Locally irredicible rings

C. Vinsonhaler and W. Wickless

Abstract

In the study of torsion-free abelian groups of finite rank the notions of irreducibility, field of definition and $E-r i n g$ have played significant rôles. These notions are tied together in the following theorem of R. S. Pierce:

THEOREM. Let R be a ring whose additive group is torsion free finite rank irreducible and let Γ be the centralizer of $Q R$ as a $Q E(R)$ module. Then Γ is the unique smallest field of definition of R. Moreover, $\Gamma \cap R$ is an E-ring, in fact, it is a maximal E-subring of R. In this paper we consider extensions of Pierce's result to the infinite rank case. This leads to the concept of local irreducibility for torsion free groups.

1. Introduction

A group G (in this paper the word group will always mean torsionfree abelian group) is called irreducible if $\begin{array}{r}Q G(Q \otimes G) \\ Z\end{array}$ $Q E(Q \otimes E)$-module, where E is the ring of endomorphisms of G. These groups have been studied extensively by J. D. Reid [10], [11], [12] and play an important role in the theory of torsion-free groups of finite rank.

Let R be a ring (all rings in this paper have an identity and have a torsion-free additive group). A subfield F of the centre of $Q R$ is called a field of definition of R if $(F \cap R) x_{1} \oplus \ldots \oplus(F \cap R) x_{n}$ is of

Received 29 March 1985

[^0]finite index in R for some F-independent subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset R$. The concept of field of definition first appeared in [3] and [7] in the study of subrings of simple algebras, and subsequently has appeared frequently in various contexts, (for instance see [6] or [9]).

A ring R is called an E-ring if the embedding $x \rightarrow x_{\ell}$ of R into End $(R+)$ is onto. Here x_{ℓ} means left multiplication by x. Schultz introduced the term $E-r i n g$ in [14]. A further study of $E-r i n g s$ was made by Bowshell and Schultz in [4]. In spite of their seemingly specialized nature, E-rings have appeared frequently in the literature (see [1], [2], [12], [5], [7]).

In the finite rank case the concepts of irreducibility, field of definition and E-ring are tied together in the following theorem, which first appeared in [7].

THEOREM. Let R be a (torsion-free reduced) ring of finite rank which is irreducible as an additive group. Let $\Gamma=\operatorname{Hom}_{Q E}(Q R, Q R)$. Then:
(1) Γ is a subfield of the centre of $Q R$ and Γ is the unique smalzest field of definition of R.
(2) $\Gamma \cap R$ is an E-ring. In fact, $\Gamma \cap R$ is a maximal E-subring of R.

It is easy to verify that if R is irreducible, then so is R_{p}, the localization of R at an integral prime p. In this paper we study torsion free rings R for which each R_{p} is irreducible. We are able to generalize the above theorem, even in certain infinite rank cases. Our work is based on [3], [7] and [9], which are fundamental references for this paper.

Our notation is fairly standard. Specifically : $Z_{p}, \hat{Z}_{p}, \hat{Q}_{p}$ stand for the ring of integers localized at p, the ring of p-adic integers and the field of p-adic numbers, respectively. The symbols \doteq and $\xlongequal[\sim]{\approx}$ denote quasi-equality and quasi-isomorphism, while the symbols \oplus and x represent group direct sum and ring direct sum, respectively.

A ring R is called p-local provided $q R=R$ for all primes $q \neq p$.
If R is a p-local ring, then \hat{R} denotes $\hat{Z}_{p}{\underset{Z}{Q}}_{R}$ with the natural ring
structure, and $\hat{Q} \hat{R}$ represents $Q \underset{Z}{\otimes} \hat{R} \simeq \hat{Q}_{\underset{Z}{\otimes}}^{\otimes} R$. Following [9], let $L(R)$
be the maximal divisible subgroup of \hat{R}. Note that if we regard $Q \hat{R}$ as a $Q E$-module in the natural way, then $L(R)$ is a $Q E$-submodule of $Q \hat{R}$.

1. The local case

Throughout this section R will be a torsion-free p-local reduced ring which is irreducible as an abelian group. In particular, $Q R$ is a simple $Q E$-module and $\Gamma=\operatorname{Hom}_{Q E}(Q R, Q R)$ is a division ring. More specifically, Γ can be identified with a subfield of the centre of $Q R$, since the elements of Γ commute with all left and right multiplications by elements of $Q R$. Furthermore, by the Jacobson Density Theorem, $Q E$ is a dense subring of $\operatorname{Hom}_{\Gamma}(Q R, Q R)$. An important class of irreducible rings is the class of rings R for which $Q R$ is a simple Q-algebra. These rings are irreducible since $Q E$ contains left and right multiplications by elements of $Q R$.

We start with a technical lemma, which is a modification of Theorem 3.1 of [9].

LEMMA 1.1. $L(R)=Q \hat{R}(\hat{\Gamma} \cap L(R))$.
Proof. Let $N=Q \hat{R}(\hat{\Gamma} \cap L(R)) \subset L(R)$. Note that N is a $Q E$-submodule of $L(R)$. Suppose there exists $w \in L(R) \backslash N$. Since $w \in Q \hat{R}$, write $w=\alpha_{1} x_{1}+\ldots+\alpha_{r_{r}} x_{r}$, with $\alpha_{i} \in \hat{Q}_{p}$ and $x_{i} \in Q R$. We may assume w has been chosen so that r is minimal. Clearly, $\alpha_{i} \neq 0, x_{i} \neq 0$ for each i. Moreover, since both $L(R)$ and N are \hat{Q}_{p}-modules, we may take $\alpha_{1}=1$.

