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ABSTRACT. Long term numerical integrations of planetary orbits 
designed to study the stability of the Solar System over timescales 
comparable to i t s age have become very promising thanks to the 
availability of very powerful computers and to a substantial 
improvement in our methods of investigating the stability of hierarchical 
dynamical systems. The stability of such numerical integrations relies 
on the ability to control all possible sources of error. Among the 
errors caused by the inadequacy of the physical model are those due to 
the fact that Newton's theory of gravitation i s used instead of general 
relativity. We show that the secular advance of perihelia predicted by 
general relativity can be simulated exactly by a 1 / r 2 perturbing 
potential with almost negligible additional cost in computer time. 

1. LONG TERM NUMERICAL INTEGRATIONS. 
The problem of the stability of the Solar System can be formulated 

in the following way: is the present arrangement of planetary orbits -
nearly circular, nearly coplanar, non overlapping (apart from Pluto) -
going to be preserved over timescales comparable to the age of the 
Solar System, (~ 4.5 x 10 9 yr)? Until the last decade or so the problem 
was tackled only with analytical methods (for a review see Message, 
1984). Laplace and Lagrange (see Lagrange, 1781) first developed a 
secular perturbation theory to compute the long-period oscillations in 
the orbital elements of the planets. To first order in the masses u of 
the perturbing planets (in units of the mass of the Sun) and after 
averaging over the fast variables, they found that the semi-major axes 
of the planetary orbits are subject to no secular variations. This is 
often regarded as a proof of the stability of the Solar System, but it is 
worth stress ing that - being a first order theory in the u'a - it is 
valid only for timescales of the order of 1/JLI, e.g. of thousands of 
years. Second order theories in the Ufa have been developed (see e.g. 
Bretagnon, 1974) as well as a secular perturbation theory based on new 
smallness parameters exploiting the hierarchical structure of the system 
(Milani and Nobili, 1983); however, the problem of the stability of the 
Solar System for timescales of the order of 10 9 yr is still open. 
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Nowadays very fast computers are available to produce numerically 
computed ephemerides; they can be analysed on the basis of new 
methods of stability analysis (Milani and Nobili, 1985) and if adequate 
filtering techniques are used it is possible to extract the long-term 
dynamical behaviour. The 5 outer planets have recently been 
integrated numerically for 5 x 10 6 year (Kinoshita and Nakai, 1985) in 
the pure Newtonian point mass approximation. An analysis of the 
output of this numerical integration by Milani and Nobili (1984, 1985) led 
to the discovery that the perihelion of Jupiter and the aphelion of 
Uranus are locked to one another within about ± 70° with an oscillation 
period of * 1.1 x 1 0 s year, this locking turns out to play a crucial role 
in ensuring the stability of the outer Solar System. Moreover, a very 
refined filtering shows that an exchange in energy occurs over the 
same period, between Uranus and Neptune (Fig 1.) (Carpino, Milani and 
Nobili, 1985). For the first time, and thanks to numerical integrations, 
we have information about the behaviour of planetary semi-major axes 
over such a long span of time. 

Fig 1. The energy of 
Uranus (top) and the 
energy of Neptune 
(bottom) as functions 
of time. They are 
obtained from the 
output of a 5 x 1 0 6 

yr numerical integra­
t ion (Kinoshita and 
Nakai, 1984) and after 
f i l t e r i n g out the 
short period terms 
(Carpino e t a l . , 1985) 
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However, 5 x 1 0 6 yr is still ~ 1 thousandth of the age of the Solar 
System, not to speak of the fact that the inner planets have not been 
included (the number of integration s teps would increase because of the 
shorter orbital period). The research project LONGSTOP-an acronym for 
LONG term numerical STability analysis of the Outer Planets - is a 
joint project between British and Italian scientists . One of the goals of 
LONGSTOP is to investigate numerically the stability of the outer Solar 
System for 10 8 yr . The computer being used at present is the CRAY IS 
of the University of London; support has recently been offered by IBM 
to use the LCAP supercomputer at Kingston U.S. in the near future. 
However, even though the amount of required CPU time is considerable, 
even on a fast computer, it i s not by any means the main limitation. 
The limit is actually set by the requirement that the ephemerides after 
1 0 e yr are causally related to the initial status of the system, and not 
simply a result of the integration error. This can be achieved only by 
exploiting the present computer technology, as well as our capability to 
control the growth of the integration error to its limits. 

