
Bull. Aust. Math. Soc. 84 (2011), 280–287
doi:10.1017/S0004972711002176

ON REGULAR MODULES

HUANYIN CHEN and W. K. NICHOLSON ˛

(Received 25 November 2010)

Abstract

Several characterizations are given of (Zelmanowitz) regular modules among the torsionless modules, the
locally projective modules, the nonsingular modules, and modules where certain submodules are pure.
Along the way, a version of the unimodular row lemma for torsionless modules is given, and it is shown
that a regular ring is left self-injective if and only if every nonsingular left module is regular.
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1. Introduction

Given any module R M , the dual of M is denoted M∗ = hom(R M, R). Note that M∗

becomes a right R-module as follows: if λ ∈ M∗ and a ∈ R, define λa : M→ R by
x(λa)= (xλ)a for all x ∈ M . In 1972, Zelmanowitz [5] called an element x ∈ M
regular if x = (xλ)x for some λ ∈ M∗, and he called M a regular module if every
element is regular. The following lemma is implicit in [5], and will be used several
times below. We include a proof for completeness.

LEMMA 1.1. Let R M be a module and let x ∈ M. Then:

(1) x is regular if and only if Rx is a projective direct summand of M;
(2) if x is regular, say (xλ)x = x, λ ∈ M∗, and if e = xλ, then e2

= e ∈ R and
Rx ∼= Re where x 7→ e under the isomorphism. Moreover:

M = Rx ⊕W where W = {w ∈ M | (wλ)x = 0}.

PROOF. (1) Define π : R→ Rx by rπ = r x for all r ∈ R. If Rx is projective then
π splits, that is, ϕ : Rx→ R exists with ϕπ = 1Rx . If, furthermore, M = Rx ⊕ N ,
define λ : M→ R by (r x + n)λ= (r x)ϕ. Then x = (xϕ)π = (xϕ)x = (xλ)x , so x is
regular. The converse of (1) follows from (2).
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(2) Given (xλ)x = x , λ ∈ M∗, write e = xλ. Then e2
= e(xλ)= (ex)λ= xλ= e.

Moreover, (Rx)λ= Re so λ : Rx→ Re is epic, and this map is monic because
(r x)λ= 0 means that r x = r [(xλ)x] = 0. Hence Rx ∼= Re is projective and xλ= e.
Finally, since y − (yλ)x ∈W for every y ∈ M , we have M = Rx +W ; this is direct
because r x ∈W means 0= (r x)λx = r x . 2

In this note we give several new characterizations of regular modules in terms
of torsionless, locally projective, and nonsingular modules, and we investigate the
relationship between regularity and pure submodules. Throughout, modules will
be left modules and homomorphisms will be written on the right, unless otherwise
specified. If N and M are modules, the notation N ⊆⊕ M means that N is a direct
summand of M , and N ⊆ess M means that N is an essential submodule of M . The
term ‘regular ring’ means a von Neumann regular ring.

2. Torsionless modules

A module R M is called torsionless if it satisfies the following equivalent conditions:

(1)
⋂
{ker(λ) | λ ∈ M∗} = 0;

(2) R M is isomorphic to a submodule of the direct product R I ;
(3) for some set I , mM∗ = 0, m ∈ M , implies that m = 0.

Examples include projective modules and regular modules (if x 6= 0 and x = (xλ)x ,
λ ∈ M∗, then xλ 6= 0). Torsionless modules are studied in [4], and can be used to
characterize classes of rings (for example, [3, Corollary 5.44]).

Torsionless right modules are defined in the same manner, and the dual M∗R of
any module R M is always torsionless. To see this, suppose that M∗∗λ= 0 where
λ ∈ M∗; we must show that λ= 0. But if m ∈ M , and if we define m̂ : M∗R→ RR by
m̂(µ)= mµ for all µ ∈ M∗, then m̂ ∈ M∗∗ so mλ= m̂(λ) ∈ M∗∗λ= 0, as required.

Lemma 1.1 shows that x ∈ M is regular if and only if Rx ⊆⊕ M and Rx ∼= Re for
some e2

= e ∈ R; if M is torsionless, we have the following ‘dual’ result.