Since $Q R$ is simple over $Q E$ we can choose $f \in Q E$ so that $f\left(x_{1}\right)=1$. Then $w^{\prime}=f(w)=1+\alpha_{2} f\left(x_{2}\right)+\ldots+\alpha_{r} f\left(x_{r}\right) \in L(R)$. In particular, since $L(R) \neq Q \hat{R}, r \geq 2$. Suppose $w^{\prime} \epsilon N$. Then $x_{1} w^{\prime} \in N$ and $\omega-x_{1} w^{\prime}=\alpha_{2}\left(x_{2}-x_{1} f\left(x_{2}\right)+\ldots+\alpha_{p}\left(x_{r}-x_{1} f\left(x_{r}\right)\right)\right.$ belongs to $L(R) \backslash N$, contradicting the minimality of r. Thus, $w^{\prime} \& N$.

For all $c \in Q R, \phi \in Q E(R)$, denote

$$
\Delta(c, \phi)=\phi(c) w^{\prime}-\phi\left(c w^{\prime}\right)=\sum_{i=2}^{r} \alpha_{i}\left[\phi(c) f\left(x_{i}\right)-\phi\left(c f\left(x_{i}\right)\right]\right.
$$

Then $\Delta(c, \phi) \in L(R)$, hence $\Delta(c, \phi) \in N$ by minimality of r. Suppose, for all c, ϕ and i, that $\phi(c) f\left(x_{i}\right)=\phi\left(c f\left(x_{i}\right)\right)$. Then, by definition of $\Gamma, f\left(x_{i}\right) \in \Gamma$ for each i. But this implies $w^{\prime} \in N$, a contradiction. Therefore, there exist $c \in Q R, \phi \in Q E(R)$ and i such that $e=\phi(c) f\left(x_{i}\right)-\phi\left(c f\left(x_{i}\right)\right) \neq 0$. Without loss of generality, take $i=r$.

Choose $\theta \in Q E$ with $\theta(e)=f\left(x_{r}\right)$. Then
$w^{\prime}-\theta[\Delta(c, \phi)] f\left(x_{r}\right)=1+\sum_{i=2}^{r-1} \alpha_{i} y_{i}$, where $\alpha_{i} \in \hat{Q}_{p}$ and
$y_{i}=f\left(x_{i}\right)-\theta\left[\phi(c) f\left(x_{i}\right)-\phi\left(c f\left(x_{i}\right)\right)\right] f\left(x_{r}\right) \in Q R$. Since
$w^{\prime}-\theta[\Delta(c, \phi)] f\left(x_{r}\right)$ belongs to $L(R), w^{\prime}$ also belongs to N by minimality of r. However, $\theta[\Delta(c, \phi)] f\left(x_{r}\right) \in N$ as well, implying $w^{\prime} \in N$. This final contradiction completes the proof.

For the remainder of this section we make the additional assumption that the ring R has finite p-rank.

The next lemma goes back to Beaumont-Pierce [3]. See also Lady [6] , and Pierce-Vinsonhaler [9].

LEMMA 1.2. $Q E=\{f \in$ End $(Q R) \mid f[L(R)] \subset L(R)\}$.
Proof. Under the usual identifications, $R=\hat{R} \cap Q R$. Moreover, $\hat{R}=L(R) \oplus F$, where F is a finite rank free \hat{Z}_{p}-module (since R has finite p-rank). Therefore, if $f \in \operatorname{End}(Q R)$ and $f[L(R)] \subset L(R)$, then $p^{k} f(\hat{R}) \subset \hat{R}$. This implies $p^{k_{f}} \in E(R)$. Since $L(R)$ is an $E(R)$-submodule of \hat{R}, the equality follows.

The ideas involved in the next theorem have been used repeatedly. See Pierce [7], Lady [6], Bowshell-Schultz [4], Pierce-Vinsonhaler [9] .

THEOREM 1.3. Let R be a reduced p-local ring of finite p-rank, which is irreducible as an abelian group, and let $\Gamma=\operatorname{Hom}_{Q E}(Q R, Q R) \quad, C=\Gamma \cap R$.

Then: (1) $Q E=\operatorname{Hom}_{\Gamma}(Q R, Q R)$;
(2) $R \stackrel{\sim}{2}(\Gamma \cap R) x_{1} \oplus \ldots \oplus(\Gamma \cap R) x_{n}$ for some $\left\{x_{1}, \ldots, x_{n}\right\} \subset R$;
(3) r is the smallest field of definition of R;
(4) C is an E-ring.

Proof. (1) As previously remarked, $Q E$ is a dense subring of $H_{\Gamma}(Q R, Q R)$. To show the reverse inclusion we apply Lemmas 1.1 and 1.2. Let $f \in \operatorname{Hom}_{\Gamma}(Q R, Q R)$. Then

$$
f[L(R)]=f[Q \hat{R}(\hat{\Gamma} \cap L(R)]=f(Q \hat{R})(\hat{\Gamma} \cap L(R)] \subset Q \hat{R}(\hat{\Gamma} \cap L(R))=L(R) .
$$

