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Abstract

Let S be an inverse semigroup and let π : S → T be a surjective homomorphism with kernel K. We
show how to obtain a presentation for K from a presentation for S , and vice versa. We then investigate
the relationship between the properties of S , K and T , focusing mainly on finiteness conditions. In
particular we consider finite presentability, solubility of the word problem, residual finiteness, and the
homological finiteness property FPn. Our results extend several classical results from combinatorial group
theory concerning group extensions to inverse semigroups. Examples are also provided that highlight the
differences with the special case of groups.
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1. Introduction
Let K→G→ T be a short exact sequence of groups, that is, G is an extension of K
by T . There are several well-known results in combinatorial group theory relating
the properties of G, K and T . For example, we have the following results (see, for
instance, [20, Ch. V]).
(i) If K is finite, then G is finitely presented if and only if T is finitely presented.
(ii) If T is finite, then G is finitely presented if and only if K is finitely presented.

Each of these results is a consequence of the fact that finite presentability is a
quasiisometry invariant of finitely generated groups: in (i), finiteness of K implies
that G and T are quasiisometric, while, in (ii), finiteness of T implies that G and K
are quasiisometric. (Of course, (ii) is also a corollary of the classical Reidemeister–
Schreier theorem for subgroups of finite index.) Consequently, for finitely generated
groups the analogous results to those above hold with finite presentability replaced
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by any other quasiisometry invariant of groups including, among others, the property
Fn (which generalises finite generation and presentability to arbitrary dimensions),
the related homological finiteness property FPn, and the property of being finitely
presented with soluble word problem; see [20, p. 115] and [1, 2].

In the more general context of semigroup theory, homomorphisms are studied
via congruences. In the case of groups, the study of congruences reduces to the
consideration of normal subgroups, but for semigroups in general no corresponding
reduction to substructures is possible. So in general it does not make sense to
consider analogues of the results for groups mentioned above for arbitrary semigroups.
However, such questions do make sense for inverse semigroups via the classical
kernel-trace description of congruences. See [28, Ch. 5] for background on this theory.

Following, for example, [19], a pair (S , π), where S is an inverse semigroup contain-
ing K as a subsemigroup and π is a homomorphism of S onto an inverse semigroup T
such that π−1(E(T )) = K, where E(T ) is the set of idempotents of T , is called an
extension of K by T . Of course, when S is a group this puts us exactly in the situation
discussed above. Extensions of inverse semigroups are an important and well-studied
area in the subject, with recent examples including [9, 23]. The vast majority of
research in this area has been concerned with proving structural results for certain spe-
cial kinds of extension. The results presented in this paper do not fall into that category.

In this paper, our primary interest is in combinatorial inverse semigroup theory,
that is, the study of inverse semigroups using presentations. Combinatorial inverse
semigroup theory is a subject in its own right, with a substantial body of literature;
see, for instance, [10, 27, 34, 41, 42, 44]. Other papers where finiteness conditions of
inverse semigroups are considered include [21, 37]. Our interest here is in studying
extensions of inverse semigroups, but within the context of combinatorial inverse
semigroup theory. As a necessary first step, we shall give methods for writing
down presentations for extensions of inverse semigroups, and conversely given a
presentation for an extension to determine a presentation for the kernel K. We then
apply these results to investigate the following very general question.

Let S be an inverse semigroup and suppose that (S , π) is an extension of
K by T . How are the properties of S , K and T related to one another?

The results that we present here serve as an initial investigation of this question, and we
begin by considering to what extent the results mentioned above concerning finiteness
properties of groups hold true for inverse semigroup extensions. Unsurprisingly, in
general we shall see that the results do not carry across to inverse semigroups without
modification, and so we shall end up with a mixture of counterexamples for results in
general, theorems in certain cases (often with some additional restriction placed on the
nature of the homomorphism π), and we also present several open problems, which
highlight the limits of our techniques at present, and suggest possible future directions
for research.

The paper is laid out as follows. Our main results concern presentations, and are
given in Sections 3 and 4. We go on to apply these results in Section 5 to investigate
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the relationship between finiteness properties of inverse semigroups and their kernels,
specifically we obtain results for finite generation and presentability, solubility of
the word problem, and residual finiteness. Finally, in Section 6, we consider the
relationship between properties of inverse semigroups and their homomorphic images,
under the assumption that the kernel is finite, and in particular make some observations
about finite presentability and the homological finiteness property FPn.

The methods used throughout are combinatorial. In particular we make use of the
Reidemeister–Schreier type rewriting methods for semigroups originally introduced
in [16]. As mentioned above, in the special case of groups, many of these results may
be explained geometrically (via the notion of quasiisometry). It would be interesting
to know whether there are corresponding geometric interpretations more generally for
the results we present here for inverse semigroups. It is possible that the topological
approach to inverse semigroup presentations developed in [41] might shed some light
on this.

2. Preliminaries

2.1. Homomorphisms, congruences, kernels and extensions. We begin by
introducing the basic concepts used in this paper. For a more detailed introduction
to general notions in inverse semigroup theory, we refer the reader to [26, 28]. Let S
be an inverse semigroup and let E(S ) denote the set of idempotents of S . The elements
of S carry a natural partial order ≤ where, given any two elements s, t ∈ S , we say that
s ≤ t if there exists an idempotent e ∈ E(S ) such that s = te. This order is compatible
both with multiplication and inversion. Furthermore, when restricted to the set of
idempotents this order becomes e ≤ f if and only if e f = e for all e, f ∈ E(S ). Since
E(S ) is a commutative subsemigroup of S , (E(S ), ≤) forms a meet semilattice (where
the meet operation is multiplication).

We now fix some notation that will remain in force throughout this paper. Let
π : S → T be a surjective homomorphism of inverse semigroups. The kernel of this
homomorphism is

K = ker π = π−1(E(T )) =
⋃

e∈E(T )

Ce,

where E(T ) is the set of idempotents of T and

Ct = {s ∈ S : sπ = t} = π−1(t) ∀t ∈ T.

Clearly K is an inverse subsemigroup of S and E(K) = E(S ), that is, it is full. For
every t ∈ T , let

Et = {s−1s : s ∈Ct} ⊆ E(S ). (2.1)

In other words Et denotes the set of all idempotents appearing inL-classes of elements
of π−1(t), where L denotes Green’s L-relation (see [26, Ch. 2] for more on Green’s
relations). Next, for every t ∈ T , we shall fix a subset Ft ⊆ Et such that

(∀e ∈ Et)(∃ fe ∈ Ft) e ≤ fe.
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In other words, Ft is a set of idempotents that ‘covers’ all the idempotents Et in the
sense that every element of Et lies below some element from Ft. Of course, such a set
Ft always exists, since if necessary we can take Ft = Et.

As we shall see later on in Section 5, the question of whether or not the sets Ft may
be chosen to be finite will influence whether or not finite generation or presentability is
preserved when passing between S and K. Specifically, we shall see in Proposition 5.2
that there is a surjective homomorphism from the free inverse monoid of rank two
onto the finite cyclic group of order three whose kernel is not finitely generated.
Thus, although it may not be completely transparent at present, the introduction of the
set Ft here is necessary in order that positive results about preservation of finiteness
properties may be obtained in Section 5.

For each t ∈ T and e ∈ Ft, fix a representative se,t ∈Ct such that e = s−1
e,t se,t. Then

define
Qt = {se,t : e ∈ Ft} ⊆Ct and Q =

⋃
t∈T

Qt.

Note that |Qt | = |Ft | for each t ∈ T , so if Ft is finite for all t ∈ T , and T is finite, then
Q is finite.

The following fundamental lemma will be used throughout the paper.

L 2.1. With the notation above, every element s ∈ S can be decomposed in the
form s = uq for some u ∈ K and q ∈ Qt with π(s) = t and u = sq−1.

P. From s ∈Ct and (2.1), it follows that s−1s ∈ Et. By definition of Ft there
exists e ∈ Ft such that s−1s ≤ e. Therefore, for q = se,t ∈ Q we have π(q) = t = π(s)
and s−1s ≤ q−1q. Now, s−1sq−1q = s−1s, which implies that ss−1sq−1q = ss−1s, and so
sq−1q = s. Also, from π(q) = π(s), it follows that π(qq−1) = π(sq−1), and so sq−1 ∈ K
since π(qq−1) is an idempotent. �

C 2.2. Let S be an extension of K by T . If A ⊆ K is a generating set for K,
then, with the notation above, A ∪ Q is a generating set for S .

It is with respect to the generating set A ∪ Q that we give a presentation for S in
Section 3 below.

