BULL. AUSTRAL. MATH. SOC. VOL. 32 (1985), 129-145.

LOCALLY IRREDUCIBLE RINGS

C. VINSONHALER AND W. WICKLESS

In the study of torsion-free abelian groups of finite rank the notions of irreducibility, field of definition and E-ring have played significant rôles. These notions are tied together in the following theorem of R. S. Pierce:

THEOREM. Let R be a ring whose additive group is torsion free finite rank irreducible and let Γ be the centralizer of QR as a QE(R) module. Then Γ is the unique smallest field of definition of R. Moreover, $\Gamma \cap R$ is an E-ring, in fact, it is a maximal E-subring of R.

In this paper we consider extensions of Pierce's result to the infinite rank case. This leads to the concept of local irreducibility for torsion free groups.

1. Introduction

A group G (in this paper the word group will always mean torsionfree abelian group) is called *irreducible* if QG ($Q \otimes G$) is a simple

 $Q\!E$ $(Q \, \otimes \, E) \, \text{-module} ,$ where E is the ring of endomorphisms of G . These Z

groups have been studied extensively by J. D. Reid [10], [11], [12] and play an important role in the theory of torsion-free groups of finite rank.

Let R be a ring (all rings in this paper have an identity and have a torsion-free additive group). A subfield F of the centre of QR is called a *field of definition* of R if $(F \cap R)x_1 \oplus \ldots \oplus (F \cap R)x_n$ is of

Received 29 March 1985

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

finite index in R for some F-independent subset $\{x_1, \ldots, x_n\} \subset R$. The concept of field of definition first appeared in [3] and [7] in the study of subrings of simple algebras, and subsequently has appeared frequently in various contexts, (for instance see [6] or [9]).

A ring R is called an *E-ring* if the embedding $x \rightarrow x_{\ell}$ of R into End(R+) is onto. Here x_{ℓ} means left multiplication by x. Schultz introduced the term *E*-ring in [14]. A further study of *E*-rings was made by Bowshell and Schultz in [4]. In spite of their seemingly specialized nature, *E*-rings have appeared frequently in the literature (see [1], [2], [12], [5], [7]).

In the finite rank case the concepts of irreducibility, field of definition and E-ring are tied together in the following theorem, which first appeared in [7].

THEOREM. Let R be a (torsion-free reduced) ring of finite rank which is irreducible as an additive group. Let $\Gamma = Hom_{OF}(QR,QR)$. Then:

(1) Γ is a subfield of the centre of QR and Γ is the unique smallest field of definition of R.

(2) $\Gamma \cap R$ is an E-ring. In fact, $\Gamma \cap R$ is a maximal E-subring of R. It is easy to verify that if R is irreducible, then so is R_p , the localization of R at an integral prime p. In this paper we study torsion free rings R for which each R_p is irreducible. We are able to generalize the above theorem, even in certain infinite rank cases. Our work is based on [3], [7] and [9], which are fundamental references for this paper.

Our notation is fairly standard. Specifically : Z_p , \hat{Z}_p , \hat{Q}_p stand for the ring of integers localized at p, the ring of p-adic integers and the field of p-adic numbers, respectively. The symbols \doteq and \clubsuit denote quasi-equality and quasi-isomorphism, while the symbols \oplus and \times represent group direct sum and ring direct sum, respectively.

A ring R is called p-local provided qR = R for all primes $q \neq p$. If R is a p-local ring, then \hat{R} denotes $\hat{Z}_{p} \underset{R}{\otimes} R$ with the natural ring

130

structure, and
$$Q\hat{R}$$
 represents $Q \otimes \hat{R} \approx \hat{Q} \otimes R$. Following [9], let $L(R)$
 $Z \qquad P Z$

be the maximal divisible subgroup of \hat{R} . Note that if we regard $Q\hat{R}$ as a QE-module in the natural way, then L(R) is a QE-submodule of $Q\hat{R}$.

1. The local case

Throughout this section R will be a torsion-free p-local reduced ring which is irreducible as an abelian group. In particular, QR is a simple QE-module and $\Gamma = \operatorname{Hom}_{QE}(QR,QR)$ is a division ring. More specifically, Γ can be identified with a subfield of the centre of QR, since the elements of Γ commute with all left and right multiplications by elements of QR. Furthermore, by the Jacobson Density Theorem, QE is a dense subring of $\operatorname{Hom}_{\Gamma}(QR,QR)$. An important class of irreducible rings is the class of rings R for which QR is a simple Q-algebra. These rings are irreducible since QE contains left and right multiplications by elements of QR.

We start with a technical lemma, which is a modification of Theorem 3.1 of [9].

LEMMA 1.1. $L(R) = Q\hat{R}(\hat{\Gamma} \cap L(R))$.

Proof. Let $N = Q\hat{R}(\hat{\Gamma} \cap L(R)) \subset L(R)$. Note that N is a QE-submodule of L(R). Suppose there exists $w \in L(R) \setminus N$. Since $w \in Q\hat{R}$, write $w = \alpha_1 x_1 + \ldots + \alpha_n x_n$, with $\alpha_i \in \hat{Q}_p$ and $x_i \in QR$. We may assume w has been chosen so that r is minimal. Clearly, $\alpha_i \neq 0$, $x_i \neq 0$ for each i. Moreover, since both L(R) and N are \hat{Q}_p -modules, we may take $\alpha_1 = 1$.