By Lemma 1.2, $f \in Q E(R)$.
(2) Let $0 \neq x \in R$. Then $\Gamma x \oplus M=Q R$ for some Γ-submodule M of $Q R$. Define $\theta_{x}: Q R \rightarrow \Gamma \subset Q R$ by $\theta_{x}(s x+m)=s$. Then, by (1), $\theta_{x} \in Q E$. Choose a positive integer k such that $k \theta_{x} \in E(R)$. Let $r=(s x+m) \in R$. Then $k \theta_{x}(r)=k s \in \Gamma \cap R$. It follows that $R \doteq(\Gamma \cap R) x \oplus M \cap R$. Continue to split off quasi-summands of R in this way. The process must stop after a finite number of steps because R is reduced and of finite p-rank.
(3) Suppose F is a field contained in the center of $Q R$ with $R \doteq(F \cap R) y_{1} \oplus \ldots \oplus(F \cap R) y_{m}$ for some $\left\{y_{1}, \ldots, y_{m}\right\} \subset R$. Then $H=\operatorname{Hom}_{F}(Q R, Q R) \subset Q E$. Since $Q R$ is a vector space over F we have $F=\operatorname{Hom}_{H}(Q R, Q R) \supset \operatorname{Hom}_{Q E}(Q R, Q R)=\Gamma$.
(4) Since $Q C=Q(\Gamma \cap R)=\Gamma$ is a field, then C is irreducible. Moreover, as a pure subring of R, C is p-local and of finite p-rank. Let $\Gamma^{\prime}=\operatorname{Hom}_{Q E(C)}(Q C, Q C)$. By (2), $C=\left(\Gamma^{\prime} \cap C\right) y_{1} \oplus \ldots \oplus\left(\Gamma^{\prime} \cap C\right) y_{m}$ for some $\left\{y_{1}, \ldots, y_{m}\right\} \subset C . \quad$ This, combined with the result (2) for R, implies that Γ^{\prime} is a field of definition for R. By (3), $\Gamma^{\prime} \supset \Gamma$. Since we are regarding Γ^{\prime} as a subring of $Q C=\Gamma$, then $\Gamma^{\prime}=\Gamma$. That is,

$$
\Gamma=\Gamma^{\prime}=\operatorname{Hom}_{Q E(C)}(Q C, Q C)=\operatorname{Hom}_{Q E(C)}(\Gamma, \Gamma) .
$$

It follows that $Q E(C) \subseteq \operatorname{Hom}_{\Gamma}(\Gamma, \Gamma)=\Gamma$ and, hence, that $E(C)=E(\Gamma \cap R)=\Gamma \cap R$.

2. The global case

In this section we consider torsion-free reduced rings R for which each localization R_{p} satisfies the conditions of Section $1: R_{p}$ is irreducible and of finite p-rank. We call such a ring locally irreducible.

For each prime p, let $\Gamma(p)=\Gamma(R, p)=\operatorname{Hom}_{Q E\left(R_{p}\right)}(Q R, Q R)$, and let $\Gamma=\Gamma(R)$ be the subring of the center of $Q R$ generated by $\{\Gamma(p) \mid p$ prime $\}$. We will see that in some ways, Γ acts like a smallest field of definition of R. In particular, we have

LEMMA 2.1. If F is a field of definition of R, then $\Gamma(R) \subset F$.
Proof. By definition, $\Gamma(p)=\operatorname{Hom}_{Q E\left(R_{p}\right)}(Q R, Q R)$. On the other hand, if F is a field of definition of R then $\operatorname{Hom}_{Q E(R)}(Q R, Q R) \subset F$. Finally, since $Q E(R) \subset Q E\left(R_{p}\right)$, then $\operatorname{Hom}_{Q E\left(R_{p}\right)}(Q R, Q R) \subset \operatorname{Hom}_{Q E(R)}(Q R, Q R)$. It follows that $\Gamma(p) \subset F$ for all primes p, so that $\Gamma(R) \subset F$.

LEMMA 2.2. If R is locally irreducible, then $Q E(R) \subset \operatorname{Hom}_{\Gamma(R)}(Q R, Q R)$.
Proof. Let $f \in Q E(R)$. Then for all primes $p ; f \in Q E\left(R_{p}\right)$, and therefore f commutes with $\Gamma(p)$. It follows that f commutes with $\Gamma(R)$

The next lemma describes the structure of Γ.
LEMMA 2.3. Let R be locally irreducible and $\Gamma=\Gamma(R)$. Then:
(1) there exist primes p_{1}, \ldots, p_{n} such that $\Gamma=\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n}\right)$ is the subring generated by $\Gamma\left(p_{1}\right), \ldots, \Gamma\left(p_{n}\right)$;
(2) $\Gamma \simeq F_{1} \times \ldots \times F_{m}$, where each F_{i} is a field;
(3) if e_{i} is the central idempotent of $Q R$ corresponding to the identity of F_{i}, then $\Gamma\left(e_{i} R\right) \supset e_{i} \Gamma=F_{i}$.

Proof. (1) Let p_{1}, p_{2}, \ldots be a listing of the primes p for which $p R \neq R$. Then $\Gamma\left(p_{1}\right) \subset \Gamma\left(p_{1}\right) \Gamma\left(p_{2}\right) \subset \ldots$ is an ascending chain of $\Gamma\left(p_{1}\right)$ submodules of $Q R$. Since $Q R$ is finite dimensional over $\Gamma\left(p_{1}\right)$ by Theorem 1.3, the chain must stabilize. This implies (1) .
(2) By (1) we can write $\Gamma=\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n}\right)$. Let

$$
F=\Gamma\left(p_{1}\right) \cap \ldots \cap \Gamma\left(p_{n}\right)
$$

Then F is a subfield of each $\Gamma\left(p_{i}\right)$, and a simple argument shows that each $\Gamma\left(p_{i}\right)$ is finite dimensional over F for $1 \leq i \leq n$. Furthermore, each $\Gamma\left(p_{i}\right)$ is a separable extension of F since $\operatorname{char}(R)=0$. Thus $T=\Gamma\left(p_{1}\right) \otimes_{F} \ldots \otimes_{F} \Gamma\left(p_{n}\right)$ is a commutative, separable, finite dimensional algebra over F (see [8], p.188). This implies that T is semisimple and hence a direct product of fields ([8], p.186). However, Γ is a ring epimorphic image of T. Thus $\Gamma \simeq F_{1} \times \ldots \times F_{m}$ for some collection of fields $\quad F_{1}, \ldots, F_{m}$.
(3) This is a routine calculation using the definitions.