THEOREM 2.1. The following conditions are equivalent for a module R M:

(1) M is regular;
(2) M is torsionless and, for any x ∈ M, x M∗ = eR for some e2

= e ∈ R.

PROOF. (1)⇒ (2). Let x ∈ M and write x = (xλ)x for some λ ∈ M∗. If x 6= 0 then
xλ 6= 0, proving that M is torsionless. Now write e = xλ. Then e2

= e ∈ x M∗, so
eR ⊆ x M∗. Conversely, if γ ∈ M∗ then

xγ = [(xλ)x]γ = (xλ)(xγ )= e(xγ ) ∈ eR,

and we obtain x M∗ ⊆ eR, proving (2).
(2)⇒ (1). If x ∈ M , let x M∗ = eR, e2

= e ∈ R. If e = xλ, λ ∈ M∗, it suffices to
show that ex = x . But if µ ∈ M∗ then (x − ex)µ= xµ− e(xµ)= 0 because xµ ∈
x M∗ = eR. Hence x − ex ∈

⋂
{ker(µ) | µ ∈ M∗} = 0 because M is torsionless. 2
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Since projective modules are torsionless, the next result is clear by Theorem 2.1 and
the fact that every principal, projective left module is isomorphic to Re, e2

= e ∈ R.

COROLLARY 2.2. The following are equivalent for a projective module R P:
(1) P is regular;
(2) for each x ∈ P, Rx is projective and x P∗ = eR for some e2

= e ∈ R;
(3) for each x ∈ P, Rx is a direct summand of P.

If P is a projective module, conditions (2) and (3) are sometimes referred to as the
unimodular row lemma. The proof of Theorem 2.1 shows it holds when P is only
required to be torsionless, and so gives the following corollary.

COROLLARY 2.3 (General unimodular row lemma). If R M is torsionless, the
following conditions are equivalent for x ∈ M:

(1) x is regular;
(2) x M∗ = eR for some e2

= e ∈ R;
(3) Rx ⊆⊕ M and Rx ∼= Re where e2

= e ∈ R and x↔ e under the isomorphism.

3. Locally projective modules

A module M is called locally projective if it satisfies the following equivalent
conditions.

(1) Given the diagram where α is epic and F is finitely generated,

there exists γ : M→ A such that γα|F = β|F .

(2) x ∈ x(M∗M) for each x ∈ M , that is, x = (xλ1)y1 + · · · + (xλn)yn ,

M

β

��

γ

��~~
~~

~~
~~

⊇ F

A
α // B // 0

for some λ1, . . . , λn ∈ M∗ and y1, . . . , yn ∈ M .

Here (1) is the original 1976 definition due to Zimmermann-Huisgen [6]; the
characterization in (2) was proved in 1990 by Azumaya [1, Proposition 6]. Clearly
every projective module is locally projective, and every finitely generated, locally
projective module is projective. Condition (2) shows that every locally projective
module is torsionless. Hence we have:

{regular modules}⊆ {locally projective modules}⊆ {torsionless modules}.

These inclusions are strict: for the first, consider R R where R is not regular. For
the second let R denote the field of real numbers, and consider the following subring
of RR:

R = {x̄ = 〈xc〉 ∈ RR
| xc = xc′ for all c, c′ ∈ R r Cx̄ , where Cx̄ ⊆ R is countable}.
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Then R is a regular ring and it follows from [6, Example 4.5] that RR is not locally
projective. Clearly RR is torsionless.

If R M is locally projective and x ∈ M , the right ideal x M∗ has a different descrip-
tion which motivated our discussion in the torsionless case. Write x = (xλ1)y1 +

· · · + (xλn)yn where λi ∈ M∗ and yi ∈ M for each i . We have
∑n

i=1(xλi )R ⊆ x M∗

because x M∗ is a right ideal; and this is in fact equality because, for each β ∈ M∗,

xβ =
n∑

i=1

(xλi )(yiβ) ∈

n∑
i=1

(xλi )R.

Hence1 x M∗ =
∑n

i=1(xλi )R.
Since locally projective modules are all torsionless, Theorem 2.1 becomes the

following.

