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LOCALLY IRREDUCIBLE RINGS

C. VlNSONHALER AND W. WlCKLESS

In the study of torsion-free abelian groups of finite rank

the notions of irreducibility, field of definition and

2?-ring have played significant roles. These notions are

tied together in the following theorem of R. S. Pierce:

THEOREM. Let R be a ring whose additive group is

torsion free finite rank irreducible and let r be the

aentralizer of QR as a QE(R) module. Then Y is the

unique smallest field of definition of R . Moreover,

r n R is an E-ring, in fact, it is a maximal E-subring of

R .

In this paper we consider extensions of Pierce's result to

the infinite rank case. This leads to the concept of local

irreducibility for torsion free groups.

1. Introduction

A group G (in this paper the word group will always mean torsion-

free abelian group) is called irreducible if QG (Q ® G) is a simple
Z

QE (Q « E)-module, where E is the ring of endomorphisms of G . These
Z

groups have been studied extensively by J. D. Reid [70] , [7/] , [72] and

play an important role in the theory of torsion-free groups of finite rank.

Let R be a ring (all rings in this paper have an identity and have

a torsion-free additive group). A subfield F of the centre of QR is

called a field of definition of i? if {F n R)x1® ... ffi (.F n R)X is of
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130 C. Vinsonhaler and W. Wickless

f ini te index in R for some F-independent subset {a:.,... ,#M> C R . The

concept of field of definition first appeared in [3] and [7] in the study

of subrings of simple algebras, and subsequently has appeared frequently in

various contexts, (for instance see [6] or [9]).

A ring R i s called an E-ring i f the embedding x -»• X. of R into

End(i?+) is onto. Here x means left multiplication by x . Schultz
introduced the term ff-ring in [ 14 ] . A further study of £-rings was made
by Bowshell and Schultz in [4] . In spite of their seemingly specialized
nature, ff-rings have appeared frequently in the l i terature (see [?] , [2] ,

t m. [5], [7D.

In the finite rank case the concepts of irreducibility, field of

definition and E-rinq are tied together in the following theorem, which

first appeared in [7] .

THEOREM. Let R be a (torsion-free reduced) ring of finite rank

which is irreducible as an additive group. Let V =KomQ^(QRjQR). Then:

(1) r is a subfield of the centre of QR and r is the unique

smallest field of definition of R.

(2) r n R is an E-ring. In fact, T n R is a maximal E-subring of R.

It is easy to verify that if R is irreducible, then so is R , the

localization of R at an integral prime p . In this paper we study

torsion free rings R for which each R is irreducible. We are able to

generalize the above theorem, even in certain infinite rank cases. Our work

is based on [ 3] , [7] and [ 9] , which are fundamental references for this

paper.

Our notation is fairly standard. Specifically : Z , Z , Q stand for

the ring of integers localized at p , the ring of p-adic integers and the

field of p-adic numbers, respectively. The symbols = and = denote

quasi-equality and quasi-isomorphism, while the symbols © and x

represent group direct sum and ring direct sum, respectively.

A ring R is called p-local provided qR = R for all primes qfp .

If R is a p-local ring, then R denotes Z ® R with the natural ring
P Z
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structure, and QR represents Q ® R - 5 ® R . Following [9] , let L(R)
I VZ

be the maximal divisible subgroup of R . Note that if we regard QR as

a QE-module in the natural way, then L(R) is a <2£-submodule of QR .

1. The local case

Throughout this section R will be a torsion-free p-local reduced

ring which is irreducible as an abelian group. In particular, QR is a

simple §2?-module and F = Hom^^iQR ,QR) is a division ring. More
lit,

specifically, T can be identified with a subfield of the centre of QR ,

since the elements of V commute with all left and right multiplications

by elements of QR . Furthermore, by the Jacobson Density Theorem, QE is

a dense subring of HomAQR,QR) . An important class of irreducible rings

is the class of rings R for which QR is a simple ^-algebra. These

rings are irreducible since QE contains left and right multiplications

by elements of QR .