To study the relationship between Γ and R, it often suffices, by Lemma 2.3, to assume Γ is a field. We make this reduction whenever it is feasible.

The following simple example shows that even if R is of finite rank, locally irreducible and $\Gamma(R)$ is a field, $\Gamma(R)$ need not be a field of definition for R.

EXAMPLE. Let A be the subgroup of Q generated by $\{1 / p \mid p$ is a prime $\}$, and let $R=Z \oplus A$ with ring structure defined by $(m, a)(n, b)=(m n, m b+n a)$. Then, for each prime $p, R_{p} \cong Z_{p} \oplus Z_{p}$ is irreducible, and $\Gamma(p)=Q \oplus(0)$. Thus, $\Gamma(R)=Q \oplus(0)$. Note that $\Gamma(R)$ is not a field of definition of R. Indeed, R has no field of definition. In this example, $Q E(R)$ is the ring of lower triangular 2×2 rational matrices, while $\operatorname{Hom}_{\Gamma}(Q R, Q R)$ is the ring of all 2×2 rational matrices. Compare with Theorem 1.3 (1).

In the remainder of this section we show that $\Gamma(R) \cap R$ is an E-ring in any case, and that, with an additional assumption, $\Gamma \cap R$ is a quasisummand of R. For the sake of convenience we denote

$$
\operatorname{supp}(R)=\{p \in Z \mid p \text { is prime and } p R \neq R\}
$$

Let $C=C(R)=\Gamma \cap R$, and, for each $p \in \operatorname{supp}(R)$, let
$C(p)=\Gamma(p) \cap R$. plainly, C is the pure subring of the centre of R generated by $\{C(p) \mid p \in \operatorname{supp}(R)\}$. Moreover, by Theorem 1.3, for each $p \in \operatorname{supp}(R), C(p)$ is an $E-$ ring and $R_{p} \simeq\left[C(p){ }_{p}\right]^{n}$ for some $n=n(p)$. We next show C is an E-ring.

THEOREM 2.4. Let R be a locally irreducible ming. Then $C=C(R)$ is an E-ring.

Proof. Let $\phi: C \rightarrow C$ be an endomorphism of C with $\phi(1)=0$. We will show that $\phi=0$. It is an easy exercise to verify that this implies C is an E-ring (or see [4]). For a given prime $p \in \operatorname{supp}(R)$, regard ϕ as an endomorphism of $C_{p} \subset R_{p}$. Note that C_{p} is a $C(p)_{p}$-submodule of R_{p}, which is quasi-equal to a free $C(p)_{p}$ module. If π is (quasi-) projection onto one of the free cyclic summands of R_{p}, then $\pi \phi\left(C(p)_{p}\right)=0$, since $\pi \phi(1)=0$ and $C(p)_{p}$ is an $E-r i n g$. This implies $\phi(C(p))=0$ for each prime $p \in \operatorname{supp}(R)$.

Now let $q \neq p$ be primes in $\operatorname{supp}(R)$ and $0 \neq x \in C(q)$. Then, with π as above, $a \rightarrow a x \rightarrow \pi \phi(a x)$ induces an endomorphism θ of $C(p)_{p}$. Moreover, $\theta(1)=0$ since $\phi(x) \epsilon \phi(C(q))=0$. Since $C(p) p$ is an E-ring, $\theta=0$. It follows that $\pi \phi(C(p) C(q))=0$, and hence that $\phi(C(p) C(q))=0$. An induction argument shows $\phi\left(C\left(p_{1}\right) \ldots C\left(p_{k}\right)\right)=0$ for any primes $p_{1} \ldots . p_{k}$. Hence $\phi(C)=0$ and C is an E-ring.

We next consider the question of finding a necessary and sufficient condition for C to be a quasi-summand of R. We start with a simple lemma from commutative ring theory.

LEMMA 2.5. Let C be a Dedekind domain. Suppose $A \supset B$ are torsion free C-algebras and P is a prime in C with $A_{P} / B_{P} \quad P$-bounded. If $B / P B$ contains no nilpotent ideals, then $A_{P}=B_{P}$.

Proof. By assumption we can write $P^{n} A_{P} \subset B_{P}$ for some $n>0$. Consider $I=P A_{P} \cap B_{P}$, an ideal in B_{P} containing $P B_{P}$. Then $\bar{I}=I / P B_{P}$ is an ideal in $B_{P} / P B_{P}$ with $(\bar{I})^{n}=0$. By assumption, we have $\bar{I}=0$. That is, $P A_{P} \cap B_{P}=P B_{P}$. However, $P C_{P}$ is a principal ideal since C is Dedekind. Thus, $P B_{P}=P A_{P} \cap B_{P}$ implies $B_{P}=A_{P}$.

PROPOSITION 2.6. Let S be a torsion-free reduced algebra over the Dedekind domain C such that C is pure in S and
(1) $Q S$ and $Q C$ are fields,
(2) C has finite p-rank for all integral primes p;
(3) S_{p} is finitely generated over c_{p} for all integral primes $p \in \operatorname{supp}(S)$.
Then S is finitely generated over C.
Proof. If $p \in \operatorname{supp}(S)$, (3) implies that S_{p} is quasi-equal to a finite rank free C_{p}-module. It follows that S has finite p-rank for each prime $p \in \operatorname{supp}(S)$. Furthermore, S_{P} is equal to a finite rank free C_{P}-module for each prime P of C, since such a P must contain an integral prime $p \in \operatorname{supp}(S)$, and C_{P} is a $P I D$.