THEOREM 3.1. The following are equivalent for a module R M:

(1) M is regular;
(2) M is locally projective and, for any x ∈ M, x M∗ = eR for some idempotent

e ∈ R.

Here is a direct proof of (2)⇒ (1) in the locally projective case. Given x ∈ M , let
x M∗ = eR, e2

= e ∈ R. As M is locally projective, write x =
∑n

i=1(xλi )yi , λi ∈ M∗,
yi ∈ M . Then xλi ∈ eR for each i , and it follows that ex = x . But e ∈ x M∗, say
e = xβ where β ∈ M∗. Hence (xβ)x = ex = x , proving (1).

As is well-known, every finitely generated right ideal of a regular ring is a principal
ideal generated by an idempotent. The following proposition gives an analogue for
modules.

PROPOSITION 3.2. The following are equivalent for a module R M:

(1) M is regular;
(2) M is torsionless and, for any x1, . . . , xn ∈ M,

∑n
i=1 xi M∗ = eR for some

e2
= e ∈ R;

(3) M is locally projective and, for any x1, . . . , xn ∈ M,
∑n

i=1 xi M∗ = eR for some
e2
= e ∈ R.

PROOF. (2)⇒ (3) is clear, and (3)⇒ (1) by Theorem 3.1.
(1)⇒ (2). We have seen that regular modules are torsionless. Given x1, . . . , xn ∈

M , we must show that
∑n

i=1 xi M∗ = eR for some e2
= e ∈ R. Proceed by induction

on n. If n = 1 it follows by Theorem 2.1. If n > 1 let xn M∗ = f R, f 2
= f ∈ R.

By induction let
∑n−1

i=1 (1− f )xi M∗ = gR, g2
= g ∈ R. Hence f g = 0 there-

fore e = f + g − g f is an idempotent, f e = f = e f , and ge = g = eg. Since
f xi M∗ ⊆ f R = xn M∗ for each i , we compute:

eR = f R + gR = xn M∗ + (1− f )
n−1∑
i=1

xi M∗ = xn M∗ +
n−1∑
i=1

xi M∗.

This completes the induction and so proves (2). 2

1 The notation (xλ1)R + · · · + (xλn)R = oM (x) is also used in the literature.
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4. Nonsingular modules

Recall that a ring R is left self-injective provided that R R is an injective R-module.

LEMMA 4.1. If R is a left self-injective ring, the following are equivalent for a
module R M:

(1) M is regular;
(2) every principal submodule of M is regular;
(3) for any x ∈ M, Rx is projective and x(Rx)∗ = eR for some e2

= e ∈ R.

PROOF. (1)⇒ (2). This is because submodules of any regular module are regular.
(2) ⇒ (3). If x ∈ M then Rx is regular by (2), so it is projective by Lemma 1.1.

Now x(Rx)∗ = eR where e2
= e ∈ R by Theorem 2.1.

(3) ⇒ (1). Let x ∈ M . Since Rx is (locally) projective, there exist λ1, . . . , λn ∈

(Rx)∗ and y1, . . . , yn ∈ Rx such that x =
∑n

i=1(xλi )yi . Moreover, x(Rx)∗ = eR
by (3) so xλi ∈ eR for each i . It follows that ex = x . But e ∈ x(Rx)∗, say e = xβ
where β : Rx→ R. Since R R is injective, β extends to λ : M→ R. Then λ ∈ M∗ and
(xλ)x = (xβ)x = ex = x , proving (1). 2

If R M is a module the singular submodule Z(M) is defined by

Z(M)= {x ∈ M | l(x)⊆ess
R R},

where l(x)= {r ∈ R | r x = 0}. We say that M is nonsingular if Z(M)= 0. Let
x ∈R M be regular, say x = (xλ)x where λ ∈ M∗. If x ∈ Z(M) then xλ ∈ Z(R R)
because l(x)⊆ l(xλ). Since xλ is an idempotent, this implies that xλ= 0, whence
x = (xλ)x = 0. Hence regular modules are nonsingular, and the next theorem gives
the converse for regular, left self-injective rings.

