbers de(bzi,bii+1] should average out over
the interval if this is long enough. Professor Erdos conjectured the truth of the
following theorem which is one of the main results of this paper.

THEOREM 1. Let bi+1> cbj for fixed c>\ and every j , and

A = {d: Bj: b2i<d^bii+^.

Let 8A = z. Then DA = z.

I shall derive from this the following corollary.
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COROLLARY. Let f: R+->R be continuously differentiable andf'(x)->0 as x->ao.
Let the sequence {f{n): neZ+} be uniformly distributed (modi). Then for all
ze [0,1], the sequence

A' = {d: fQogd) <z(mod 1)}

has DA' = z.
For example, the sequences

and
A" = {d: (loglog<//<z(mod 1)}

have DA " = z, when 0<a< l , / ?> l respectively. As explained below, it is probably
sufficient that a. > 0, but the condition /J > 1 is sharp.

We refer to these sequences of Erdos consisting of the blocks of integers
(b2j,b2j+1]nZ simply as block sequences. Thus (0) is a block sequence. Another
way of describing a block sequence is to define an increasing, continuously
differentiable function g such that g(b2j) =j, g(b2i+1) =j+z for ally. Then

A = A(z) = {d: g(d)^z(mod 1)}.

This gives a link with my paper, Hall (1976), where I defined g to be uniformly
distributed if for almost all n, we have that

Dg(n,z): = card{rf: d\n,g(d)^z(moA\)}~zr(n)

uniformly for 0<z< 1. Thus if g is uniformly distributedv/e have DA(z) = z for all
ze [0,1]. The converse goes through except for the uniformity in z. An immediate
consequence of the theorem proved in Hall (1976), and these remarks, is the
following theorem.

THEOREM 2. In the above circumstances, suppose that for u>u0, we have
(i) ug'(u) is monotonic;
(ii) log"""? u < | ug'(u) | < log? u, where y < log (4/3).

Then DA(z) = zfor allze[0,1].

For the sequences A" of the first type mentioned above, this requires
j a— 11 <log(4/3) and so extends the range to 0< a< 1 + log(4/3). Theorem 2 gives
nothing if g varies too slowly, nevertheless I conjectured in Hall (1976) that
g(u) = (log log uY is uniformly distributed for /?> 1 and showed that this would be
sharp. The same reasoning applies in the present case.

It is natural to ask for a necessary and sufficient condition on A for DA to exist,
and equal z. I shall prove the following result which gives a necessary condition.
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THEOREM 3.IfDA = z then

(3) C ( Q S
d<x d<x

where the dash denotes that deA. Q(d) is a multiplicative function defined on the
prime powers by the formula

This is certainly not sufficient to imply DA = z, for it would ascribe a divisor
density to the arithmetic progressions, the sequence of squarefree numbers and so
on, which they do not possess. I conjecture that there is no sufficient condition for
DA = z purely in terms of the average order of some arithmetical function (multi-
plicative or otherwise) as in (3). Something like Erdos blocks really are needed in
addition, although I imagine that their length could be significantly reduced.

2. Proofs of the theorems

We begin with Theorem 1. We assume that z^\, the other case follows by
complements. We define

and we have to show that under the conditions of the theorem, S{x) = o(x). It is
sufficient that

and we only consider the case i = 2 as the other is similar and easier. Now

52 = S2(x) = £ ' 2 ' 2 VAm[dvd2]),
d h [ddl

where the dash denotes summation restricted to A. If g is multiplicative, then
g(md)/g(d) is multiplicative as a function of m for each fixed d. We have the
formula (uniform for y^ 1 and deZ+),

l \ \

where
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and q is the multiphcative function generated by

I will give several such formulae in this paper; for a proof of this one see the
Appendix, the proofs of the others are similar. In each case the main terms may
be derived from a theorem of Wirsing (1967); however, to get a uniform error term
we use the contour integration method starting with Perron's formula.

We deduce from the above that

<? = A V V

where A(r) is the number of solutions of [d1,d2] = r. If r =p^p^...p^' then
Kr) = II (1 +2ai)^3cci+-+a: The error term is therefore

'plr \

S (log 2my"i

The inner sum can be estimated as in (1974a); I give more details in the Appendix.
We find that the above is

(5) « 2 -(log2/w)-7/*(log2;c//w)-1/4<!;t(logx)-1/4.