Let B be the integral closure of C in $Q S$. Then B is a Dedekind domain which is finitely generated as a C-module, with $Q B=Q S$ ([13], p.46). It follows that $\bar{S}=B S$ is quasi-equal to S. To see this note that $I=\{x \in C \mid x \bar{S} \subset S\}$ is a non-zero ideal of C since B is finitely generated over C. Thus, I contains an integer since $Q C$ is a field.

We will show \bar{S} / B is bounded, hence finite. Let P be a prime in C and consider \bar{S}_{P} / B_{P}. By the first paragraph of the proof and the definition of $B, \bar{S}_{P} \doteq S_{P} \doteq B_{P}$ are equal to free C_{p}-modules. Therefore \bar{S}_{P} / B_{P} is P-bounded. If the ring $B_{P} / P B_{P}$ is semi-simple, then \bar{S}_{P} / B_{P} is zero by Lemma 2.5. However, $B_{P} / P B_{P}$ is semi-simple if and only if P is unramified in B, that is, $P B$ is a product of distinct prime ideals of B. This is true for almost all primes P in C by a well-known result from ring theory ([13], p.62). Thus, \bar{S}_{P} / B_{P} is non-zero for at most finitely many primes P_{1}, \ldots, P_{k} in C. Since \bar{S}_{P} / B_{P} is P-bounded for $P=P_{i}, 1 \leq i \leq k$, there exist integers e_{1}, \ldots, e_{k} such that ${ }_{P_{1}}{ }_{1} \ldots P_{k}^{e_{k}} \cdot \bar{S} \subset B$. However, the ideal $P_{1}{ }_{1}{ }_{1} \ldots P_{k}^{e_{k}}$ contains an integer, so that \bar{S} / B is bounded. Thus, $S \doteq \bar{S} \doteq B$ is finitely generated over C.

Let R be locally irreducible and let
$\Gamma(R)=F_{1} \times \ldots \times F_{m}, R \doteq e_{1} R \oplus \ldots \oplus e_{m} R$ be as in Lemma 2.3. Note that $C(R) \doteq e_{1} C(R) \oplus \ldots \oplus e_{m} C(R) \quad$. Let $\bar{C}(R)=\overline{e_{1} C(R)} \oplus \ldots \oplus \overline{e_{m} C(R)}$, where $\overline{e_{i} C(R)}$ denotes the integral closure of the subring $e_{i} C(R)$ in the field F_{i}. We now can state a theorem giving a sufficient condition, in the global case, for $C(R)$ to be a quasi-summand of R.

THEOREM 2.7. Let R be locally irreducible and assume that $\bar{C}(R) \doteq C(R)$. Then $C(R)$ is a quasi-summand of R.

Proof. Denote $C=C(R), \bar{C}=\bar{C}(R)$. It suffices to assume that $Q C=F, F$ a field, since $e_{1} C \oplus \ldots \oplus e_{m} C$ is a quasi-summand of R if and only if each $e_{i} C$ is a quasi-summand of $e_{i} R$. In view of the assumption that $\bar{C} \doteq C$, no harm is done, up to quasi-isomorphism, by assuming $\bar{C}=C$, that is, C is integrally closed in F. Let I be a non-zero ideal in C. Then, as before, I contains an integer and, since C has finite p-rank for all p, we have that C / I is finite. Thus, C is Noetherian, therefore Dedekind.

Next we show that the Beaumont-Pierce Principal Theorem, proved in [3] for torsion free rings of finite rank, holds for the locally irreducible torsion free reduced ring R, provided $C=\bar{C}$ (or, more generally, if $\bar{C} \doteq C)$.

Since $Q R$ is a finite dimensional algebra over $Q C=F$, by the Wedderburn Principal Theorem, $Q R=S^{*} \oplus N^{*}$, where S^{*} is a semisimple subalgebra of $Q R$ and N^{*} is the nil radical of $Q R$. Let $S=S * \cap R$, and $N=N^{*} \cap R$. We show that $R / S \oplus N$ is finite. Following [3], let $S_{1}=\left\{x \in S^{*} \mid x+n \in R\right.$ for some $\left.n \in N^{*}\right\}$. It is easy to check that $S \subset S_{1} \subset S *=Q S$ and that $R / S \oplus N \cong S_{1} / S$. Thus, it suffices to prove that S_{1} / S is finite.

We have enough machinery at our disposal to bypass the computations employed in [3] to establish that S_{1} / S is finite. Write $S^{*}=M_{1} \times \ldots \times M_{j}$ where each M_{i} is a full matrix algebra over a division algebra D_{i}. Up to quasi-isomorphism, it is enough to consider
the case where $S \subset S_{1} \subset S^{*}=M$, a matrix algebra over a division ring D. Since S_{1} and S are full subrings of the simple algebra M, S_{1} and S are finitely generated over their centres, K_{1} and K respectively ([J). Thus, since $Q K_{1}=Q K$ is a field, the rings S_{1} and S are quasi-equal to free modules over K_{1} and K, respectively. It therefore suffices to show that K_{1} / K is finite. To see this, apply Proposition 2.6 to conclude that K_{1} and K are both finitely generated C-modules. Thus K_{1} / K is finite and $R \doteq S \oplus N$. Moreover, it follows that $C \subset S$, since $C \doteq C \cap S \oplus C \cap N$ and $C \cap N=0$.