The total integration error results from the interaction - most 
probably in a non linear way - of different error sources: i) truncation: 
the differential equations of motion are replaced by a finite difference 
scheme and therefore there is a remainder at each step; ii) rounding 
off: the computer works with a finite mantissa and arithmetic operations 
are not the ones abstractly defined between real numbers; iii) 
instability: nearby orbits can diverge exponentially if they belong to a 
chaotic region of the phase-space; iv) physical model: a pure Newtonian 
point mass 6-body problem is only an approximation to the real system. 
A full analysis of the integration error will be published elsewhere 
together with the main results of the analysis of the output. In this 
paper we discuss only the effects due to general relativity and the way 
in which they can be simulated in the actual numerical integration. 

2. THE EFFECTS OF GENERAL RELATIVITY 

According to general relativity the equation of planetary orbit in a 
2-body point-mass approximation can be written as follows: 

d** + U = h* + ~ c * u 2 ( 1 ) 

where u is the inverse of the distance r between the reduced mass and 
the central body of mass M equal to the total mass of the system; 0 is 
the true anomaly; h = (GMa (1 - e 2 ) )** the angular momentum per unit 
mass (a = semi-major axis; e ~ eccentricity); G the gravitational constant 
and c the velocity of the light. The general relativistic correction 

3GM 
appears through the term ^j- u 2 without which eq;. (1) g ives the c l a s s i c a l 
orbit differential equation of the 2-body point-mass Newtonian problem. 
Since the general relativistic correction is very small (of the order of 
3GM 

, e .g . - 6 x 10~ 9 in the case of Jupiter) the so lut ion of eq . (1) i s 
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usual ly written as 

u = u 0 + u t (2) 

where 

u Q = jj»r (1 + e cos <t>) (3) 

is the equation of the classical ellipse and ux can be regarded as a 
small correction to it when substituting (2) into (1)* 

The so lut ion turns out to be: 

GM , , . x , 3GM fGMI2 f fi , e 2 1 x ^ . A e 2

 0 / [ , A . u = jpgr (1 + ecos<t>) + ^j- Ijj^j J I 2" J e < * s i n * " g"~ cos2<Dj (4) 

3GM f GM 1 2 

where the term mult ipl ied by — [ jj? J represents the correction to 
the classical ellipse. This correction consists of 3 parts. There is a 
constant part, causing a variation in the average size of the classical 
orbit of the order of 

(5) 

e.g. ~ 6 x 10~ 9 for Jupiter and smaller for the outer planets; it is 
anyway smaller than the present accuracy in a and therefore can be 
neglected. The term containing cos24> represents an oscillation of the 
orbit predicted by general relativity around the classical ellipse, with 
half the orbital period of the planet and of the order of 

f Aa ] m GM e£ 
l a Jn c^a 2 (6) 

e.g., * 4 x 1 0 ~ 1 2 for Jupiter with an eccentricity of 0.05. This can be 
neglected. The last term of the general relativity correction in eq.(4) 
contains e<t>sin<t> and therefore g ives rise to a secular effect. Retaining 
this term only eq.(4) can be written as 

u = p { 1 + e cos (1 - S ) <D } (7) 

3GM GM 
with S = — • , a very small dimensionless parameter; u i s periodic 
with period 277/(1 - S) and therefore we get the well known result for 
the perihelion advance per revolution: 

S u G R = 2*S = 6n « ^ - s ) (8) 
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As far as the outer planets are concerned the major effect i s on 
Jupiter. Since we cover the 10 8 yr span by integrating 50 x 10 6 yr 
forward and 50 x 10 6 yr backward in time* the error in the perihelion of 
Jupiter were this correction neglected is 