We start with a technical lemma, which is a modification of

Theorem 3.1 of [ 9 ] .

LEMMA 1.1. L(R) =QR(T n L(R)).

Proof. Let N=QRIT n L{R)) C L(R\ . Note that N is a gE-submodule

of L(R\ . Suppose there exists w e HR)\N . Since w e QR , write

W - UyC-, + ... + a x , with o. e Q and x • e QR . We may assume w has

been chosen so that r is minimal. Clearly, ot.^0, x • ̂  0 for each i .

Moreover, since both L(R) and N are Q -modules, we may take a, = 1.

Since QR is simple over QE we can choose f e QE so that

f C x ^ = 1. Then W = f(w) = 1 + c»2/(x2) + . .. + cx^/tx^,) e L{R) . In

particular, since L{R) ? QR , r > 2 . Suppose W e. N . Then x w' e N

and W - x ^ 1 = a 2 ( x 2 - x1/(x 2) + ... + a r ( « r - x^lx )) belongs to

LLR)\N i contradicting the minimality of V . Thus, W' £ N .

For all a e QR , <j> e QE(R) , denote

r
= I a
i=2
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Then A(c,<j>) e L(R) , hence A(c,<j>) e N by minimality of r . Suppose,

for a l l a , <j> and i , t ha t (j>(e)/(x.) = <j>(c/"(x.)) . Then, by def in i t ion of

r , f(x-) e r for each i . But th is implies w' e N , a contradict ion.

is

Therefore, there exist c e Sfl, <j> e SffCi?) and i such that

e = <j)(c)/(x.) - <ji(ef(x.)) 7* 0 . Without loss of generality, take i = r .
Choose B e QE with 6(e) = /(x^) . Then

W - e[A(c,!(i)]/(x ) = 1 + •fr} a.y. , where o. € Q and

«/„• = /(«,•) " e[<f.(e)f(x.) - *(e/(i-))]/(xJ e «fl . Since

w' - 6 [A(e,(())] /(x ) belongs to £(i?) , W also belongs to iV by

minimality of r . However, 6 [A(C,<j>)] /(x ) e i? as well, implying W1 e W .

This final contradiction completes the proof.

For the remainder of this section we make the additional assumption

that the ring R has finite p-rank.

The next lemma goes back to Beaumont-Pierce [3] . See also Lady [6] ,

and Pierce-Vinsonhaler [9].

LEMMA 1.2. QE = {/ e End(QR)\f[L(R)] CL(R)} .

Proof. Under the usual identifications, R = R n QR . Moreover,

R = L(R) © F , where F is a finite rank free 2 -module (since R has

finite p-rank). Therefore, if / e End (QR) and f[L(R)] C L(R) , then

pkf(R) C ff . This implies pkf e £(i?) . Since l(R) is an ECR) -submodule

of ^ , the equality follows.

The ideas involved in the next theorem have been used repeatedly. See

Pierce [7] , Lady [6] , Bowshell-Schultz [4] , Pierce-Vinsonhaler [9] .

THEOREM 1.3. Let R be a reduced p-looal ring of finite p-rank3
which is irreducible as an abelian group, and let

r = HomQE(QR,QR) . c = r n p .

Then: (1) QE = Homr(QR,QR) ;

( 2 ) R =* (T n R ) X l 9 . . . e ( r n R)xn for some { x 1 , . . . , x } c j f ;

( 3 ) T is the smallest field of definition of R ;

(4) C is an E-ring.
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Proof. (.1) As previously remarked, QE is a dense subring of

Ham-(QR,QR) . To show the reverse inclusion we apply Lemmas 1.1 and 1.2.

Let / £ HomT(.QB,QR) . Then

f[L(E)] = f[QR(T n L(i?>] = f(QE) (f n L(i?)] c QR(Y n L(i?)) = £(i?) .

By Lemma 1.2, / e QE(R) .