To complete the proof of Theorem 2.7, we must show that C is a quasi-summand of S. As above, reduce to the case that $C \subset S \subset S^{*}=M$, M a full matrix algebra. Let $\Delta=\operatorname{Hom}_{Q E(S)}(Q S, Q S)$. Then Δ is the unique smallest field of definition for S ([7]). Since multiplication by elements of $F=Q C$ commutes with $Q E(R) \supset Q E(S)$, then $F \subset \Delta$. But, by the first part of the proof, S is finitely generated over C, so that F is a field of definition for S. Hence, $\Delta \subset F$, so $\Delta=F$. Thus $S \doteq(\Delta \cap S)^{t}=(F \cap S)^{t}=C^{t}$ for some positive integer t. Note that we have actually established a little more than was required: namely that, in the general case, $Q C=\Delta_{1} \times \ldots \times \Delta_{j}$, with Δ_{i} the smallest field of definition for $M_{i} \cap R, 1 \leq i \leq j$.

COROLLARY 2.8. Let R be as in Theorem 2.7. Then $C(R)$ is a maximal E subring of R.

Proof. By Theorems 2.4 and 2.7, C is an E-ring which is a (pure) quasi-summand of R. If B is a subring of R with $B \supset C$, then C is a pure quasi-summand of B. It follows that B cannot be an E-ring, since pure quasi-summands of an E-ring must be fully invariant ideals in that ring ([4]), and $l \in C$.

COROLLARY 2.9. Let R be a torsion-free ring of finite rank which is locally irreducible. Then $C(R)$ is a quasi-sumand of R.

Proof. In the finite rank case each F_{i} of Lemma 2.3 is an algebraic number field. It is well known that, in this case, $\bar{C}(R) \doteq C(R)$.

3. An infinite rank example

In this section we construct an example to show that the assumption that $\bar{C} \doteq C$ in Theorem 2.7 cannot be removed completely.

LEMMA 3.1. There exists an infinite set of primes $S=\left\{p_{1}, p_{2}, \ldots\right\}$ such that for $a l l \quad i \neq j, p_{i}$ is a square $\bmod p_{j}$ and such that $p_{i}>i(i+1) / 2$ for all i.

Proof. Let $p_{1}=5$ and assume p_{1}, \ldots, p_{n-1} have been chosen such that each $p_{i} \equiv 1(\bmod 4)$ and such that, for all $i \neq j, p_{i}$ is a square $\bmod p_{j}$. Moreover, assume that $p_{i}>i(i+1) / 2$ for $i \leq n-1$.

The sequence $4 k\left(p_{1}, \ldots, p_{n-1}\right)+1$ contains an infinite number of primes. Let p_{n} be a prime in this sequence with $p_{n}>n(n+1) / 2$. Note that $p_{n} \equiv 1\left(\bmod p_{i}\right)$ is a square $\bmod p_{i}$ for $i \leq n-1$. Since also $p_{n} \equiv 1(\bmod 4)$, quadratic reciprocity applies and each p_{i} is a square $\bmod p_{n}$.

Henceforth, S will denote the set of primes $\left\{p_{1}, p_{2}, \ldots\right\}$ satisfying the conditions of Lemma 3.1. Let $\left\{x_{j}, y_{j} \mid 1 \leq j<\infty\right\}$ be a set of algebraically independent elements over Q. For each prime p we will identify this set with a subset of \mathcal{Z}_{p} which is algebraically independent over Z_{p} in the following way. For each j, let c_{j} and d_{j} be fixed integers. Choose a set $\left\{\alpha_{p j}, \beta_{p j} \mid 1 \leq j<\infty\right\}$ in \hat{z}_{p} of elements algebraically independent over Z_{p}. Identify x_{j} with $c_{j}+p \alpha_{p j}$ and y_{j} with $d_{j}+p \beta_{p j}$. Note that, for all $p,\left\{x_{j}, y_{j} \mid 1 \leq j<\infty\right\}$ is algebraically independent in \hat{Z}_{p}, and $x_{j} \equiv c_{j}, y_{j} \equiv d_{j}\left(\bmod p \hat{z}_{p}\right)$. We will eventually impose additional requirements on c_{j}, d_{j}.

Let $K=Q\left[\left\{x_{j}, y_{j}, \sqrt{P_{j}}\right\}\right]$ be the ring generated by the set of all x_{j}, y_{j}, and $\sqrt{p_{j}}\left(p_{j} \in S\right)$. For each $p \in S$, apply Hensel's Lemma to identify $\sqrt{p_{j}}, p_{j} \neq p$, with an element of \hat{Z}_{p}. We can combine this with
our previous identifications of x_{j}, y_{j} to obtain an embedding of K into $\hat{Q}_{p} \oplus \hat{Q}_{p} \sqrt{p}$.

We now define a ring R by defining the localizations R_{p} for each prime p. For $p \notin S$, let

$$
R_{p}=2_{p}\left[\left\{x_{j}, y_{j}, \sqrt{p_{j}} \mid 1 \leq j<\infty\right\}\right]
$$

For $p \in S$, let $R_{p}=K \cap\left(\hat{z}_{p} \oplus \hat{z}_{p} p \sqrt{p}\right)$. Then $R=\hat{q}_{p} R_{p}$. Note that z_{p} is pure in R_{p} for each prime p. It follows that p-height(1) $=0$ in R for each prime p.

LEMMA 3.2. The integral domain R defined above is an E-ring. Moreover, as an abelian group R is homogenous of type equal to the type of Z.

Proof. It is easy to check that, for $p \in S, R_{p}$ is irreducible of p-rank 2 and $\Gamma(p)=Q\left[\left\{x_{j}, y_{j}, \sqrt{p_{j}} \mid 1 \leq j<\infty p \neq p_{j} \in S\right\}\right] \quad$ (refer to Section 2). For $p \notin S, R_{p}$ is a free Z_{p}-module and $\Gamma(p)=Q$. Thus, $\Gamma(R)=K=Q R$. By Theorem 2.4, R is an E-ring.