Since QR is simple over QE we can choose $f \in QE$ so that $f(x_1) = 1$. Then $w' = f(w) = 1 + \alpha_2 f(x_2) + \ldots + \alpha_r f(x_r) \in L(R)$. In particular, since $L(R) \neq QR$, $r \geq 2$. Suppose $w' \in N$. Then $x_1w' \in N$ and $w - x_1w' = \alpha_2(x_2 - x_1f(x_2) + \ldots + \alpha_r(x_r - x_1f(x_r)))$ belongs to $L(R) \setminus N$, contradicting the minimality of r. Thus, $w' \notin N$.

For all $c \in QR$, $\phi \in QE(R)$, denote

$$\Delta(c,\phi) = \phi(c)\omega' - \phi(c\omega') = \sum_{i=2}^{r} \alpha_i [\phi(c)f(x_i) - \phi(cf(x_i))]$$

Then $\Delta(c,\phi) \in L(R)$, hence $\Delta(c,\phi) \in N$ by minimality of r. Suppose, for all c, ϕ and i, that $\phi(c)f(x_i) = \phi(cf(x_i))$. Then, by definition of Γ , $f(x_i) \in \Gamma$ for each i. But this implies $w' \in N$, a contradiction. Therefore, there exist $c \in QR$, $\phi \in QE(R)$ and i such that $e = \phi(c)f(x_i) - \phi(cf(x_i)) \neq 0$. Without loss of generality, take i = r.

Choose $\theta \in QE$ with $\theta(e) = f(x_p)$. Then $w' - \theta[\Delta(c,\phi)]f(x_p) = 1 + \sum_{i=2}^{p-1} \alpha_i y_i$, where $\alpha_i \in \hat{Q}_p$ and $y_i = f(x_i) - \theta[\phi(c)f(x_i) - \phi(cf(x_i))]f(x_p) \in QR$. Since $w' - \theta[\Delta(c,\phi)]f(x_p)$ belongs to L(R), w' also belongs to N by minimality of r. However, $\theta[\Delta(c,\phi)]f(x_p) \in N$ as well, implying $w' \in N$. This final contradiction completes the proof.

For the remainder of this section we make the additional assumption that the ring R has finite p-rank.

The next lemma goes back to Beaumont-Pierce [3]. See also Lady [6], and Pierce-Vinsonhaler [9].

LEMMA 1.2. $QE = \{f \in \operatorname{End}(QR) | f[L(R)] \subset L(R) \}$.

Proof. Under the usual identifications, $R = \hat{R} \cap QR$. Moreover, $\hat{R} = L(R) \oplus F$, where F is a finite rank free $\hat{2}_p$ -module (since R has finite p-rank). Therefore, if $f \in \text{End}(QR)$ and $f[L(R)] \subset L(R)$, then $p^k f(\hat{R}) \subset \hat{R}$. This implies $p^k f \in E(R)$. Since L(R) is an E(R)-submodule of \hat{R} , the equality follows.

The ideas involved in the next theorem have been used repeatedly. See Pierce [7], Lady [6], Bowshell-Schultz [4], Pierce-Vinsonhaler [9].

THEOREM 1.3. Let R be a reduced p-local ring of finite p-rank, which is irreducible as an abelian group, and let $\Gamma = Hom_{QE}(QR,QR)$, $C = \Gamma \cap R$.

Then: (1) $QE = Hom_{p}(QR,QR)$;

(2) R = (Γ ∩ R)x₁ ⊕ ... ⊕ (Γ ∩ R)x_n for some {x₁,...,x_n} ⊂ R;
(3) Γ is the smallest field of definition of R;
(4) C is an E-ring.

Proof. (1) As previously remarked, QE is a dense subring of Hom_{Γ}(QR, QR). To show the reverse inclusion we apply Lemmas 1.1 and 1.2. Let $f \in \text{Hom}_{\Gamma}(QR, QR)$. Then

$$f[L(R)] = f[Q\hat{R}(\hat{\Gamma} \cap L(R)] = f(Q\hat{R})(\hat{\Gamma} \cap L(R)] \subseteq Q\hat{R}(\hat{\Gamma} \cap L(R)) = L(R) .$$

By Lemma 1.2, $f \in QE(R)$.

(2) Let $0 \neq x \in R$. Then $\Gamma x \oplus M = QR$ for some Γ -submodule M of QR. Define $\theta_x : QR \neq \Gamma \subseteq QR$ by $\theta_x(sx+m) = s$. Then, by (1), $\theta_x \in QE$. Choose a positive integer k such that $k\theta_x \in E(R)$. Let $r = (sx+m) \in R$. Then $k\theta_x(r) = ks \in \Gamma \cap R$. It follows that $R \doteq (\Gamma \cap R) x \oplus M \cap R$. Continue to split off quasi-summands of R in this way. The process must stop after a finite number of steps because R is reduced and of finite p-rank.