(2) Let 0 ? x e R . Then Yx ® M = QR for some T-submodule

M of QR . Define 9 : QR •* Y C $/? by 6 (sx+m) = s . Then, by (1) ,

Q e QE . Choose a positive integer k such that fee e E(R) . Let

r = (saH-m) e i? . Then kQ (r) = ks e r n j? . it follows that

R = (J n i?)x ® M <"> i? . Continue to split off quasi-summands of R in this

way. The process must stop after a finite number of steps because R is

reduced and of finite p-rank.

(3) Suppose F is a field contained in the center of QR

with R = (F n if)z/i e ... 6 Ĉ
7 n #)#m for some *#!'•• •'#„,* C fl •

H = Hoitir,(.<<#?,§#) c Sfi1 • Since QR is a vector space over F we have

F = Hom^CiSff.gi?) => Horn (QR.QR) = T .

(4) Since QC = Q(T ̂  R) = T is a field, then C is

irreducible. Moreover, as a pure subring of R , C is p-local and of finite

p-rank. Let T< = Hom^,{C){QC.QC) . By (2),

C = (T> n C)y1 e ... e (T> n C)ym for some ^x'mmm'vmi C C ' T h i s '

combined with the result (2) for R , implies that T' is a field of

definition for R . By t3) , T' ̂ > Y . Since we are regarding I"1 as a

subring of QC = Y , then I"1 = T . That is.

r = I" = HomrtB,,^ (QC.QC) =

QE{

E(C\ = ELY n E) = r

It follows that QE(.C) G Homr(r,D = V and, hence, that
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2. The global case

In this section we consider torsion-free reduced rings R for which

each localization R satisfies the conditions of Section 1: R is

irreducible and of finite p-rank. We call such a ring locally irreducible.

For each prime p , let Tip) = V(R,p) = Horn LQR,QR) , and let

r = T(R) be the subring of the center of QR generated by

{T(p) \p prime} . We will see that in some ways, r acts like a smallest

field of definition of R . In particular, we have

LEMMA 2.1. If F is a field of definition of R , then T(R) C F .

Proof. By definition, T(p) = Horn,™ ff (QR,QR) . On the other hand,

P
if F is a field of definition of R then Horn-,,,,,, (QR.QR) C F . Finally,

Ut\H)
since QE(R) C QE{Rp) , then H o m ^ ^ ) (QR.QR) C Home£,(i?) {QR.QR) • It

follows that T(p) C F for all primes p , so that T(R) C F .

LEMMA 2.2. If R is locally irreducible, then QEIR) c Homr <QR,QR).

Proof. Let f e QE(R) . Then for all primes p , f e QE(R ) , and

therefore / commutes with T(p) . it follows that / commutes with

The next lemma describes the structure of r .

LEMMA 2.3. Let R be locally irreducible and T = V(R) . Then:

(1) there exist primes p.,..,,p such that r = r (p..)... r(p) is

the subring generated by T(p1)3..., r(p ) ;

(.2) r = F1 * ... x? , where each F. is a field;

(3) if e. is the central idempotent of QR corresponding to the

identity of F- , then T(e.R) ̂ > e.T = F. .

Proof. (1) Let p1#p2,... be a listing of the primes p for which

pR ? R . Then Tip^) c r(p1)T(p2) C ... is an ascending chain of H p ^

submodules of QR . Since QR is finite dimensional over Hp.,) by

Theorem 1.3, the chain must stabilize. This implies (1) .
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(2) By (1) we can write T = I1^) .. . T(p ) . Let

F = rtPl) r> _m n T{pn) .

Then F is a subfield of each T(p.) , and a simple argument shows that

each T(p.) is finite dimensional over F for 1 £ i £ n . Furthermore,

each F(p.) is a separable extension of F since char(i?) = 0 . Thus

T = T(p ) 8 . . . ® T(p ) is a commutative, separable, finite dimensional

algebra over F (see [&], p.188). This implies that T is semisimple and

hence a direct product of fields ( [S], p.186). However, r is a ring

epimorphic image of T . Thus r = F x... xF for some collection of

f i e l d s Fl Fm "

(3) This is a routine calculation using the definitions.