2.2. Inverse semigroup presentations. Let A be a nonempty set, which we call an
alphabet. A semigroup presentation is a pair 〈A|R〉, where R ⊆ A+ × A+. The elements
of A are called generators and the elements of R are called relations. The semigroup
defined by the presentation 〈A|R〉 is the semigroup S = A+/ρ, where ρ is the smallest
congruence on A+ containing R. For u, v ∈ A+ we write u ≡ v if u and v are identical
words in A+ and u = v if they represent the same element of S . We use |u| to denote the
number of letters in the word u ∈ A+, which we call the length of the word u. Given
u, v ∈ A+ we say that u = v is a consequence of R if u can be transformed into v by
a finite number of applications of relations from R. The semigroup S is said to be
finitely generated as a semigroup if A can be chosen to be finite and finitely presented
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if both A and R can be chosen to be finite. Monoid presentations are defined similarly,
replacing A+ by A∗.

Let A−1 be a set disjoint from A and in one-to-one correspondence with A via the
map a 7→ a−1. Let FI(A) denote the free inverse semigroup on a set A. Thus FI(A) =

(A ∪ A−1)+/ρ where ρ is the Vagner congruence on the free semigroup (A ∪ A−1)+:

{(xx−1x, x), (xx−1yy−1, yy−1xx−1) : x, y ∈ (A ∪ A−1)+}.

Here (x−1)−1 should be interpreted as x, for x ∈ A, and the map a 7→ a−1 has been
extended to words in the natural way. An inverse semigroup presentation is a pair
〈A|R〉, where R is a subset of (A ∪ A−1)+ × (A ∪ A−1)+. The inverse semigroup defined
by the inverse semigroup presentation 〈A|R〉, is the semigroup (A ∪ A−1)+/τ where τ is
the congruence on (A ∪ A−1)+ generated by ρ ∪ R.

Given an inverse semigroup S there is an important distinction to be made between
the question of whether S is finitely presented as an inverse semigroup, and whether S
is finitely presented as a semigroup. Indeed, in [40] it was shown that the free inverse
semigroup (of any rank) is not finitely presented as a semigroup. Throughout this
paper we shall work with inverse semigroups, inverse semigroup presentations, and by
finitely presented we shall always mean finitely presented as an inverse semigroup.

3. A presentation for the extension

Let S be an inverse semigroup and suppose that (S , π) is an extension of K by T .
Given a presentation 〈A|R〉 for K in this section we show how to obtain a presentation
for S . We continue using the same notation and conventions introduced in Section 2.
We saw in Corollary 2.2 that, viewed as a subset of S , A ∪ Q generates S . We shall
give a presentation for S in terms of this generating set. Since A ∪ Q generates S ,
we may extend the mapping π : S → T to π : ((A ∪ A−1) ∪ (Q ∪ Q−1))+→ T in the
obvious way, and we abuse notation slightly by using the same symbol π for both
maps.

Before we write down the presentation for S we must first give some definitions.
We saw in Lemma 2.1 that every element s ∈ S can be decomposed (although not
necessarily uniquely) in the form s = uq for some u ∈ K and some q ∈ Qt where π(s) = t
and u = sq−1. We will say that a word in ((A ∪ A−1) ∪ (Q ∪ Q−1))∗ is in normal form,
either if it is the empty word, or if it is of the form wq where w ∈ (A ∪ A−1)∗ and
q ∈ Q are such that π(wq) = π(q) and wqq−1 = w. Let N be the set of words in normal
form from ((A ∪ A−1) ∪ (Q ∪ Q−1))∗. Note the slightly nonstandard terminology here:
normal form would usually suggest a unique set of representatives, which is not the
case here, as we now observe.

L 3.1. If w1q, w2q ∈ N, where w1, w2 ∈ (A ∪ A−1)∗ and q ∈ Q, then the relation
w1q = w2q holds in S if and only if w1 = w2 holds in K.

P. As w1q, w2q are in normal form, we know that w1qq−1 = w1 and w2qq−1 = w2.
It is then clear that w1q = w2q if and only if w1 = w2. �

https://doi.org/10.1017/S1446788711001297 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001297


294 C. Carvalho, R. D. Gray and N. Ruskuc [6]

It is important to note, however, that it is quite possible that two words w1q1 and
w2q2 can be in normal form, and w1q1 = w2q2 but q1 , q2.

Our general strategy for obtaining a presentation for S is as follows. First we write
down a set of relations that allow us to rewrite an arbitrary word w in the generators
(A ∪ A−1) ∪ (Q ∪ Q−1) into normal form wqw. Then given two arbitrary words w1

and w2 corresponding to the same element of S , we rewrite each of them into normal
form w1qw1 and w2qw2 . At this stage we might not have qw1 = qw2 so in the presentation
we also include a set of relations that allow us to rewrite w1qw1 into w1

′qw2 , which is a
word in normal form. Then w1

′
= w2 in K by Lemma 3.1, and this can be deduced by

applications of relations from R.
For each word w ∈ ((A ∪ A−1) ∪ (Q ∪ Q−1))+, choose and fix a word w ∈ (A ∪ A−1)∗

and a letter qw ∈ Q such that wqw is in normal form (that is, such that wqw ∈ N) and
w = wqw in S . Such choices are possible by Lemma 2.1. We extend this notation
to the empty word, setting 1 = 1 and q1 = 1. Next, set Q1 = Q ∪ {1}, and define a
mapping

f : Q1 × ((A ∪ A−1) ∪ (Q ∪ Q−1))∗ −→ N

by

f (r, w) =

rwqrw if |w| ≤ 1,

rx f (qrx, w′) if w ≡ xw′ with |w′| ≥ 1,

where w ≡ xw′ and x ∈ (A ∪ A−1) ∪ (Q ∪ Q−1) while w′ ∈ ((A ∪ A−1) ∪ (Q ∪ Q−1))∗. It
is easy to prove by induction on the length of the word w that f is indeed a mapping
from Q1 × ((A ∪ A−1) ∪ (Q ∪ Q−1))∗ to N. Note that in particular f (1, 1) = 1, which
belongs to N by definition. Using this mapping, we are now in a position to state the
main result of this section.

T 3.2. Let S be an inverse semigroup and suppose that (S , π) is an extension
of K by T . Let 〈A|R〉 be a presentation for the kernel K. Then, with the notation above,
S is defined by a presentation 〈A, Q | R, U〉, where U is the following set of relations

{ra = f (r, a) : a ∈ ((A ∪ A−1) ∪ (Q ∪ Q−1))1, r ∈ Q1, (r, a) , (1, 1)}

∪ {qr−1 = q̂r−1 : q, r ∈ Q, π(q) = π(r)},

where q̂r−1 is a word in (A ∪ A−1)∗ representing the element qr−1 of K for all q, r ∈ Q.
In particular, if K is finitely presented, and Q is finite, then S is finitely presented.

Clearly the size of Q relates to both the size of the image T (that is, the number of
π-classes), and also the relationship between the homomorphism π and the underlying
semilattice of idempotents E(S ); see Section 5 for further discussion of this. Before
proving Theorem 3.2 we need the following lemma.

L 3.3. The relation rw = f (r, w) is a consequence of R ∪ U for all r ∈ Q1 and
w ∈ ((A ∪ A−1) ∪ (Q ∪ Q−1))∗ such that (r, w) , (1, 1).
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P. The proof is by induction on the length of w. If |w| ≤ 1, then rw = f (r, w) is
a relation in U and so we are done. Assume now that |w| ≥ 2, and write rw ≡ rxw′,
where x ∈ (A ∪ A−1) ∪ (Q ∪ Q−1). Then

f (r, w) ≡ rx f (qrx, w′).

By the inductive hypothesis, f (qrx, w′) = qrxw′ is a consequence of R ∪ U, so we can
deduce that f (r, w) = rxqrxw′. Since rxqrx ≡ f (r, x) and f (r, x) = rx is a relation in U,
the relation f (r, w) = rxw′ ≡ rw is a consequence of R ∪ U. �

P  T 3.2. Clearly all of the relations in the presentation hold in S . To
complete the proof, take α, β ∈ ((A ∪ A−1) ∪ (Q ∪ Q−1))+ such that α = β holds in S .
We want to show that this relation can be deduced from the relations R ∪ U. By
Lemma 3.3, we can deduce that α = f (1, α) ∈ N and β = f (1, β) ∈ N as a consequence
of the relations R ∪ U. Hence, without loss of generality, we may assume that α and β
in normal form, say α ≡ wq ∈ N and β ≡ vr ∈ N where q, r ∈ Q and v, w ∈ (A ∪ A−1)∗.

If q = r, then by Lemma 3.1 we know that wq = vq in S if and only if w = v holds in
K. This last relation can be deduced from the relations in R. Hence α = wq = vq = β is
a consequence of R ∪ U.