THEOREM 4.2. Let R be a regular, left self-injective ring. The following conditions
are equivalent for a module R M:

(1) M is regular;
(2) M is nonsingular.

PROOF. (1)⇒ (2). This always holds (see the discussion preceding this theorem).
(2)⇒ (1). Assume that R M is nonsingular, and let 0 6= x ∈ M . Then x /∈ Z(M) so

l(x) is not essential in R R. Hence the set S = {L 6= 0 | L is a left ideal, L ∩ l(x)= 0}
is nonempty. By Zorn’s lemma we may assume that L is maximal in S . 2

Claim. Lx ⊆ess Rx .

PROOF. Observe first that L + l(x)⊆ess
R R. For if [L + l(x)] ∩ K = 0, K ⊆ R

a left ideal, it suffices to show that (L + K ) ∩ l(x)= 0 (then L + K = L by the
maximality of L , so K = K ∩ L = 0). Suppose that t ∈ (L + K ) ∩ l(x), say t = l + k
where l ∈ L , k ∈ K . Then l − t =−k = 0 by hypothesis, so t = l ∈ L ∩ l(x)= 0.

Now let 0 6= ax ∈ Rx . We must find c ∈ R such that 0 6= cax ∈ Lx . We may
assume that ax /∈ Lx (otherwise take c = 1). Let I = {r ∈ R | ra ∈ L + l(x)}, a left
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ideal of R. Then I a ⊆ L + l(x), and we claim that I ⊆ess
R R. For if I ∩ J = 0 where

J ⊆ R is a left ideal, it suffices to show that [L + l(x)] ∩ Ja = 0 (then Ja = 0 by
the preceding paragraph, so J ⊆ I and hence J = J ∩ I = 0). But if ja ∈ L + l(x),
j ∈ J , then j ∈ J ∩ I = 0, so ja = 0.

Thus I ⊆ess
R R. Since M is nonsingular and ax 6= 0, this means that I 6⊆ l(ax),

that is, I a 6⊆ l(x), say cax 6= 0, c ∈ I . Since ca ∈ L + l(x) it follows that cax ∈ Lx ,
proving the claim.

Now, since L ∩ l(x)= 0 the map ϕ : Lx→ R is well defined by (ax)ϕ = a
for all a ∈ L . Since R is left self-injective, ϕ extends to σ : Rx→ R. But then
Lx ∩ ker(σ )= 0, so σ is monic by the claim.

0 // Lx
� � //

ϕ

��

Rx

σ
||zz

zz
zz

zz

R

Since R is regular, Rx ∼= R(xσ) is projective, and so Rx has a dual basis {λi ; xi |

i = 1, 2, . . . , n}. Then x(Rx)∗ =
∑

i (xλi )R is a finitely generated right ideal of the
regular ring R, and so x(Rx)∗ = eR for some e2

= e ∈ R. It follows that x is regular
by Lemma 4.1, proving (1). 2

COROLLARY 4.3. The following are equivalent for a regular ring R:

(1) R is left self-injective;
(2) every nonsingular left R-module is regular;
(3) every finitely generated nonsingular left R-module is regular.

PROOF. (1)⇒ (2) is clear by Theorem 4.2, and (2)⇒ (3) is obvious.
(3)⇒ (1). Let R M be a finitely generated, nonsingular left R-module. Then M is

regular by (3), and so is projective by [5, Corollary 1.7]. Hence (1) follows from [2,
Theorem 9.2]. 2

5. Purity

Recall that a submodule N of a module R M is called strongly pure in M
provided that for any x ∈ N , there exists an R-morphism α : M→ N such that xα = x
(see [1, 6]). Clearly every direct summand of M is strongly pure in M .

LEMMA 5.1. The following are equivalent for a module R M:

(1) M is regular;
(2) every submodule of M is strongly pure in M and, for any x ∈ M, Rx ∼= Re,

e2
= e, where x↔ e under the isomorphism.