To study the relationship between T and R , it often suffices, by

Lemma 2.3, to assume V is a field. We make this reduction whenever it is

feasible.

The following simple example shows that even if i? is of finite rank,

locally irreducible and T(R) is a field, T{R) need not be a field of

definition for R .

EXAMPLE. Let A be the subgroup of Q generated by

{l/p|p is a prime) , and let R = Z ffi A with ring structure defined by

(m,a)(n,b) = {rm,mb+na) . Then, for each prime p , R — Z ® Z is

irreducible, and T(p) = Q © (0) . Thus, V{R) = Q ® (0) . Note that T(i?)

is not a field of definition of R . Indeed, R has no field of definition.

In this example, QE(R) is the ring of lower triangular 2x2 rational

matrices, while Homj,(QR,QR) is the ring of all 2x2 rational matrices.

Compare with Theorem 1.3 (1).

In the remainder of this section we show that T{R) n R is an S-ring

in any case, and that, with an additional assumption, T <^ R is a quasi-

summand of R . For the sake of convenience we denote

supp(i?) = (p e Z|p is prime and pR ? R}.

Let C = C(R) = T ^ R , and, tor each p e supp(#) , let
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C{p) = Ftp) n R . Plainly, C is the pure subring of the centre of R

generated by {C(p) |p e suppCR)} . Moreover, by Theorem 1.3, for each

p e suppCfl) , C(p) is an E-ring and R = [Ctp) 1" for some n = n(p) .

We next show C is an ff-ring.

THEOREM 2.4 . Let R be a loaally irreduoible ring. Then C = C(R)

is an E-ring.

Proof . Let <J> : C -+C be an endomorphism of C w i th <|> CD = 0 . We

w i l l show tha t <f> = 0 . I t i s an easy exercise to verify tha t t h i s implies

C i s an F-r ing (or see [4] ) . For a given prime p e supp(i?) , regard <(>

as an endomorphism of C C R . Note t ha t C i s a C(p) -submodule of

R , which i s quasi-equal to a free C(P)D module. If f i s (quasi-)

p ro jec t ion onto one of the free cyclic summands of R , then

irij)(C(p) ) = 0 , s ince ir<l>(l) = 0 and C"(p) i s an £- r ing . This implies

•KCfp)) = 0 for each prime p e supp(-ff) .

Now l e t q f p be primes in supp(i?) and 0 f x e Ci,q) . Then, with

IT as above, a -*• ax -*• TT<|I(<2X) induces an endomorphism 9 of C(p) .

Moreover, 6(1) = 0 since <)>(x) e <%i(C(q)) = 0 . Since C{p) i s an S-r ing,

6 = 0 . I t follows tha t TT()>(C(p)C(q)) = 0 , and hence that ij>(C(p)C(^)) = 0.

An induction argument shows <b(Clp^).. .C(p-,)) = 0 for any primes

p l f . . . , p ^ . Hence <f>(C) = 0 and C i s an ff-ring.

We next consider the question of finding a necessary and sufficient

condition for C to be a quasi-summand of if . We start with a simple

lemma from commutative ring theory.

LEMMA 2.5. Let C be a Dedekind domain. Suppose A ̂  B are torsion

free c-algebras and P is a prime in C with Ap/Bp P-bounded. If

B/PB contains no nilpotent ideals, then Ap = S_.

Proof. By assumption we can write FVlp C Bp for some n > 0 .