Assume now that q , r. Since wq = vr holds in S and these words are in normal
form, we know that π(q) = π(wq) = π(vr) = π(r). It follows that qr−1 and rq−1 represent
elements from K.

First we show that wq = wqr−1r can be deduced from the relations in R ∪ U. Using
the second set of relations from U we obtain

wqr−1r = w(qq−1q)r−1r ≡ wq(q−1q)(r−1r) = wqr−1rq−1q = wq̂r−1r̂q−1q,

which, letting w′ ≡ wq̂r−1r̂q−1 ∈ (A ∪ A−1)∗, shows that wqr−1r = w′q is a consequence
of R ∪ U. It is clear that w′ ∈ (A ∪ A−1)∗, and π(w′q) = π(wq) = π(q). Furthermore,

w′qq−1 = wq̂r−1r̂q−1qq−1 = w′.

Thus w′q is in normal form. We know that w′q = wq holds in S and both these words
are in normal form. By Lemma 3.1, this implies that w = w′ holds in K. Thus w = w′

is a consequence of R, and it follows that w′q = wq is also a consequence of R. Thus
wq = w′q = wqr−1r is a consequence of the relations R ∪ U.

Then, as a consequence of R ∪ U,

wq = wqr−1r = wq̂r−1r ≡ w′′r,

where w′′ ≡ wq̂r−1, which is in normal form since π(w′′r) = π(wq) = π(r). It follows
that w′′r = vr holds in S . By Lemma 3.1, w′′ = v holds in K and so it must be a
consequence of R. We conclude that α ≡ wq = vr ≡ β is a consequence of R ∪ U. �

4. A presentation for the kernel

Let S be an inverse semigroup and suppose that (S , π) is an extension of K by T .
Let 〈Y |R〉 be an inverse semigroup presentation for S and let A = Y ∪ Y−1. In this
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section, we show how to obtain a presentation for the kernel K. The proof is more
involved than the other direction, which we dealt with in the previous section. This
is not very surprising since, when applied to normal subgroups of groups, this result
generalises the well-known Reidemeister–Schreier theorem for groups, which rewrites
a presentation for the group to a presentation for the subgroup. After introducing the
necessary definitions and notation the presentation for K is then given in Theorem 4.4,
and the remainder of the section is devoted to proving that this presentation indeed
defines K. This is achieved in two stages: first we show how to rewrite a generating
set for S into a generating set for K, and then we show how to rewrite the defining
relations of S to obtain a set of defining relations for K.

As in the previous section, Lemma 2.1 will be fundamental for the proof, and the
question of preservation of finiteness, both of the generating set and of the presentation,
will reduce to the question of whether or not one is able to choose the set Q to be finite.
This will be discussed in more detail in Section 5 when we look at finiteness properties.

We use the same notation as in previous sections. Thus, for all t ∈ T , we have
Ct = π−1(t),

Et = {s−1s : s ∈Ct},

and Ft ⊆ Et is a fixed subset with the property that for all e ∈ Et, there exists fe ∈ Ft
such that e ≤ fe. Also, for each t ∈ T and f ∈ Ft, we fix a representative s f ,t ∈Ct such
that f = s−1

f ,t s f ,t, and then define

Qt = {s f ,t : f ∈ Ft} and Q =
⋃
t∈T

Qt.

Abusing notation slightly, in this section we view Q as a subset of A+ = (Y ∪ Y−1)+

with every q ∈ Q given by a fixed word in A+ representing the element q. Also, as in
the previous section, we extend the mapping π : S → T to π : A+→ T in the obvious
way, and we use the same symbol π for both maps.

In order to describe a generating set and presentation for K we shall need the
following definition. Define a right action of the free monoid A∗ on the set of words
Q1 = Q ∪ {1} (the set Q together with the empty word 1) in the following way. First
set q · 1 = q for all q ∈ Q1. Then for every q ∈ Q1 and a ∈ A, choose and fix an element
q · a ∈ Qπ(qa) satisfying

qa = qa(q · a)−1(q · a).

Such an element exists by Lemma 2.1. Then extend this to an action

Q1 × A∗→ Q1, (q, w) 7→ q · w,

where we define inductively
q · wa = (q · w) · a,

for w ∈ A+ and a ∈ A. The following lemma may be proved by an easy induction on
the length of the word w, so we omit the proof.

L 4.1. The mapping

Q1 × A∗→ Q1, (q, w) 7→ q · w
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defines an action of the free monoid A∗ on the set Q1. Moreover, we have the following
equalities:

(i) qw = qw(q · w)−1(q · w) in S ; and
(ii) π(qw) = π(q)π(w) = π(q · w),

for all q ∈ Q1 and w ∈ A∗ with (q, w) , (1, 1).

In particular we see that qa(q · a)−1 ∈ L(A, K) for all q ∈ Q1 and a ∈ A, where
L(A, K) is the set of all words from A∗ representing elements of K. It is important to
note that it is not the case here that we have an action of the semigroup S on the set Q1,
that is, in general two words representing the same element of S can act differently
on Q1.

The following result is a direct generalisation of Schreier’s lemma, which gives
generators for a subgroup of a group (see, for instance, [32, Ch. II]).

P 4.2. Let S be an inverse semigroup generated by a set Y, and suppose that
(S , π) is an extension of K by T . Then with A = Y ∪ Y−1, and the notation above, K is
generated by the set

X = {qa(q · a)−1 : q ∈ Q1, a ∈ A} ∪ (Q ∩ K).

P. Let w ∈ K be arbitrary. Write w = a1 · · · an where a1, a2, . . . , an ∈ A. Let
ri = 1 · a1 · · · ai for i = 1, . . . , n. Then

w = 1a1 · · · an

= (1a1r−1
1 r1)a2 · · · an

= (1a1r−1
1 )(r1a2)a3 · · · an

= (1a1r−1
1 )(r1a2r−1

2 r2)a3 · · · an

= (1a1r−1
1 )(r1a2r−1

2 )(r2a3)a4 · · · an

= · · ·

= (1a1r−1
1 )(r1a2r−1

2 ) · · · (rn−1anr−1
n )rn,

where 1a1r−1
1 = 1a1(1 · a1)−1 ∈ X, and for i = 1, . . . n − 1

riai+1r−1
i+1 = riai+1(ri · ai+1)−1 ∈ X.

By Lemma 4.1, π(rn) = π(1 · w) = π(w) and hence rn ∈ X. Thus we have expressed w
as a product of elements from X, and since w ∈ K was arbitrary, this completes the
proof of the proposition. �

We now introduce a new alphabet with respect to which we shall define a
presentation for K. Let

B = {br,a,s−1 : r, s ∈ Q1, a ∈ A1, ras−1 ∈ L(A, K)} ∪ {er,s : r, s ∈ Q}.

Note that we allow r = 1 or s = 1 in the expression above, and in these cases both 1
and 1−1 should be read as the empty word. To simplify the exposition in what follows,
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the generating set B has been chosen to contain some redundant generators (compare
with the generating set X for K given in Proposition 4.2).

To simplify notation, for q ∈ Q1 and a ∈ A1 we shall use bq,a as shorthand for the
letter bq,a,(q·a)−1 . Observe that b1,1 = b1,1,1−1 = b1,1,1 < B since 1 <L(A, K).

Let ψ : B+→ A+ be the homomorphism extending

br,a,s−1 7→ ras−1 ∀r, s ∈ Q1, a ∈ A1, ras−1 ∈ L(A, K),

er,s 7→ rs−1sr−1 ∀r, s ∈ Q.

The intended meaning here is that the mapping ψ identifies the word in A+ that the
corresponding letter from B represents.

Next we define a mapping that records the effect of rewriting a word w ∈ A∗ by
pushing a representative q through from left to right. We define

φ′ : {(q, w) ∈ Q1 × A∗ : qw ∈ L(A, K)} → B+

inductively by

φ′(q, w) =

bq,1,1 if w = 1,

bq,aφ
′(q · a, u) if w ≡ au where a ∈ A and u ∈ A∗.

Here φ′(q · a, u) is well defined as π((q · a)u) = π(qau) = π(qw) ∈ E(T ) by Lemma 4.1,
that is, (q · a)u ∈ L(A, K). Note that (1, 1) is not in the domain of φ′ since 1 <L(A, K).
Also define the mapping

φ :L(A, K)→ B+, φ(w) = φ′(1, w).

To simplify notation slightly, for w ≡ a1 · · · an ∈ A∗ and q0 ∈ Q1, we define

βq0,w ≡ bq0,a1 bq1,a2 bq2,a3 · · · bqn−1,an ∈ B∗

where qi ≡ q0 · a1a2 · · · ai for 1 ≤ i ≤ n. Note that in particular β1,1 and βq,1 (q ∈ Q) are
all empty products. In other words β1,1 ≡ βq,1 ≡ 1 ∈ B∗ for all q ∈ Q. The following
easy lemma describes the effect of applying the mapping φ′. We omit the proof since
it is a simple consequence of the definitions.