In what follows, we estimate similar error terms the same way. Next we write
di = d, d2 = dm/k where k\d and (m,k)=l. Thus [d1,d2] = dm. We use two
dashes to denote dm/keA, and we have

dszx dk[d nv&xld T-\muj
(m,fc)=l

We have the formula, uniform for y > 1, all d, and all k dividing d,

„ q(md)7\d) A2yq(d,k)

where

q{d)T%md) " - - " - « " l l / i " - ^ ™ " i 1 + '-••»
(m,fc)=l
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and for each fixed k, q(d,k) is a multiplicative function of d(defined whether k\d
or not). If/^ A: then

k) - I y ( " + 1 ViW) ( y

If p|fc the first factor on the right is omitted. By partial summation, we get for

+ O ({(log 2M)-7/*(log 2xldu)-*i*+(log 2t>)-7/4(log 2xldv)~3'*

We can now estimate the inner sum in (6) which we suppose multiplied by
t\d)/q(d). The condition md/keA means that m is restricted to blocks u<m^v
as above, where u = Ui = [kb^/d], v = Vi = [kbii+jd] for some i. Let r and s be
such that 62r_1<t//A:<62r+1, b2a<x/k^b28+2 (we choose r = 0 if d/k^b^ s = 0 if
xlk^bj, and let us set

a = max (&*., <//£), b = min ( i ^ , x/A:).

These variables are of course functions of d and k. Then we have from (6) and
the above that

2 !

2 ™ 2 (£ 0og2«t)-
7/4(log2x/*i)-«,«

n
p\d

To estimate the first error term we use the fact that the sequences {wj, {vJ increase
geometrically. Thus the error term complete is
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Next, we consider the inner sum in the main term. We may change this to the
corresponding integral without serious error, and if we denote the characteristic
function of the intervals (b2i, b2i+1] by X(t), and make the change of variable
m = kt/d, we obtain

J „ (log 2kt/df'\log 2x/ktf'*'

where a and b are defined as above and depend on d and k. Let us set

where i\ = rj(x)e(0, J), and consider the error involved in changing the range of
integration to (a, /?), taking into account that 0 ̂  X(t) < 1. We write

(7) 2kt/d = (4x/<Q» t^dt = (log 4x/d)du>

and the error in the integral is

where / £ [0, •>?] u [1 - •»?, 1]. This is <^^1/4(log4x/^)~*. Next, let us integrate over
(a, j3) by parts, writing

Xt(t) = fV 1 X(s)ds = xlogf+£(r).
Jo

The error involved in replacing Xt(t) by zlogt, or equivalently X(t) by z in the
original integral, is

\-3/4
dt.

Since
d (4x\v R 2x (4x\v _ d (4xV-v
2k\~d)' P^T\d) ~2k\d) '

and the function (log2/tr/^)~3/4(log2x/A:0~3/4 is convex and positive, this does not
exceed

4M(2x/k)

where M(x) = max {| E(y) |: y^x}. Hence we have

]a(log2kt/dr«(log2x/kt)3/i ~ Z )a(\og2ktldf'\\og2xlktfli

+ O(v
1/l(log 4x/d)~* + M (2x) ̂ -^(log 4x/d)~3/2),

and we may change the range of integration back to (a, b) with the same error term.
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Having done this, we make the t = t(ui) substitution (7) and find that the integral
on the right is

-• fC da> .
I a>3/4(l-o>)3'4 (Say)>

where

4*\-1i lka^U 4*\~1/i i i + Mg-j) log-^log^J (log2+log+^J,

i y / , 4*\-*i 2x L 4 ^ \ "
l-C-(log7) log^<(log7)

where as usual log+j' = max(0,log3'). Suppose for example that bzg+\<xlk. By
hypothesis

0 . fX'k r 1 X{t) dt = z log (^-) + 0(M(x/k).

It is at this point that we use the fact that z^\. We deduce that

and so

( 4x\-l I I 4JC\-3'*\

log^j +O\M^(x)\log^J J.
The right-hand side does not depend on k, accordingly we define the function
p(d) by the relation

kid

and, using M{x) = o(logx), we have

We proceed by partial summation. We have

where
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and by similar reasoning to the above we finally arrive at

The factor multiplying z2x is

and this collapses to 1. Moreover as M(x) = o(log;c) we can choose r)(x)-*-0 so
slowly that the error term is o(x). We get S2~z2* as required.

Next, we prove the corollary. Let us assume 0 < x < l , as the other cases are
similar, and choose |<min(z, 1 —z). Let

A+ = {d:f([logd))^z+ £(mod 1)},

A- = {d:fflogd])^z- ftmod 1)}.