Consider I = PAp n Bp , an ideal in 5_ containing PBp . Then

I = I/PBp is an ideal in Bp/PBp with (J)n = 0 . By assumption, we have

1 = 0 . That is, PAp n Bp = PBp . However, PCp is a principal ideal

since C is Dedekind. Thus, PB = R4 n R implies B = Ap .
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PROPOSITION 2.6. Let S he a torsion-free reduced algebra over the

Dedekind domain C such that C is pure in S and

(1) QS and QC are fields,

(2) C has finite p-rank for all integral primes p ;

(3) 5 is finitely generated over C for all integral primes

p e supp(S) .

Then S is finitely generated over C .

Proof. If p e supp(S) , (3) implies that S is quasi-equal to a

finite rank free C -module. It follows that S has finite p-rank for

each prime p e supp(S) . Furthermore, S_ is equal to a finite rank free

Cp-module for each prime P of C , since such a P must contain an

integral prime p e supptS) . and Cp is a PID .

Let B be the integral closure of C in QS . Then B is a

Dedekind domain which is finitely generated as a C-module, with QB = QS

(.['31 , p.46). It follows that S = BS is quasi-equal to S . To see this

note that I = {x e C\xS C S} is a non-zero ideal of C since B is

finitely generated over C . Thus, J contains an integer since QC is a

field.

We will show 5/B is bounded, hence finite. Let P be a prime in

C and consider Sp/Bp . By the first paragraph of the proof and the

definition of B , S_ = 5 p = S_ are equal to free C -modules. Therefore

Sp/Bp is P-bounded. If the ring Bp/PBp is semi-simple, then Sp/Bp is

zero by Lemma 2.5. However, Bp/PBp is semi-simple if and only if P is

unramified in B , that is, PB is a product of distinct prime ideals of

B . This is true for almost all primes P in C by a well-known result

from ring theory ( [13] , p.62). Thus, Sp/Bp is non-zero for at most

finitely many primes P ^ . . . ^ in C . Since Sp/Bp is P-bounded for

P = P^ , 1 S t < ); , there exist integers e^,...,e^ such that

el ek - ei ek
Px •••Pfo -5 C s . However, the ideal Px ... Pfe contains an integer, so

that S/B is bounded. Thus, S = § = B is finitely generated over C .
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Let R be loca l ly i r reducib le and l e t

T(R) = F x . . . x F m , i? = e R e . . . e e^i? be as in Lemma 2 .3 . Note that

C(R) = ^CCi?) © . . . © e
m

c ^ • L e t ^ ^ = e^lR) « . . . © e
m

clM ' w h e r e

e-C{R) denotes the in teg ra l closure of the subring e-C(.R) in the f ie ld
if If

F. . We now can state a theorem giving a sufficient condition, in the

global case, for C{.R) to be a quasi-summand of R .

THEOREM 2.7. Let R be locally irreducible and assume that

C(R) = Clff) . Then C(R) is a quasi-surmand of R .

Proof. Denote C = C{R) , C = C{R) . ' It suffices to assume that

QC = F , F a field, since e.C © ... © e C is a quasi-summand of R if

and only if each e .C is a quasi-summand of e -R . In view of the
t- %

assumption that C = C , no harm is done, up to quasi-isomorphism, by

assuming C = C , that is, C is integrally closed in F . Let J be a

non-zero ideal in C . Then, as before, I contains an integer and, since

C has finite p-rank for all p , we have that C/I is finite. Thus, C

is Noetherian, therefore Dedekind.

Next we show that the Beaumont-Pierce Principal Theorem, proved in [3]

for torsion free rings of finite rank, holds for the locally irreducible

torsion free reduced ring R , provided C = C (or, more generally, if

C = C\ .

Since QR is a finite dimensional algebra over QC = F , by the

Wedderburn Principal Theorem, QR = S* © N* , where S* is a semisimple

subalgebra of QR and N* is the nil radical of QR . Let

S = S* n R , and N = N* n R . we show that R/S © N is finite.

Following [3] , let S1 = {x e S* \x + n e R for some n e N*} . It is easy to

check that S C ̂  C S* = QS and that R/S e N a S /S . Thus, it suffices

to prove that S/S is finite.