L 4.3. Let q ∈ Q1 and w ≡ a1 · · · ak ∈ A∗ with qw ∈ L(A, K). Then, setting qi =

q · a1 · · · ai,

φ′(q, w) ≡ bq,a1 bq1,a2 bq2,a3 · · · bqk−1,ak bqk ,1,1 ≡ βq,wbqk ,1,1.

It follows that, for all q ∈ Q1 and u, v ∈ A∗ such that quv ∈ L(A, K),

φ′(q, uv) ≡ βq,uφ
′(q · u, v).

Note that bq,1,1 ∈ B and ψ(bq,1,1) = q ∈ A∗ for all q ∈ Q ∩ L(A, K).
We are now in a position to state the main result of this section, which shows how

one may obtain a presentation for K from a presentation for S . We note that in the
presentation 〈B|D〉 for K obtained in the following theorem, the set B is an abstract
alphabet and is not a subset of K. The element of K that a given letter of B represents
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may be obtained by applying the mapping ψ to the letter to obtain a word in A+, and
then taking the element in K that this word represents (see the definition of ψ above).

T 4.4. Let S be an inverse semigroup defined by an inverse semigroup
presentation 〈Y |R〉, and suppose that (S , π) is an extension of K by T . Then with
the notation above, and A = Y ∪ Y−1, the kernel K is defined by the presentation 〈B|D〉
where

B = {br,a,s−1 : r, s ∈ Q1, a ∈ A1, ras−1 ∈ L(A, K)} ∪ {er,s : r, s ∈ Q},

and D consists of the relations (4.1)–(4.10) below, where ai ∈ A, ri, si ∈ Q, and
si+1 = si · ai+1 and ri+1 = ri · ai+1, and for all i,

φ(ras−1) = br,a,s−1 ∀r, s ∈ Q1, a ∈ A1, ras−1 ∈ L(A, K), (4.1)

br,1,1b1,a = br,a,(1·a)−1 ∀r ∈ Q ∩ L(A, K), a ∈ A, (4.2)

br1,a2,s−1
2

bs2,a3 = br1,a2 er2,s2 br2,a3,s−1
3
∀r2a3s−1

3 , r1a2s−1
2 ∈ L(A, K), (4.3)

br1,a2,s−1
2

bs2,1,1 = br1,a2 er2,s2 br2,1,1 ∀r2, s2 ∈ L(A, K), r1a2s−1
2 ∈ L(A, K), (4.4)

er1,s1 br1,a2 = er1,s1 br1,a2 er2,s2 , (4.5)

br0,a1 = br0,a1 er1,s1 where s1 = 1 · a1, (4.6)

and with (u = v) ∈ R, q0 ∈ Q1, s0 = q0 · u, t0 = q0 · v and ti+1 = ti · ai+1 for all i

βq0,ubs0,a1,s−1
1

= βq0,vbt0,a1,s−1
1
, (4.7)

βq0,ubs0,1,1 = βq0,vbt0,1,1, (4.8)

βq0,vbt0,a1 et1,s1 bt1,a2 = βq0,vbt0,a1 bt1,a2 , (4.9)

βq0,vbt0,a1 et1,s1 bt1,1,1 = βq0,vbt0,a1 bt1,1,1. (4.10)

In particular, if S is finitely presented, and Q is finite, then K is finitely presented.

The rest of this section will be devoted to the proof of Theorem 4.4. We note that,
in general, finiteness of T is not enough to guarantee finiteness of the presentation
above, and in this aspect the result above cannot be improved; see the example in
Proposition 5.2 below. However, there are many natural situations where Q is finite,
and hence the presentation above will be finite. For instance, clearly when the result is
applied to groups the set Q is automatically finite, since a group has only finitely many
idempotents, and thus the classical Reidemeister–Schreier theorem for groups (in the
case of passing to normal subgroups) may be recovered as a special case of the result
above.

The proof of Theorem 4.4 has two parts: first we show all the relations hold in K,
meaning that the relation holds in K once the map ψ has been applied, and then that
every relation in K may be deduced from these relations.

4.1. The relations D all hold. We begin by showing that each of the relations in
the presentation holds in K. This means that for every relation u = v from D we
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must check that the relation ψ(u) = ψ(v) holds in S . We must also verify that the
letters appearing in the relations really do all belong to B, that is, for each letter br,a,s−1

appearing in the presentation we must check that ras−1 ∈ L(A, K).
We begin with two easy lemmas.

L 4.5. Let q ∈ Q and w ≡ a1 · · · ak ∈ A∗ with qw ∈ L(A, K). Then

ψ(φ′(q, a1 · · · ak)) ≡ qa1q−1
1 q1a2q−1

2 q2a3 · · · akq−1
k qk,

where qi = q · a1 · · · ai for 1 ≤ i ≤ k. In particular, the relation

ψ(φ′(q, w)) = qw

holds in S .

P. The first part is a direct consequence of Lemma 4.3 and the definitions, while
the second part follows since

qa1q−1
1 q1a2q−1

2 q2a3 · · · akq−1
k qk = qa1a2 · · · ak

in S . �

L 4.6. Let w1, w2 ∈ A∗ and q ∈ Q. If w1 = w2 in S , and qw1 ∈ L(A, K), and hence
also qw2 ∈ L(A, K), then ψφ′(q, w1) = ψφ′(q, w2) in S .

P. This is straightforward, since applying Lemma 4.5 we see that in S

ψφ′(q, w1) = qw1 = qw2 = ψφ′(q, w2),

as required. �

We shall now work through the relations one family at a time, checking that they
each hold in K. The relations (4.1) clearly hold as a consequence of Lemma 4.5.

Claim. Relations (4.2) hold in K.
As r ∈ L(A, K), it follows that br,1,1, br,a,(1·a)−1 ∈ B. The relation holds in K since

ψ(br,1,1b1,a) = ra(1 · a)−1 = ψ(br,a,(1·a)−1 )

in S , and the claim is proved.

Claim. Relations (4.3) hold in K.
Since r2a3s−1

3 , r1a2s−1
2 ∈ L(A, K) it follows that the letters appearing in relation

(4.3) each belong to B. Since idempotents commute, and r1a2r−1
2 r2 = r1a2 in S , by

applying ψ we deduce that

ψ(br1,a2 er2,s2 br2,a3,s−1
3

) = (r1a2r−1
2 )(r2s−1

2 s2r−1
2 )(r2a3s−1

3 )

= r1a2r−1
2 r2r−1

2 r2s−1
2 s2a3s−1

3

= r1a2r−1
2 r2s−1

2 s2a3s−1
3

= r1a2s−1
2 s2a3s−1

3

= ψ(br1,a2,s−1
2

bs2,a3 ),

and we are done.
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Claim. Relations (4.4) hold in K.
Since r2, s2, r1a2s−1

2 ∈ L(A, K) it follows that the letters appearing in the relation
come from the set B. By applying ψ, we obtain

ψ(br1,a2 er2,s2 br2,1,1) = (r1a2r−1
2 )(r2s−1

2 s2r−1
2 )(r2)

= r1a2r−1
2 r2r−1

2 r2s−1
2 s2

= (r1a2r−1
2 r2)s−1

2 s2

= r1a2s−1
2 s2

= ψ(br1,a2,s−1
2

bs2,1,1),

as required.

Claim. Relations (4.5) hold in K.
The letters in the relation clearly all belong to B. Since idempotents commute and

s1a2(s−1
2 s2) = s1a2 in S , by applying ψ, we obtain

ψ(er1,s1 br1,a2 er2,s2 ) = (r1s−1
1 s1r−1

1 )(r1a2r−1
2 )(r2s−1

2 s2r−1
2 )

= r1(s−1
1 s1)(r−1

1 r1)a2(r−1
2 r2)(s−1

2 s2)r−1
2

= r1(r−1
1 r1)(s−1

1 s1)a2(s−1
2 s2)(r−1

2 r2)r−1
2

= r1(r−1
1 r1)(s−1

1 s1)a2(r−1
2 r2)r−1

2

= (r1s−1
1 s1r−1

1 )(r1a2r−1
2 )

= ψ(er1,s1 br1,a2 ).

(Here in the third line we have underlined the subword to which the relation is being
applied for that step.) It follows that relation (4.5) holds in K.