PROOF. (1)⇒ (2). Let x ∈ N ⊆ M . By (1) and Lemma 1.1, let Rx ⊕W = M , and
define α : M→ N by (r x + w)α = r x where r ∈ R and w ∈W . Then xα = x so N is
strongly pure in M . The rest of (2) follows by Corollary 2.3.
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(2)⇒(1). Let x ∈ M satisfy Rx ∼= Re, e2
= e, where x↔ e under the isomorphism.

By Lemma 1.1 it suffices to show that Rx ⊆⊕ M . By (2), Rx is a strongly pure
submodule of M , so there exists an R-morphism ϕ : M→ Rx such that xϕ = x . If
ι : Rx→ M is the inclusion, then ιϕ = 1Rx so M = Rx ⊕ ker(ϕ), as required. 2

PROPOSITION 5.2. If R M is a module, the following are equivalent:

(1) M is regular;
(2) every submodule of M is strongly pure in M and, if N ⊆ M is finitely generated,

then N ∼=
⊕n

i=1 Rei where e2
i = ei and Rei is regular for each i.

PROOF. (1)⇒ (2). Every submodule of M is strongly pure in M by Lemma 5.1. Given
x1, . . . , xn in M , it suffices to show that

∑n
i=1 Rxi ∼=

⊕n
i=1 Rei where e2

i = ei ∈ R
and Rei is regular for each i . By Lemma 1.1, Rx1 ∼= Re1 where e2

1 = e1 ∈ R, and Rx1
is regular being a submodule of a regular module. This proves (2) in the case where
n = 1. If n > 1 write N =

∑n
i=1 Rxi and K =

∑n
i=2 Rxi , so that N = Rx1 + K . Now

N ⊆⊕ M by [5, Corollary 1.3], so N is regular by [5, Theorem 1.6]. By Lemma 1.1,
it follows that Rx1 ⊆

⊕ N , say N = Rx1 ⊕W . But then

W ∼= N/Rx1 = (Rx1 + K )/Rx1 ∼= K/(K ∩ Rx1)=

n∑
i=2

R(xi + (K ∩ Rx1)).

As W is regular, it follows by induction that W ∼=
⊕n

i=2 Rei where e2
i = ei ∈ R and

Rei is regular for each i = 2, . . . , n, so we are done using the case n = 1.
(2) ⇒ (1). If x ∈ M then Rx is regular by (2) and [5, Theorem 2.8]. By

Corollary 2.3 there exists e2
= e ∈ R such that Rx ∼= Re and x↔ e under the

isomorphism. Since every submodule of M is strongly pure in M , (1) follows from
Lemma 5.1. 2

A submodule N of a module R M is said to be pure in M if the inclusion N ↪→ M
induces a canonical monomorphism P ⊗R N → P ⊗R M for any right module PR .
A well-known theorem of Cohn asserts that N is pure in M if and only if, whenever a
finite system of equations

∑n
j=1 ri j x j = ni , ni ∈ N , ri j ∈ R, has a solution {xi } in M ,

then it has a solution in N . As the names suggest, strongly pure submodules are pure.
Indeed, suppose that the system

∑n
j=1 ri j x j = ni ∈ N has a solution {x j } in M . If for

each i , αi : M→ N satisfies niαi = ni , then {x jα} is a solution in N .

PROPOSITION 5.3. A module R M is regular if and only if it satisfies the following
conditions:

(a) M is locally projective;
(b) every principal submodule of M is regular and pure in M.

PROOF. If M is regular, (a) holds by Theorem 3.1, and (b) holds by Lemma 4.1.
Conversely, given (a) and (b), let x ∈ M . By (a) let x =

∑n
j=1(xλ j )y j , λ j ∈ M∗,

y j ∈ M . As Rx is a pure submodule of M , we can find q1, . . . , qn ∈ Rx such
that x =

∑n
j=1(xλ j )q j . Hence the morphism α : M→ Rx given by α =

∑n
i=1 λi qi
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satisfies xα = x , proving that Rx is strongly pure in M. As in the proof of (2) ⇒
(1) in Lemma 5.1, this implies that Rx ⊆⊕ M . As Rx is regular by (b), it follows
by Lemma 5.1 that Rx ∼= Re where e2

= e and x↔ e. Hence M is regular by
Corollary 2.3. 2
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