We have enough machinery at our disposal to bypass the computations

employed in [3] to establish that S /S is finite. Write

5* = M^ x .. . xM . where each M^ is a full matrix algebra over a

division algebra D^ . Up to quasi-isomorphism, it is enough to consider
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the case where S c S^ C S* = M , a matrix algebra over a division ring D .

Since S and S are full subrings of the simple algebra M , S^ and S

are finitely generated over their centres, K and K respectively ( [ 7]).

Thus, since QK = QK is a field, the rings S and 5 are quasi-equal

to free modules over K and K , respectively. It therefore suffices to

show that K /K is finite. To see this, apply Proposition 2.6 to conclude

that K and K are both finitely generated C-modules. Thus K^/K is

finite and R = S e N . Moreover, it follows that C C S , since

C=C^S®C<^N and C n fl = 0.

To complete the proof of Theorem 2.7, we must show that C is a

quasi-summand of S . As above, reduce to the case that C C S C J* = M ,

M a full matrix algebra. Let A = Horn™.,,, (QS,QS) . Then A is the

unique smallest field of definition for S ( [71). Since multiplication by

elements of F = QC commutes with QE(R\ D QE{S) , then F C A . But, by

the first part of the proof, S is finitely generated over C , so that F

is a field of definition for S . Hence, 4 c F , so A = F . Thus

S = (.A n s) * = (F n 5) * = c* for some positive integer t . Note that we

have actually established a little more than was required: namely that,

in the general case, QC = A x... x A. , with A. the smallest field of
± 3 7-

definition for M. n R , 1 ̂  i < j .

COROLLARY 2.8. Let R be as in Theorem 2.7. Then CIR) is a maximal

E subring of R .

Proof. By Theorems 2.4 and 2.7, C is an E-ring which is a (pure)

quasi-summand of R . If B is a subring of R with B ^ C , then C

is a pure quasi-summand of B . It follows that B cannot be an ff-ring,

since pure quasi-summands of an JF-ring must be fully invariant ideals in

that ring (. [4] ) , and 1 e C .

COROLLARY 2.9. Let R be a torsion-free ring of finite rank which

is looally irreducible. Then CLR) is a quasi-swmand of R .

Proof. In the finite rank case each F- of Lemma 2.3 is an

algebraic number field. It is well known that, in this case, CiR) = CLR) .
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3. An infinite rank example

In this section we construct an example to show that the assumption

that C = C in Theorem 2.7 cannot be removed completely.

LEMMA 3.1. There exists an infinite set of primes S = {p,,p2i--^

such that for all i ? j , p • is a square mod p . and such that

p. > i{i+l)/2 for all i .

Proof. Let p. = 5 aand assume p,,...,Pn , have been chosen such

that each p . = 1 (mod 4) and such that, for all i ? j , p . is a square

mod p . . Moreover, assume that p- > i(i+l)/2 for i < n-\ .
3

The sequence 4k(p.,...,p _.) + 1 contains an infinite number of

primes. Let p be a prime in this sequence with p > n{n+l) /2 . Note

that p E l (mod p.) is a square mod p. for i < n-1 . Since also

p 2 1 (mod 4) , quadratic reciprocity applies and each p. is a square

mod pn .

Henceforth, S will denote the set of primes {p,»p2f--.}

satisfying the conditions of Lemma 3.1. Let {a;.,i/.|l < j < »} be a set
3 3

of algebraically independent elements over Q . For each prime p we will

identify this set with a subset of 2 which is algebraically independent

over Z in the following way. For each j , let a . and d • be fixed
p 3 3

i n t e g e r s . Choose a s e t {a .,6 - | l - 3 < a>} i-n Z of elements

a lgeb ra i ca l ly independent over Z - Identify x • with a. + pa • and
p 3 3 P3

y . with d • + pB • • Note that, for all p , {x-/j/-|l £ 3 < »} is
3 3 P3 3 3

algebraically independent in Z , and x • = a . ,y . = d. (mod pZ ) • We
P 3 3 3 3 P

w i l l e v e n t u a l l y i m p o s e a d d i t i o n a l r e q u i r e m e n t s on a.,d- •
3 3