Claim. Relations (4.6) hold in K.
Clearly each of the letters in the relation belongs to B. Since s1 = 1 · a1, idempotents

commute and a1s−1
1 s1 = a1, applying ψ gives

ψ(br0,a1 er1,s1 ) = (r0a1r−1
1 )(r1s−1

1 s1r−1
1 )

= r0a1(r−1
1 r1)(s−1

1 s1)r−1
1

= r0a1(s−1
1 s1)(r−1

1 r1)r−1
1

= r0(a1s−1
1 s1)r−1

1

= r0a1r−1
1

= ψ(br0,a1 ),

as required.

Claim. Relations (4.7) and (4.8) hold in K.
We give a proof for the family of relations (4.7), the fact that the relations (4.8) hold

in K may be proved similarly.
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Clearly bs0,a1,s−1
1
∈ B. Also, since, by Lemma 4.1,

π(s0) = π(q0u) = π(q0v) = π(t0),

and thus
π(t0a1s−1

1 ) = π(s0a1s−1
1 ) ∈ E(T ),

it follows that bt0,a1,s−1
1
∈ B. By Lemmas 4.3 and 4.5, applying ψ gives

ψ(βq0,ubs0,a1,s−1
1

) = q0ua1s−1
1 = q0va1s−1

1 = ψ(βq0,vbt0,a1,s−1
1

),

in S , as claimed.

Claim. Relations (4.9) and (4.10) hold in K.
We treat the family of relations (4.9); the relations (4.10) may be handled similarly.
Clearly all the letters appearing in this relation belong to B. First observe that

ψ(βq0,vbt0,a1 et1,s1 bt1,a2 ) ≡ ψ(βq0,v)(t0a1t−1
1 )(t1s−1

1 s1t−1
1 )(t1a2t−1

2 ).

Since u = v, in S we have (again using Lemmas 4.3 and 4.5)

ψ(βq0,v)t0a1 = q0va1 = q0ua1

and by Lemma 4.1,
(q0ua1)s−1

1 s1 = (q0ua1).

It follows that

ψ(βq0,v)t0a1 = q0ua1 = (q0ua1)s−1
1 s1 = (ψ(βq0,v)t0a1)s−1

1 s1,

and therefore in S

ψ(βq0,vbt0,a1 et1,s1 bt1,a2 ) = ψ(βq0,v)(t0a1t−1
1 )(t1s−1

1 s1t−1
1 )(t1a2t−1

2 )

= ψ(βq0,v)t0a1(s−1
1 s1)(t−1

1 t1)(t−1
1 t1)a2t−1

2

= ψ(βq0,v)t0a1(t−1
1 t1)(t−1

1 t1)a2t−1
2

= ψ(βq0,v)(t0a1t−1
1 )(t1a2t−1

2 )

= ψ(βq0,vbt0,a1 bt1,a2 ),

as claimed.
This completes the proof that every relation in the presentation 〈B|D〉 holds in K.

4.2. The relations D suffice. To complete the proof of Theorem 4.4, we must now
show that an arbitrary relation in K can be deduced by the set of relations D given
in the statement of the theorem. In [16], the authors give a procedure to write a
presentation for a subsemigroup from a presentation of a semigroup. This method
admits a natural and straightforward generalisation to inverse semigroups and inverse
semigroup presentations; see [17] for details. It is a consequence of these general
results that, with the notation above, the following presentation, which we denote byP,

https://doi.org/10.1017/S1446788711001297 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001297


[15] Presentations of kernels and extensions 303

defines the kernel K: the generating set is B, and the relations are

φ(ras−1) = br,a,s−1 ∀r, s ∈ Q1, a ∈ A1, ras−1 ∈ L(A, K),

φ(w1w2) = φ(w1)φ(w2) ∀w1, w2 ∈ L(A, K),

φ(w3uw4) = φ(w3vw4) ∀w3, w4 ∈ A∗, (u = v) ∈ R, w3uw4 ∈ L(A, K).

To complete the proof of Theorem 4.4, it will suffice to show that the relations in the
presentation P are all consequences of the set of relationsD.

The first family of relations of P is included in D and hence automatically
deducible. The following two lemmas show how to deal with the remaining two
families of relations.

L 4.7. The relations φ(w1w2) = φ(w1)φ(w2), where w1, w2 ∈ L(A, K), are
consequences of the relations inD.

P. First write
w2 ≡ a1 · · · an,

where a1, . . . , an ∈ A. Let r0 = 1 · w1, and, when 1 ≤ i ≤ n, define

si = 1 · a1 · · · ai, ri = r0 · a1 · · · ai.

By Lemma 4.3, φ(w1) decomposes:

φ(w1) ≡ β1,w1 br0,1,1.

Applying the last clause of Lemma 4.3, we then have

φ(w1)φ(w2) ≡ β1,w1 br0,1,1φ
′(1, w2), φ(w1w2) ≡ β1,w1φ

′(r0, w2).

We shall now prove that
br0,1,1φ

′(1, w2) = φ′(r0, w2) (4.11)

is a consequence of the set of relations D. Evaluating the left-hand side of (4.11) we
have

br0,1,1φ
′(1, w2) ≡ br0,1,1b1,a1 bs1,a2 · · · bsn−1,an bsn,1,1,

while from the right-hand side we obtain

φ′(r0, w2) ≡ br0,a1 br1,a2 br2,a3 · · · brn−1,an brn,1,1.

Starting with the left-hand side, first apply (4.2) to obtain

br0,1,1b1,a1 bs1,a2 bs2,a3 · · · bsn−1,an bsn,1,1 = br0,a1,s−1
1

bs1,a2 bs2,a3 · · · bsn−1,an bsn,1,1.

This is an application of a relation from (4.2) since r0 = 1 · w1 ∈ L(A, K), because
w1 ∈ L(A, K). Then we continue by applying relations (4.3) successively from left
to right:

br0,a1,s−1
1

bs1,a2 bs2,a3 bs3,a4 · · · bsn−1,an bsn,1,1

= br0,a1 er1,s1 br1,a2,s−1
2

bs2,a3 bs3,a4 · · · bsn−1,an bsn,1,1
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= br0,a1 er1,s1 br1,a2 er2,s2 br2,a3,s−1
3

bs3,a4 · · · bsn−1,an bsn,1,1

= · · ·

= br0,a1 er1,s1 br1,a2 er2,s2 br2,a3 er3,s3 · · · ern−1,sn−1 brn−1,an,s−1
n

bsn,1,1.

These are each valid applications of a relation from (4.3) since

π(rm−1ams−1
m ) = π(w1(a1 · · · am−1am)(a1 · · · am)−1) ∈ E(T )

when m = 1, . . . , n by Lemma 4.1, which implies that rm−1ams−1
m ∈ L(A, K). Then

apply relation (4.4) to obtain

br0,a1 er1,s1 br1,a2 er2,s2 br2,a3 er3,s3 · · · ern−1,sn−1 brn−1,an,s−1
n

bsn,1,1

= br0,a1 er1,s1 br1,a2 er2,s2 br2,a3 er3,s3 · · · ern−1,sn−1 brn−1,an ern,sn brn,1,1.

The fact that this is a relation from (4.4) follows since rn, sn ∈ L(A, K), as

π(rn) = π(r0 · w2) = π(r0w2) = π(w1w2) ∈ E(T )

and
π(sn) = π(w2) ∈ E(T ),

and, as above, rn−1ans−1
n ∈ L(A, K). In this way, using the relations (4.2)–(4.4) we have

transformed the left-hand side into

br0,a1 e1br1,a2 e2br2,a3 e3 · · · en−1brn−1,an enbrn,1,1 (4.12)

where em = erm,sm , for m = 1, . . . , n. To finish the proof, we must apply relations to
remove these idempotents from the word (4.12).

Note that relation (4.5) says eibri,ai+1 = eibri,ai+1 ei+1. So working from right to left,
we may remove en, then en−1, right down to e2, transforming (4.12) into

br0,a1 e1br1,a2 br2,a3 br3,a4 · · · brn−1,an brn,1,1.

Finally, since s1 = 1 · a1, we may apply the relation

br0,a1 e1 = br0,a1

from (4.6) to obtain
br0,a1 br1,a2 br2,a3 br3,a4 · · · brn−1,an brn,1,1.

This shows that using only the relations (4.2)–(4.6) we can deduce the relation (4.11),
and thus the relation φ(w1w2) = φ(w1)φ(w2). This completes the proof. �

L 4.8. The relations φ(w3uw4) = φ(w3vw4), where w3, w4 ∈ A∗, (u = v) ∈ R and
w3uw4 ∈ L(A, K), are consequences of the relationsD.