To see that R is homogeneous of type equal to the type of Z, pick $0 \neq a \in R$. Since $a \in K$ there exists a positive integer m with $m a=\sum g_{i} h_{i}$, where the sum is finite, $g_{i} \in Z\left[\left\{x_{j}, y_{j} \mid 1 \leq j<\infty\right\}\right]$ and $h_{i} \in Z\left[\left\{\sqrt{p_{j}} \mid 1 \leq j<\infty\right\}\right]$. Let $\bar{g}_{i} \in Z$ be g_{i} evaluated at $x_{j}=c_{j} y_{j}=d_{j}$. Note that for $p \in S, m a \equiv \sum \bar{g}_{i} h_{i} \bmod p R$. Let $b=\left[\bar{g}_{i} h_{i} \in Z\left[\left\{\sqrt{p_{j}} \mid 1 \leq j<\infty\right\}\right] \subset R\right.$. Since b is algebraic over Z, there exists $f(x)=f_{0}+f_{1}+\ldots+f_{n} x^{n} \in Z[x]$ with $f(b)=0$ and $f_{0} \neq 0$. Then $f_{0}=-b\left(f_{1}+\ldots+f_{n-1} b^{n-1}\right)$, and the p-height of b in R is less than or equal to the p-height of f_{0} in R for all p. Thus, in R, type $b \leq$ type $f_{0}=$ type Z. Since for all $p \in S, m a \equiv b(\bmod p R)$, the p-height of $m a$ in R is 0 for almost all $p \in S$. For $p \notin S$, R_{p} is a free Z_{p}-module. It follows that the p-height of $m a$ in R is 0 for almost all $p \notin S$. Finally, since R is p-reduced for all primes
p, the p-height of $m a$ in R is finite for all p. We may conclude that type $a=$ type $m a=$ type 2 .

EXAMPLE 3.3. Let R be the integral domain of 3.2. Then there is an R-algebra A such that
(1) A has rank 2 as an R-module.
(2) A is an E-ring.
(3) $C(A)=R$.
(4) $C(A)$ is not a quasi-summand of A.

Proof. Define a multiplication on $Q R \oplus Q R$ by $\left(r_{1}, r_{2}\right)\left(s_{1}, s_{2}\right)=\left(r_{1} s_{1}+r_{2} s_{2}, r_{1} s_{2}+r_{2} s_{1}\right)$. It is easy to check that this product gives an associative R-algebra structure on $Q R \oplus Q R$. Let A be the R-subalgebra of $Q R \oplus Q R$ generated by $R \oplus R$ and $\left\{\sqrt{p_{j}}\left(x_{j}, y_{j}\right) \mid 1 \leq j<\infty\right\}$, where $S=\left\{p_{1}, p_{2}, \ldots\right\}$ from above. For $p_{i} \in S, A_{p_{i}}$ is the ring generated by $R_{p_{i}} \oplus R_{p_{i}}$ and $\sqrt{p_{i}}\left(x_{i}, y_{i}\right)$, so that $p_{i} A_{p_{i}} \subset R_{p_{i}} \oplus R_{p_{i}} \subset A_{p_{i}}$. Since $\Gamma(R)=Q R$, it is immediate that $\Gamma(A)=Q R \oplus 0$. It is a straightforward calculation to show that $C(A)=\Gamma(A) \cap A=R \oplus 0$. For convenience, we identify R with $R \oplus 0$ in A.

Recall that $x_{j} \equiv c_{j}(\bmod p R), y_{j} \equiv d_{j}(\bmod p R) \quad$ for all primes p, where $c_{j}, d_{j} \in Z$. We now show that c_{j}, d_{j} may be chosen so that A is an E-ring. Let $K_{1}=Q\left[\left\{\sqrt{p_{j}} \mid 1 \leq j<\infty\right\}\right], R_{1}=K_{1} \cap R$. Then R_{1} is a countable pure subring of R. List all pairs $\left(a_{1 k}, b_{1 k}\right) \in R_{1} \oplus R_{1}, 1 \leq k$ where p-height $\left(a_{1 k}, b_{1 k}\right)=0$ in $R_{1} \oplus R_{1}$ for all $p \in S$. Choose c_{1}, $d_{1} \in Z$ so that $c_{1} b_{11}-d_{1} a_{11} \neq 0\left(\bmod p_{1} R_{1}\right)$.

Let $K_{2}=K_{1}\left[x_{1}, y_{1}\right], R_{2}=K_{2} \cap R$. Then R_{2} is a countable pure subring of R containing R_{1}. List pairs
$\left(a_{2 k}, b_{2 k}\right) \in\left(R_{2} \oplus R_{2}\right)-\left(R_{1} \oplus R_{2}\right)$ where p-height $\left(a_{2 k}, b_{2 k}\right)=0$ in $R_{2} \oplus R_{2}$ for all $p \in S$. Choose $c_{2}, d_{2} \in Z$ so that $c_{2} b_{i j}-d_{2} a_{i j} \neq 0\left(\bmod p_{2} R_{2}\right)$ for $i j=11,12$ or 21 .