Let K = Q[{x -,y .,/p~.}] be the ring generated by the set of all
3 3 3

x-,y • i and Sp~-(p • e. S) . For each p e S , apply Hensel's Lemma to
3 3 3 3

identify Jp~,, p . ? p , with an element of Z . We can combine this with
3 3 p
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our p r ev ious i d e n t i f i c a t i o n s of X.,y- t o o b t a i n an embedding of K i n t o
3 3

We now define a ring R by defining the localizations R for each

prime p . For p { S , let

For p e S , let i? = X n (Z e Z p/p") . Then R = Off . Note that Z

is pure in R for each prime p . It follows that p-height(1) = 0 in R

for each prime p .

LEMMA 3.2. The integral domain R defined above is an z-ring.

Moreover, as an abelian group R is homogenous of type equal to the type

of Z .

Proof. It is easy to check that, for p e S, R is irreducible of

p-rank 2 and r(p) = Q\{x.,y.,'/p~~. 11 < j < «*p ̂  p . e S}] (refer to
3 3 3 3

Section 2). For p { S , R is a free Z -module and Tip) = Q . Thus,

P P *
FCff) = K = QR . By Theorem 2.4, R is an ff-ring.

To see that R is homogeneous of type equal to the type of Z , pick

0 ̂  a € R • Since a e K there exists a positive integer m with

ma = \g.-h- , where the sum is finite, g. e Z[{x -,y • \ 1 £ j < °°}] and
*- > v 3 3

h. e Z[{^pT |l < j < oo}] . Let g. e Z be <?. evaluated at

x. = o.,y. = d- . Note that for p e S , ma = ̂ g-h. mod pR . Let
3 3 3 3 1*2-

b = \g-h- e Z[{Jp~j 11 £ j < «}] C i? . since b is algebraic over Z ,

there exists fix) = f0 + fx + - • • + fnx
U e Z [x] with f(b) = 0 and

fQ ¥ 0 . Then / 0 = - b(f1 + ... + f^^"'
1) ' a ^ the p-height of b in i?

is less than or equal to the p-height of /_ in R for all p . Thus, in

R , type b £ type / = type Z . Since for all p e S ,ma = b (mod pi?) ,

the p-height of ma in R is 0 for almost all p e S . For p f! S ,

R is a free Z -module. It follows that the p-height of ma in R is 0

for almost all p { S . Finally, since i? is p-reduced for all primes
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p , the p-height of ma in R i s finite for a l l p . We may conclude

that type a = type ma = type Z .

EXAMPLE 3.3. Let R be the integral domain of 3.2. Then there i s

an i?-algebra A such that

(1) A has rank 2 as an i?-module.

(2) A i s an S-ring.

(3) C{A) = R .

(4) C(A) is not a quasi-summand of A .

Proof. Define a multiplication on QR © QR by

(r,,r2) (sirs2) = (r^^+r2
s
2'

ris2+r2Sl' * Zt i s e a s y t o c n e c k t n a t t n i s

product gives an associative /?-algebra structure on QR © QR . Let A be

the i?-subalgebra of QR 9 QR generated by R © R and

x •»«/,•) [ 1 < ,7 < »} , where 5 = {p ,p ,...} from above.- For
J J <7

p. e S , A is the ring generated by fl ©if and /p . (x .,y.) , so
*• ?i Pi pi ^ v i
that p ..4 C i? e i? C A . Since F(/?) = QR , it is immediate that

z " pi " p

VIA) = QR © 0 . I t i s a straightforward calculation to show that

CC4) = I'M) n ^ = i? ® o . For convenience, we identify R with i? © 0

in A .