P. The approach is similar to that used in the proof of Lemma 4.7. Let

w4 ≡ a1 · · · an,
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where a1, . . . , an ∈ A (note that it is possible that w4 ≡ 1), and let q0 = 1 · w3 ∈ Q1.
Then by the last clause of Lemma 4.3,

φ(w3uw4) ≡ κφ′(q0, uw4), φ(w3vw4) ≡ κφ′(q0, vw4),

where κ ≡ β1,w3 ∈ B∗. Therefore to complete the proof of the lemma it suffices to show
that

φ′(q0, uw4) = φ′(q0, vw4) (4.13)

is a consequence of the relationsD. Let

s0 = q0 · u ∈ Q, t0 = q0 · v ∈ Q.

Recall that even though u = v in S , it is still possible that q0 · u and q0 · v are not equal
to each another. Again applying Lemma 4.3, we obtain

φ′(q0, uw4) ≡ βq0,uφ
′(s0, w4), φ′(q0, vw4) ≡ βq0,vφ

′(t0, w4).

The left-hand side decomposes:

βq0,uφ
′(s0, w4) ≡ βq0,ubs0,a1 bs1,a2 · · · bsn−1,an bsn,1,1 (4.14)

while the right-hand side decomposes:

βq0,vφ
′(t0, w4) ≡ βq0,vbt0,a1 bt1,a2 · · · btn−1,an btn,1,1 (4.15)

where
si = s0 · a1 · · · ai ∈ Q, ti = t0 · a1 · · · ai ∈ Q.

We must show that by applying relations from D we can transform the word (4.14)
into the word (4.15).

If w4 ≡ 1, then (4.14) is the word βq0,ubs0,1,1, (4.15) is the word βq0,vbt0,1,1, and we
are done since βq0,ubs0,1,1 = βq0,vbt0,1,1 is one of the relations (4.8).

Now suppose that |w4| ≥ 1. Applying the relation (4.7), we can transform

βq0,ubs0,a1,s−1
1

bs1,a2 bs2,a3 · · · bsn−1,an bsn,1,1

into
βq0,vbt0,a1,s−1

1
bs1,a2 bs2,a3 · · · bsn−1,an bsn,1,1. (4.16)

Then exactly as in the proof of Lemma 4.7, we apply relations (4.3) and (4.4), working
from left to right, to transform (4.16) into

βq0,vbt0,a1 et1,s1 bt1,a2 et2,s2 · · · etn−1,sn−1 btn−1,an etn,sn btn,1,1.

To see that each of these relations is a valid application of a relation from (4.3)
(similarly for (4.4)) one just has to observe that

π(tmam+1s−1
m+1) = π(q0va1 · · · amam+1(q0ua1 · · · am+1)−1) ∈ E(T )

when m = 1, . . . , n − 1, which implies that tmam+1s−1
m+1 ∈ L(A, K).

Next, again as in the proof of Lemma 4.7, working from right to left we apply
relations (4.5) to remove the idempotents, one at a time. This transforms the word into

βq0,vbt0,a1 et1,s1 bt1,a2 bt2,a3 · · · btn−1,an btn,1,1. (4.17)
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Finally we apply relation (4.9) to transform (4.17) into

βq0,vbt0,a1 bt1,a2 bt2,a3 · · · btn−1,an btn,1,1.

(In the case that |w4| = 1, so w4 ≡ a1, in this last step we apply the corresponding
relation from (4.10) instead here.) In conclusion, we have shown how, using the
relations from D, one can deduce the relation (4.13), and hence also the relation
φ(w3uw3) = φ(w3vw4). This completes the proof of the lemma. �

This completes the proof of Theorem 4.4.

5. Applications: finiteness properties

Let S be an inverse semigroup, and suppose that (S , π) is an extension of K by T .
We now turn our attention to the general question of how the properties of S , K and T
are related. As we saw in the Introduction, in the special case that S is a group, there
are numerous results relating the finiteness properties of S , T and K. In this section,
and the next, we shall investigate to what extent results such as these hold for inverse
semigroups in general. We begin in this section by considering the situation where
T is finite, and we ask about the relationship between properties of S and those of the
kernel K.

5.1. Some easy properties. For certain finiteness conditions it is easily shown, either
by direct proof or by appealing to known results, that, under the assumption that T is
finite, S has the property if and only K does. The following theorem summarises a
few of these straightforward facts. Recall that a semigroup S is called locally finite if
for any finite subset X of S the subsemigroup generated by X is finite, and S is called
periodic if for every element s ∈ S there exist distinct positive integers i and j such that
si = s j.

T 5.1. Let S be an inverse semigroup and suppose that (S , π) is an extension
of K by T . If T is finite, then the following results hold.

(i) The semigroup S is finite if and only if K is finite.
(ii) The semigroup S is periodic if and only if K is periodic.
(iii) The semigroup S is locally finite if and only if K is locally finite.

P. The first two parts are easy exercises, while the third follows from a well-
known result of Brown [13, 14]. �

5.2. Finite generation and presentability. As we shall see below in Proposition 5.2,
in contrast to the behaviour of the finiteness properties listed in Theorem 5.1, just
assuming that T is finite is not strong enough to ensure that either finite generation
or presentability are inherited by K from S . Therefore an additional assumption is
needed. We begin now by presenting a counterexample to the general statement, and
then afterwards shall introduce an additional notion, that of being finitely covered,
that, once imposed, will yield positive results about preservation of finite generation
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and presentability. This additional hypothesis is still weak enough to allow the result
to be applied in many situations, including the case of subgroups of groups.

The following proposition concerns the free inverse monoid FI(X) on a set X. We
shall view elements of FI(X) by means of Munn trees. We give some basic background
on Munn trees here. For a more detailed introduction we refer the reader to [28,
Section 6.4], or originally [35].

Let Γ denote the Cayley graph of the free group FG(X). Of course, Γ is a tree.
Given a word u = x1 · · · xn ∈ (X ∪ X−1)∗, the Munn tree of u is the finite subtree of Γ

traversed when the path labelled by the word u is read in Γ, starting at the vertex 1
and ending at the vertex r(u) (the reduced form of u, where reduced here means
reduced in the free group). We denote the Munn tree of u by MT(u), and view it
as a birooted labelled subtree of Γ with initial vertex 1 and terminal vertex r(u). Munn
trees provide a solution to the word problem in free inverse semigroups: two words u, v
over X ∪ X−1 are equal in FI(X) if and only if MT(u) = MT(v). Also u is an idempotent
if and only if r(u) = 1. When drawing Munn trees, we represent the initial vertex
(that is, 1) using an inward arrow and the terminal vertex using an outward arrow. In
terms of Munn trees, multiplication of elements of FI(X) is carried out in a natural
way, with the product of two trees given by translating the second tree so that its initial
vertex coincides with the terminal vertex of the first. Also, for idempotents e and f in
the free inverse semigroup, e ≤ f if and only if the Munn tree of e can be embedded
into the Munn tree of f , with the initial vertex of e mapped to the initial vertex of f .

P 5.2. Let S denote the free inverse monoid on two generators x and y, let
T = {1, a, a2} be the cyclic group of order three generated by a, let π : S → T be the
unique homomorphism extending φ(x) = φ(y) = a, and let K denote the kernel of π.
Then S is finitely presented and T is finite, but K is not finitely generated.

P. It is clear that the congruence associated with f has three congruence classes,
namely Ca, Ca2 and C1 = K = ker( f ). Also, it is easy to check that the words
ki = xy(x−1y)ix−1y−1 represent elements from K for all i ≥ 1. The Munn tree of ki is
shown in Figure 1. We claim that the element ki cannot be decomposed into a product
of elements from K \ {ki} for any i. Indeed, suppose that we could write ki = bc where
b, c ∈ K. Then MT(b) must be a subtree of MT(ki) with the same initial vertex. Note
that every vertex in MT(ki) other than ι or τ corresponds to an element of Ca or of Ca2 .
Thus the terminal vertex of MT(b) is either τ or ι. In the former case, b = ki. In the
latter case, MT(c) must start at ι and end at τ, so that c = ki. This proves our claim, and
it follows that the set {ki : i = 1, 2, . . .} is contained in every generating set of K, and
so K is not finitely generated. �

It follows from Proposition 5.2 that there is no hope of improving the final statement
of Theorem 4.4 by obtaining a presentation whose finiteness depends only on that of
the original presentation for S , and the finiteness of T . In other words, the nature of
the homomorphism π, and the relationship with the semilattice of idempotents must
also play a role.
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F 1. The Munn tree of ki = xy(x−1y)i x−1y−1. There are i horizontal x and y.

F 2. The Munn tree of ei = (x−1y)i xx−1(y−1 x)i. There are i horizontal y.

Considering again the example in Proposition 5.2 we can see precisely why the set
Q cannot be chosen to be finite. Let n(z, w) denote the number of occurrences of the
letter z in the word w. Let te(w) be the total exponent of the word w in FI, that is,

te(w) = n(x, w) + n(y, w) − n(x−1, w) − n(y−1, w).