These sequences have the required blocks since [logd] is constant for en<d<en+1.
Next

tt: en<d<en+1\ = l + O(e~n)

and since/(«) is uniformly distributed (modi) we deduce that A+,A~ have log-
arithmic density z+g, z—g respectively. By Theorem 1,

T(n,A-)~(z-£)r(n),

on a sequence of asymptotic density 1. Next, there exists a do = d^$,f) such that
for d>d0, we have \f(logd)-J{\logd])\<g, since/'->-0. Hence for all TZ,

0 (M,

Now consider the integers n< x. We can let £ = £(x)-*0 so slowly that

For all but o(x) integers «<x we have T(n)>(logx)3/5 (by the normal order pro-
perty of T) and so we have

\r(n,A)-zr(n)\< |T(H) + (T(«))6/« = o(r(n))

for all but o(x) integers «< x Hence DA = z.
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It remains to prove Theorem 3. If DA = z, then

r{n,A) 1 r(d) Q(d)

by similar arguments to those used in the proof of Theorem 1. The value of At is
unimportant. As before, the dash denotes deA. Let

dux

Then we have proved that

dK(y,A)
- z/Ai as ;c->-oo,

or if we put x = e*, y = eu,

(8) J o ( l o g 2 + / - , ) ^ ^ a S ^°° -
Define the Laplace transforms

K(s,A)= fV™ <*£(««, 4) (Res>0)
Jo

(9)

We take the transform of (8), and apply the convolution formula for Laplace
transforms. This gives

K(s, A)h(s)~(z/AJs-1 as J ->0+ .

But h(s)~T(i)s-i as s-+0+, so that K(s,A)~(zjAiT(i))s-i as J - > 0 + . We now
apply the Hardy-Littlewood-Karamata theorem, which states that if n(u) is non-
decreasing and

e~mdn(u)~ T(8 +1)s~' as s^0+
Jo

for some fixed positive S then

fr

dix(u)~Ti as r^-oo.
Jo

(This is Theorem 98 of Hardy (1948) when 8 = 1: the more general case is a
straightforward modification.) From (9) and the above, we deduce that

K(e«, A) ~(21 A,,IT) K* as u-*co,
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that is

In the special case A = Z+, this gives

and putting these together, we have the result stated. The argument is not reversible.

3. Appendix

In this section we give outline proofs of (4) and (5), which also serve as models
for the proofs of similar results used elsewhere in the paper.

Let us begin with (4). By Lemma 3.12 of Titchmarsh (1951) we have

where c = 1 + 1/log.y and

m- s Ad) -IT
V

on the right a. depends on p, it is the highest power of p which divides d. We can
write

F(s) = F0(s)Gd(,s)
where

FO(S) = n ft+4p+§^+•••)={£(5)}1/4sC*) (say)
and

These functions are initially defined for Re s> 1, but may be analytically con-
tinued : indeed g(s) is regular for Re s > J, and Gd(s) is regular for Re s > 0. We have

uniformly for Re^^f. Next, it is known that £($) does not vanish in the region

Re s> <ro(O = 1 - Q/max (1, log| f |)
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(for some fixed C0>0, we assume Co> J). We move the line of integration to
Re s = ao(t) except for a loop around the algebraic singularity of F0(s) at s = 1.
The integral along Re s = ao(t) and along {j: ao(t) < Re J < c, t = + T) is

/ i \

and r = exp Q^ogy) gives a much better estimate than the error term stated in (4);
so all this is negligible.

In the disc | s-11 < \, F(s) (s-1)1/4 is regular and

\imF(s)(s-1)1/4 = «(1) Gd(l) = T(\)Axq{d).
i

Thus Cauchy's integral formula gives

F(s

uniformly for \s— 11 < J. We use this approximation on the loop: putting r = 1 — s,
the error involved is

for y>2 (for smaller y, our result is trivial). We now extend the loop to s = — oo
with a further small error and use Hankel's integral formula for 1/F(z).

Next, we prove (5). Put j3 = (Iog3)/(log2). Then (1 +xY> 1 +2x for x> 1, and
so A(r)^{r(r)}^. Since j8<2, it readily follows that the multiplicative function

is bounded. My result (Hall (1974a)) gives an estimate for sums of multiplicative
functions such that 0<A(r)< 1. This is easily modified to deal with bounded h(r);
in fact in a forthcoming paper, Halberstam and Richert give a much wider generali-
zation. We find that

in the present application.
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