Recall that x • = o • (mod pR) , y . = d • (mod pi?) for all primes p ,
0 3 3 3

where a-, d-eZ. We now show that a-,d. may be chosen so that A is
3 3 3 3

an ff-ring. Let K^ = QliSp^l 1 S ,7 <<*>}], ^ = #x n j? . Then ^ is a

countable pure subring of R . List a l l pairs ^aril'^'lk^ e ^1 ® ̂ 1 ' ^ 2

where p-height ^•arkl^>Yk} = ° •"•n ^1 ® ̂ 1 f o r a 1 1 P e ^ • Choose e . ,

d e Z so that e1&11 - ^ ^ n ^

Let ^ 2 = K [x^.y^l , R2 = K2 n R . Then fl2 i s a countable pure

subring of R containing R. . List pairs

<a2fe'*2k1 € W2 ® R2) ~ ( i ? l ® ̂ 2 ' w h e r e P~

for a l l p e S . choose co,cL e Z so that e_fc. . - d~a. . ? 0 (mod poifo)

for ij = 11, 12 or 21.
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Inductively define Kn = Kn_x [xn_x,yn_-J • R
n = K

n
 n R • a n d l i s t t h e

pairs (Gnk'bnjJ i n (R
n ® En> ~ (i?

M_i e ^M-1 5 w i t h P""h e i9h t = ° f o r a 1 1

p e S . Choose integers a ,d so that a b.. - da... ? 0 (mod p^RJi for
it Tl Tt t*Q ft **%} '• '*

1 < i < n , 1 < j a n-i+1 . Note that there are n(«+l)/2 such pairs

(i-,j) . Therefore the choice of o ,d is easy since p was chosen

larger than n(«+l)/2 . In fact we can take a = 1 . Then observe that,

for each pair of indices ij , there is at most one choice of d for which

0 < d < p and b. . - d a. . e. p R . Since the number of index pairs is

n(n+l)/2 < p , there exists at least one choice of d with

bij - dnaij * PnE f o r a 1 1 ** •

With this choice of a .,d • , the ring A becomes an E-ring. To see
0 3

t h i s , suppose <(> : A •*• A s a t i s f i e s <j>Cl) = 0 . I t s u f f i c e s t o show <j> = 0 .

Since C(A\ = R , $ i s i ? - l i nea r (Lemma 2 . 2 ) . Let

<(>(0,l) = (a,b) e A C QR © QR . Then i>{r,s) = s{a,b) for a l l Lr,s) e A .
Thus, i)>(Vp7(.x .,y .)) = Jp~u.(a,b) e A for a l l 1 < j . Let m be a posi t ive

3 3 3 3 3

integer such that ma,mb eR. Then maJp~.(y .,x •) = ma.Jp~-(x .,y •) (0,1) e A .
3 3 3 3 3 3

Subtraction yields (0,m>/pT(<2i/ .-bx •)) e A . Hence, mJp~.(axj -,bx •) eR. Let
3 3 3 3 3 3

e be the largest integer dividing ma and nib in R and write

ma = ea', mb = eb' . Choose j large enough so that p . > e and
3

(a',b') = (a-T,it>4i<)
 f o r some 1 < i < j , 1 £ k < j-i+1 . We may also

assume that the fixed elements a',b' belong to Q[{Jp~,x ,y \ v < j}] .

Then Sp .(may .-mbx A e R implies p. divides may.-mbx. in R . Hence
3 3 3 3 3 3

p. divides a'y.-b'x. in R , and therefore divides
3 3 3

a'd.-b'a. = a-vd .-b .-,0 . , a contradiction to the choice of o.,d. .
j Q IK j VK Q 3 3

We have shown that A is an ff-ring with C(A) = R ? A . In

particular, C(.A) cannot be a quasi-summand of A . This follows, as in the

proof of Corollary 2.8, from the fact that any pure quasi-summand of an

ff-ring is a fully invariant ideal in that ring (. [4] ) . But C(A) cannot be

an ideal since 1 e C(A\ .
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