With this notation we can now write the congruence classes associated with the
homomorphism f as follows:

Cai = {w ∈ FI : te(w) ≡ i mod 3}.

It is clear that the idempotents x−1x and y−1y belong to Ea, and the idempotents
xx−1 and yy−1 belong to Ea2 . (Recall the notation Et from Section 2.) It follows
that the idempotents (x−1y)ixx−1(y−1x)i also belong to Ea2 for all i ≥ 1. The element
ei = (x−1y)ixx−1(y−1x)i is represented by the Munn tree in Figure 2.

These idempotents are all maximal in Ea2 . Indeed, notice that any vertex of MT(ei)
other than R corresponds to an element of Ca or C1. Hence no idempotent larger than
ei belongs to Ea2 . In this way we obtain an infinite set of maximal idempotents in the
congruence class Ea2 . But Fa2 is meant to have the property that every e ∈ Ea2 lies
below some member of Fa2 . This means that Fa2 cannot be chosen to be finite, and
hence the set Q cannot be chosen to be finite.

R 5.3. The example in Proposition 5.2 highlights a major difference in
behaviour of the free inverse semigroup and the free group, since it is well known (see
[33, Theorem 2.10]) that if π : F→G is a homomorphism from a finitely generated
free group F onto a group G, then the kernel K of π is finitely generated if and only if G
is finite (this fact is usually referred to as Greenberg’s theorem). Of course, this leaves
us with the following natural problem: characterise the finitely generated kernels of
free inverse semigroups (the example above shows that finiteness of the image is not
enough to ensure finite generation of the kernel).
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Let us now introduce a finiteness condition that guarantees finite generation and
presentability of the kernel.

D 5.4. Let (S , π) be an extension of K by T . For t ∈ T let Ct = π−1(t) and
Et = {s−1s : s ∈Ct}. If, for every t ∈ T , the set of maximal elements M(Et) of Et is
finite, and every element of Et lies below some element of M(Et), we say that the
homomorphism π is finitely covered.

Clearly if π is finitely covered and T is finite, then all the sets Ft (where t ∈ T ) can
be chosen to be finite, and hence Q will be finite. Thus, with this notion, as corollaries
of Theorems 4.4 and 3.2 we obtain the following result.

T 5.5. Let S be an inverse semigroup and suppose that (S , π) is an extension
of K by T . If T is finite and π is finitely covered, then the following results hold.

(i) The semigroup S is finitely generated if and only if K is finitely generated.
(ii) The semigroup S is finitely presented if and only if K is finitely presented.

Of course, in the case of groups the finitely covered hypothesis is always satisfied
(for any homomorphism π) since a group has only finitely many idempotents (indeed,
just one). Hence, in particular, Theorem 5.5 has the corresponding group theoretic
result as a corollary. However, Theorem 5.5 is more widely applicable. We now list
some situations where it can be applied.

Let S be an inverse semigroup and suppose that (S , π) is an extension of K by T . If
any of the following are satisfied, then π is finitely covered.

(i) The semigroup S has finitely many idempotents.
(ii) The poset (E(S ), ≤) is the reverse of a well-ordering (that is, every subset has a

maximal element).
(iii) The homomorphism π is an F-morphism (in the sense of [29]).
(iv) The homomorphism π induces a Billhardt congruence (in the sense of [8] or [28,

Section 5.3]).

A natural class of examples of inverse semigroups with property (i) is given by finitely
generated inverse subsemigroups of the monoid Mn(K) of all n × n matrices over a
field K; see [43, Lemma 7.24]. Examples of (ii) include the bicyclic monoid, and,
more generally, Bruck–Reilly extensions of groups (see [28, Section 5.4]).

R 5.6. The example in Proposition 5.2 shows that if we remove the condition
that π is finitely covered, then Theorem 5.5 no longer holds. However, it would be of
interest to investigate to what extent (if any) the finitely covered hypothesis might be
weakened, while still maintaining the result.

R 5.7. The example in Proposition 5.2 demonstrates that the finitely covered
hypothesis is necessary in order to prove the forward direction of Theorem 5.5(i)
and (ii). However, there still remains the question of whether the finitely covered
hypothesis is really necessary for the other direction of the theorem. We leave this as
an open problem.

5.3. The word problem. Recall that we say an inverse semigroup S with finite
generating set A has a soluble word problem (with respect to A) if there exists an
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algorithm, which, for any two words u, v ∈ (A ∪ A−1)∗, decides whether the relation
u = v holds in S or not. It is easy to see that solubility of the word problem does not
depend on the choice of finite generating set for S .

The following result concerning the word problem follows straight from the
arguments in the proof of Theorem 3.2. We leave the task of filling in the details
as an exercise for the reader.

T 5.8. Let S be a finitely generated inverse semigroup and suppose that (S , π)
is an extension of K by T . If T is finite, and π is finitely covered, then S has a soluble
word problem if and only if K has a soluble word problem.

5.4. Residual finiteness. A semigroup S is residually finite if, for any two distinct
elements s, t ∈ S , there exists a congruence η of finite index (that is, with finitely many
congruence classes) that separates these elements, that is, sη , tη. The property of
residual finiteness in semigroups and inverse semigroups has been considered, for
example, in [4, 22].

Let S be an inverse semigroup and suppose that (S , π) is an extension of K by T .
All the notation (such as Ct, Et, Ft, Q) introduced in Section 2 will remain in force.
Moreover, throughout this subsection we will assume that the homomorphism π is
finitely covered.

We begin with some results concerning the construction and manipulation of
congruences on semigroups. Every equivalence relation ρ on the semigroup S gives
rise to a right congruence Σr(ρ), the largest right congruence contained in ρ [26,
Section 1.5]. Similarly we can define Σl(ρ), the largest left congruence of S contained
in ρ, and Σ(ρ), the largest two-sided congruence of S contained in ρ.

The next proposition tells us that any finite index right congruence on S can be
refined to give a finite index two-sided congruence.

P 5.9 [39, Theorem 2.4]. Let ρ be a right congruence on S . If ρ has finite
index, then Σ(ρ) has finite index as well.

As a consequence, in order to show that a semigroup S is residually finite, it is
sufficient to prove that, whenever x, y ∈ S and x , y, there exists a right congruence ρ,
with finite index, such that xρ , yρ. For any congruence η on K, we define a relation
η̄ on S as follows: x η̄ y if and only if π(x) = π(y) and there exist p1, . . . , pk ∈ S and
u1, . . . , uk, v1, . . . , vk ∈ K such that

x = u1 p1, π(x) = π(p1),

v1 p1 = u2 p2, (u1, v1) ∈ η, π(v1 p1) = π(p2),

v2 p2 = u3 p3, (u2, v2) ∈ η, π(v2 p2) = π(p3),

· · · , · · · , · · · ,

vk−1 pk−1 = uk pk, (uk−1, vk−1) ∈ η, π(vk−1 pk−1) = π(pk),

vk pk = y, (uk, vk) ∈ η, π(vk pk) = π(y).

(5.1)

L 5.10. The relation η̄ is a right congruence on S .
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P. The relation η̄ is clearly reflexive and symmetric. Transitivity is proved by
noting that concatenating two sequences of the form (5.1) yields another sequence
of the same form. Likewise, multiplying all the terms in the sequence (5.1) by a
fixed element of S yields another sequence of the same form, proving that η̄ is a right
congruence. �

L 5.11. If x, y ∈ S and x η̄ y, then there exists a sequence of the form (5.1) in
which every pi belongs to the set Q.

P. Start with an arbitrary sequence of the form (5.1). Then, applying Lemma 2.1,
write pi = kiqi where ki ∈ K, qi ∈ Q and π(pi) = π(qi). Then we have ui pi = (uiki)qi and
vi pi = (viki)qi where uiki, viki ∈ K and (uiki, viki) ∈ η. Also

π(vikiqi) = π(vi pi) = π(pi+1) = π(qi+1)

for all i. Thus, replacing each ui by uiki, each vi by viki, and each pi by qi yields a
sequence with the desired properties. �

L 5.12. If η has finite index, then η̄ has finite index as well.

P. Let R be a fixed transversal of the η-classes of K. We claim that the finite
set RQ = {rq : r ∈ R, q ∈ Q} intersects every η̄-class of S . Let x ∈ S be arbitrary. By
Lemma 2.1 write x = kq where k ∈ K, q ∈ Q and π(x) = π(q). Let r ∈ R be the unique
element satisfying (k, r) ∈ η, and let y = rq. Now

x = kq, rq = y, (k, r) ∈ η

where π(x) = π(q) and π(rq) = π(y), since rq = y. It follows from the definition of η̄
that x η̄ y = rq, and the lemma is proved. �

L 5.13. Given a congruence η on K of finite index there exists a congruence η′

of finite index on S that refines η, that is, if xη′ y and x, y ∈ K, then xηy.