A Q R w s 8 0 . 6 ( 9 ) 

3. SIMULATION WITH A DIPOLE-LIKE POTENTIAL 

As suggested by B.Bertotti the perihelion advance (8) can be 
simulated with a dipole-like perturbing potential 

R = k ̂  (10) 

where the constant k is to be determined by requiring that the secular 
advance S g to caused by the simulating potential R is equal to (8). 
According to Lagrange's equations: 

s n n na e de 

where n is the mean motion and R the secular part of the perturbing 
potential obtained by averaging out the mean anomaly 9: 

--hi 
27T 

R dP (12) 
o 

From eqn. (11), using (12) with d9 = dE (1-ecosE) (E i s the eccentric 
anomaly) and expanding in powers of e we get: 

Sgu> ^ £ (1 + e 2 + e 4 + e 6 + ) ; (13) 

s ince - j ^ ? = 1 + e 2 + e 4 + e 6 + , and choosing k = 3GM/c2, t h i s 
i s the same as ( 8 ) . 

Why does the perturbing potential (10) produce, to any degree in 
e, the same secular advance of perihelion as predicted by general 
relativity? What do we know about constant or short period effects 
which it might produce as well? The differential equation of the orbit 
for a Newtonian 2-body Point-mass problem with a small dipole-like 
perturbing potential given by (10) with k = 3GM/c 2 is: 

d 2 u A GM , 6GM GM 
35* = h* h* U ' ( 1 4 ) 
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and it is important to notice that the term coming from the perturbing 
potential is proportional to u and not to u 2 (as in eq . ( l ) )• Solving 
eqn.(14) as we did for eqn.( l ) we get the solution: 

GM •, N 3GM f GM I 2 f0 ^ ^ . . 1 u s = (1 + ecos<!>) + £ 2 I h ^ J [2 + e s m <t> j (15) 

where subscript s refers to the fact that this is the solution when 
using the simulating potential* By comparing eq.(15) with eq-(4) we can 
see that the secular effect is exactly the same in both cases. 
However, the constant variation in a is twice as large as predicted by 
general relativity (see (5) ), but even so it is within the error in the 
value of a. Also, the dipole potential does not give rise to any short 
period effect, but as estimated in (6) it is even smaller and doesn't 
really matter. 

Finally the force due to the simulating potential discussed so far can 
be easily added to the force term of the Newtonian problem in the 
computer code and the additional cost in computing time is almost 
negligible. 

We wish to thank B.Bertotti and A.Milani for useful discussions. One of 
us (A.M.Nobili) carried out this work with the support of NATO research 
grant no.737/84. 
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DISCUSSION 

Question : do you intend to introduce circular or elliptic rings to si­
mulate the effect of the inner planets ? 

Nobili : yes, circular rings. This is the same as to give a zonal harmo­
nic to the Sun different from zero. The value chosen is dictated 
by the actual masses of the planets spread around their semi-major 
axes . 
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Branham : which computer do you use and how much computer time do you 
need ? 

Nobili : the hundred million year integration of the outer planets will 
be done on the CRAY- 1S of the University of London Computer Centre 
and we estimate that it will require about 40 CPU hours ; may be less 
if it can be optimized. Subsequent experiments will be done on the 
IBM supercomputer LCAP, for which we have received support from IBM. 
The annoying point is that some errors are machine-dependent and mo­
reover these very fast computers usually require an ad hoc program to 
be written. 

Finkelstein : you said that relativistic effects are included by changing 
the Newtonian potential m/r to m/r + A/r^ But it is known that one 
cannot obtain all relativistic effects by only changing the potential 
function. 

Nobili : I did not mean to include all the relativistic effects. I am 
interested only in secular effects in planetary orbits and they can 
be obtained by this procedure, as it can be shown by direct calcula­
tions . 
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