Inductively define $K_{n}=K_{n-1}\left[x_{n-1}, y_{n-1}\right], R_{n}=K_{n} \cap R$, and list the pairs $\left(a_{n k}, b_{n k}\right)$ in $\left(R_{n} \oplus R_{n}\right)-\left(R_{n-1} \oplus R_{n-1}\right)$ with p-height $=0$ for all $p \in S$. Choose integers c_{n}, d_{n} so that $c_{n} b_{i j}-d_{n} a_{i j} \neq 0\left(\bmod p_{n} R_{n}\right)$ for $1 \leq i<n, 1 \leq j \leq n-i+1$. Note that there are $n(n+1) / 2$ such pairs (i, j). Therefore the choice of c_{n}, d_{n} is easy since p_{n} was chosen larger than $n(n+1) / 2$. In fact we can take $c_{n}=1$. Then observe that, for each pair of indices $i j$, there is at most one choice of d_{n} for which $0 \leq d_{n}<p_{n}$ and $b_{i j}-d_{n} a_{i j} \in p_{n} R$. Since the number of index pairs is $n(n+1) / 2<p_{n}$, there exists at least one choice of d_{n} with $b_{i j}-d_{n} a_{i j} \notin p_{n} R$ for all $i j$. With this choice of c_{j}, d_{j}, the ring A becomes an E-ring. To see this, suppose $\phi: A \rightarrow A$ satisfies $\phi(1)=0$. It suffices to show $\phi=0$. Since $C(A)=R, \phi$ is R-linear (Lemma 2.2). Let $\phi(0,1)=(a, b) \in A \subset Q R \oplus Q R$. Then $\phi(r, s)=s(a, b)$ for all $(r, s) \in A$. Thus, $\phi\left(\sqrt{p_{j}}\left(x_{j}, y_{j}\right)\right)=\sqrt{p_{j}} y_{j}(a, b) \in A$ for all $1 \leq j$. Let m be a positive integer such that $m a, m b \in R$. Then $m a \sqrt{p_{j}}\left(y_{j}, x_{j}\right)=m a \sqrt{p_{j}}\left(x_{j}, y_{j}\right)(0,1) \in A$. Subtraction yields $\left(0, m \sqrt{p_{j}}\left(a y_{j}-b x_{j}\right)\right) \in A$. Hence, $m \sqrt{p_{j}}\left(a y_{j}, b x_{j}\right) \in R$. Let e be the largest integer dividing $m a$ and $m b$ in R and write $m a=e a^{\prime}, m b=e b^{\prime}$. Choose j large enough so that $p_{j}>e$ and $\left(a^{\prime}, b^{\prime}\right)=\left(a_{i k^{\prime}} b_{i k^{\prime}}\right)$ for some $1 \leq i \leq j, 1 \leq k \leq j-i+1$. We may also assume that the fixed elements a^{\prime}, b^{\prime} belong to $Q\left[\left\{\sqrt{p_{r}}, x_{r}, y_{r} \mid r<j\right\}\right]$. Then $\sqrt{p}_{j}\left(m a y_{j}-m b x_{j}\right) \in R$ implies p_{j} divides $m a y_{j}-m b x_{j}$ in R. Hence p_{j} divides $a^{\prime} y_{j}-b^{\prime} x_{j}$ in R, and therefore divides $a^{\prime} d_{j}-b^{\prime} c_{j}=a_{i k} d_{j}-b_{i k} c_{j}$, a contradiction to the choice of c_{j}, d_{j}.

We have shown that A is an E-ring with $C(A)=R \neq A . \quad$ In
particular, $C(A)$ cannot be a quasi-summand of A. This follows, as in the proof of Corollary 2.8, from the fact that any pure quasi-summand of an $E-r i n g$ is a fully invariant ideal in that ring ([4]). But $C(A)$ cannot be an ideal since $l \in C(A)$.

References

[1] D. M. Arnold, "Strongly homogeneous torsion-free groups of finite rank", Proc. Amer. Math. Soc. 56 (1976), 67-72.
[2] D. M. Arnold, R. S. Pierce, J. D. Reid, C. I. Vinsonhaler, W. J. Wickless, "Torsion-free abelian groups of finite rank projective as modules over their endomorphism rings", J. AZgebra 71 (1981), 1-10.
[3] R. A. Beaumont and R. S. Pierce, "Torsion-free rings", IlZinois J. Math. 5 (1961), 61-98.
[4] R. Bowshell and P. Schultz, "Unital rings whose additive endomorphisms commute", Math. Ann. 228 (1977), 197-214.
[5] P. A. Krylov, "Strongly homogeneous torsion-free abelian groups", Siberian Math. J. 24 (1983), 77-84.
[6] L. Lady, "A seminar on splitting rings for torsion-free modules over Dedekind domains", Lecture Notes in Mathematics 1006 Springer-Verlag (1983), 1-49.
[7] R. S. Pierce, "Subrings of simple algebras", Michigan Math. J. 7 (1960), 241-243.
[8] R. S. Pierce, "Associative Algebras", Graduate Texts in Mathematics, Springer-verlag 88 (1982).
[9] R. S. Pierce and C. Vinsonhaler, "Realizing central division algebras", Pacific J. Math. 109 (1983), 165-177.
[10] J. D. Reid, "On the ring of quasi-endomorphisms of a torsion-free group", Topics in Abelian Groups, Chicago, 1963, 51-68.
[11] J. D. Reid, "On rings on groups", Pacific J. Math. 53 (1974), 229-237.
[12] J. D. Reid, "Abelian groups finitely generated over their endomorphism rings" Lecture Notes in Mathematics 874 Springer-Verlag (1981), 41-52.
[13] I. Reiner, "Maximal Orders", London Math. Soc. Monographs, Academic Press (1975).
[14] P. Schultz, "The endomorphism ring of the additive group of a ring", J. Austral. Math. Soc. 15 (1973), 60-69.

Department of Mathematics,
University of Connecticut,
Storrs, Conn. 06268,
U.S.A.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ 22.00+0.00$.