P. By Lemmas 5.10 and 5.12, η̄ is a right congruence of finite index on S . We
claim that η̄ refines η. Assume that x, y ∈ K and x η̄y. Suppose that ui, vi, qi (where
i = 1, . . . , k) are the parameters in a sequence (5.1) connecting x to y. By Lemma 5.11,
we may assume that qi ∈ Q. Since x ∈ K and π(x) = π(q1), it follows that q1 ∈ K. Since
v1, q1 ∈ K, it follows that their product v1q1 ∈ K and, since π(q2) = π(v1q1), we have
q2 ∈ K. Continuing this way we see that qi ∈ K for all i. Now since η is a congruence
on K, and all of the parameters ui, vi and qi belong to K,

x = u1q1 ηv1q1 = u2q2 ηv2q2 = u3q3 ηv3q3

= u4q4 η · · · ηvk−1qk−1 = ukqk ηvkqk = y

and so xηy. Therefore η̄ is a right congruence on S of finite index refining η. Now
the result follows by setting η′ = Σ(η̄), which by Proposition 5.9 is a finite index
congruence on S refining η. �
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T 5.14. Let S be an inverse semigroup and suppose that (S , π) is an extension
of K by T . If T is finite and π is finitely covered, then S is residually finite if and only
if K is residually finite.

P. The property of being residually finite is inherited by all subsemigroups so, in
particular, if S is residually finite, then K is residually finite.

Conversely, assume that K is residually finite and let x and y be arbitrary distinct
elements of S . If π(x) , π(y), then these two elements are separated by the congruence
of finite index associated with π. Hence assume that π(x) = π(y). We claim that at
least one of the inequalities xx−1 , xy−1 or yy−1 , xy−1 holds. Indeed, if xx−1 = xy−1,
then x−1 = x−1xy−1, which implies that x−1 ≤ y−1 and consequently x ≤ y. Similarly,
yy−1 = xy−1 implies y ≤ x, and the claim follows. Assume that xx−1 , xy−1 (the other
case being treated similarly). Now π(x) = π(y), so xy−1 ∈ K. Since xx−1 also belongs
to K, there exists a finite index congruence η on K that separates xx−1 and xy−1.
By Lemma 5.13, there exists a congruence η′ of finite index on S that refines η;
in particular (xx−1, xy−1) < η′. Note that (x, y) < η′, for otherwise we would have
(x−1, y−1) ∈ η′, and hence (xx−1, xy−1) ∈ η′. Thus η′ has finite index and separates
x and y, completing the proof. �

R 5.15. It is natural to ask whether or not the assumption in the theorem above
that π is finitely covered is really necessary. We leave this as an open problem.

6. Homomorphisms with finite kernel

Let S be an inverse semigroup and suppose that (S , π) is an extension of K by T .
In the previous section, we looked at the relationship between properties of S and
those of K under the assumption that T is finite. In this section, we make a few initial
observations regarding the study of the relationship between properties of S and those
of T , under the assumption that K is finite. Recall from the introduction the motivation
for doing this: in the case of finitely generated groups these assumptions force S and T
to be quasiisometric and hence to share many interesting properties.

The approach here is quite different to that used in previous sections to relate
S and K. The point here is that when K is finite, it follows that E(S ) is finite, and
this often allows one to reduce things to the study of maximal subgroups.

We begin with a positive result.

T 6.1. Let S be an inverse semigroup and suppose that (S , π) is an extension
of K by T . If S is finitely presented and K is finite, then T is finitely presented.

P. Since K is finite, it follows that each of E(S ) and E(T ) is finite. It is well known
(see [38, Corollary 4.8]) that an inverse semigroup with finitely many idempotents is
finitely presented if and only if all of its maximal subgroups are finitely presented. Let
H be an arbitrary group H-class of T . Clearly the preimage π−1(H) is an inverse
subsemigroup of S . Let e denote the unique minimal idempotent in the inverse
semigroup π−1(H), and let Ge be the maximal subgroup of S with idempotent e. Then it
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is easy to see that the restriction ψ of π to Ge is a surjective homomorphism from
Ge onto H. However, since K is finite, it follows that the kernel of ψ, in the usual
group-theoretic sense, is finite. Since S is finitely presented, and E(S ) is finite, it
follows that the group Ge is finitely presented, which, since ψ : Ge→ H is a surjective
group homomorphism with finite kernel, implies that H is finitely presented. Since H
was arbitrary we conclude that all the maximal subgroups of T are finitely presented,
which, since E(T ) is finite, implies that T itself is finitely presented. �

However, the converse of Theorem 6.1 does not hold, as the following example
demonstrates.

E 6.2. Consider a triple (G, H, φ) where G is a finitely presented group, H is a
group that is not finitely presented, assumed to be disjoint from G, and φ : H→G is an
embedding. Let S denote the monoid with elements G ·∪ H and multiplication given
by the following rule. Given x, y ∈ S , if x, y ∈ H, then we multiply as in H; if x, y ∈G,
then we multiply as in G; if x ∈ H and y ∈G, then take the product of φ(x) and y in G;
if x ∈G and y ∈ H, then take the product of x and φ(y) in G. (This is a special case of
the classical Clifford semilattice of groups construction; see [26, Section 4.2].)

Define π : S →G by π(g) = g for all g ∈G, and π(h) = φ(h) for all h ∈ H. Then
(S , π) is an extension of K = E(S ) by G, K is finite and G is finitely presented, but S
is not finitely presented since H is not finitely presented, and H is a subsemigroup of
S with ideal complement.

On the other hand, in the special case of idempotent separating homomorphisms,
the converse does hold.

T 6.3. Let S be an inverse semigroup. Suppose that (S , π) is an extension of K
by T where K is finite and π is idempotent separating. Then S is finitely presented if
and only if T is finitely presented.

P. The direct implication was proved in Theorem 6.1.
For the converse, suppose that T is finitely presented. Let H be an arbitrary group

H-class in S . Since the homomorphism π is idempotent separating, it follows that
for all x, y ∈ S , we have xH y in S if and only if π(x)H π(y) in T . It follows that H
is the preimage under π of a group H-class L of T . Therefore, the restriction ψ of π
to H defines a surjective group homomorphism ψ : H→ L with finite kernel. Since T
is finitely presented, L is finitely presented, and hence H is finitely presented. Since
H was arbitrary, it follows that all maximal subgroups of S are finitely presented, and
we conclude that S itself is finitely presented. �

6.1. The homological finiteness property FPn. Let S be a monoid and ZS be the
monoid ring over the integers Z. The monoid S is of type left-FPn, where n ≥ 0, if
there is a resolution

Fn→ Fn−1→ · · · → F1→ F0→ Z→ 0
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of the trivial left ZS -module Z in which F0, F1, . . . , Fn are finitely generated free
left ZS -modules. For inverse monoids, the properties left-FPn and right-FPn are
equivalent, so we simply speak of an inverse monoid of type FPn.

The property FPn was introduced for groups by Bieri in [6] and since then has
received a great deal of attention in the literature; see, for instance, [5, 7, 15, 31].
In monoid and semigroup theory, the property FPn arises naturally in the study of
string rewriting systems (that is, semigroup presentations). A finite complete rewriting
system is a finite presentation for a monoid of a particular form (both confluent
and Noetherian), which in particular gives a solution of the word problem for the
monoid; see [11] for more details. Therefore it is of considerable interest to develop
an understanding of which monoids are presentable by such rewriting systems. The
connection between complete rewriting systems and homological finiteness properties
is given by a result of Anick [3] (see also [12]), which shows that a monoid that
admits such a presentation must be of type FP∞ (meaning type FPn for all n).
More background on the importance of the property FPn and other related finiteness
conditions in semigroup theory, and the connections with the theory of string rewriting
systems, may be found in the survey articles [18, 36].

T 6.4. Let S be an inverse monoid. If (S , π) is an extension of K by T and K is
finite, then S is of type FPn if and only if T is of type FPn.

P. It follows from [24, Theorem 3] that an inverse monoid V with a minimal
idempotent e has type FPn if and only if the maximal subgroup He has type FPn. Let
GS and GT be the minimal groups of the monoids S and T respectively. The restriction
ψ of π to GS is a group homomorphism with finite kernel that maps GS surjectively
onto GT . It follows that all the following are equivalent: S is of type FPn; GS is of
type FPn; GT is of type FPn (by the main result of [2]); T is of type FPn. �
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