(3) Suppose F is a field contained in the center of QRwith $R \doteq (F \cap R) y_1 \oplus \ldots \oplus (F \cap R) y_m$ for some $\{y_1, \ldots, y_m\} \subset R$. Then $H = \operatorname{Hom}_F(QR, QR) \subset QE$. Since QR is a vector space over F we have $F = \operatorname{Hom}_H(QR, QR) \supseteq \operatorname{Hom}_{QE}(QR, QR) = \Gamma$.

(4) Since $QC = Q(\Gamma \cap R) = \Gamma$ is a field, then C is irreducible. Moreover, as a pure subring of R, C is p-local and of finite p-rank. Let $\Gamma' = \operatorname{Hom}_{QE(C)}(QC,QC)$. By (2), $C = (\Gamma' \cap C)y_1 \oplus \ldots \oplus (\Gamma' \cap C)y_m$ for some $\{y_1,\ldots,y_m\} \subset C$. This, combined with the result (2) for R, implies that Γ' is a field of definition for R. By (3), $\Gamma' \supseteq \Gamma$. Since we are regarding Γ' as a subring of $QC = \Gamma$, then $\Gamma' = \Gamma$. That is,

 $\Gamma = \Gamma' = \operatorname{Hom}_{QE(C)}(QC,QC) = \operatorname{Hom}_{QE(C)}(\Gamma,\Gamma) .$

It follows that $QE(C) \subseteq \operatorname{Hom}_{\Gamma}(\Gamma, \Gamma) = \Gamma$ and, hence, that $E(C) = E(\Gamma \cap R) = \Gamma \cap R$.

2. The global case

In this section we consider torsion-free reduced rings R for which each localization R_p satisfies the conditions of Section 1: R_p is irreducible and of finite *p*-rank. We call such a ring *locally irreducible*.

For each prime
$$p$$
, let $\Gamma(p) = \Gamma(R,p) = \operatorname{Hom}_{QE}(R_p)(QR,QR)$, and let $\Gamma = \Gamma(R)$ be the subring of the center of QR generated by $\{\Gamma(p) \mid p \text{ prime}\}$. We will see that in some ways, Γ acts like a smallest

field of definition of R. In particular, we have

LEMMA 2.1. If F is a field of definition of R, then $\Gamma(R) \subseteq F$. Proof. By definition, $\Gamma(p) = \operatorname{Hom}_{QE(R_p)}(QR,QR)$. On the other hand, if F is a field of definition of R then $\operatorname{Hom}_{QE(R)}(QR,QR) \subseteq F$. Finally, since $QE(R) \subseteq QE(R_p)$, then $\operatorname{Hom}_{QE(R_p)}(QR,QR) \subseteq \operatorname{Hom}_{QE(R)}(QR,QR)$. It follows that $\Gamma(p) \subseteq F$ for all primes p, so that $\Gamma(R) \subseteq F$.

LEMMA 2.2. If R is locally irreducible, then $QE(R) \subset \operatorname{Hom}_{\Gamma(R)}QR,QR$. Proof. Let $f \in QE(R)$. Then for all primes p, $f \in QE(R_p)$, and therefore f commutes with $\Gamma(p)$. It follows that f commutes with $\Gamma(R)$

The next lemma describes the structure of Γ .

LEMMA 2.3. Let R be locally irreducible and $\Gamma = \Gamma(R)$. Then: (1) there exist primes p_1, \dots, p_n such that $\Gamma = \Gamma(p_1) \dots \Gamma(p_n)$ is the subring generated by $\Gamma(p_1), \dots, \Gamma(p_n)$;

(2) $\Gamma \simeq F_1 \times \ldots \times F_m$, where each F_i is a field;

(3) if e_i is the central idempotent of QR corresponding to the identity of F_i , then $\Gamma(e_i R) \supset e_i \Gamma = F_i$.

Proof. (1) Let p_1, p_2, \ldots be a listing of the primes p for which $pR \neq R$. Then $\Gamma(p_1) \subseteq \Gamma(p_1)\Gamma(p_2) \subseteq \ldots$ is an ascending chain of $\Gamma(p_1)$ submodules of QR. Since QR is finite dimensional over $\Gamma(p_1)$ by Theorem 1.3, the chain must stabilize. This implies (1).

(2) By (1) we can write $\Gamma = \Gamma(p_1) \dots \Gamma(p_n)$. Let

$$F = \Gamma(p_1) \cap \ldots \cap \Gamma(p_n) .$$

Then F is a subfield of each $\Gamma(p_i)$, and a simple argument shows that each $\Gamma(p_i)$ is finite dimensional over F for $1 \le i \le n$. Furthermore, each $\Gamma(p_i)$ is a separable extension of F since $\operatorname{char}(R) = 0$. Thus $T = \Gamma(p_1) \otimes_F \ldots \otimes_F \Gamma(p_n)$ is a commutative, separable, finite dimensional algebra over F (see [δ], p.188). This implies that T is semisimple and hence a direct product of fields ([δ], p.186). However, Γ is a ring epimorphic image of T. Thus $\Gamma \cong F_1 \times \ldots \times F_m$ for some collection of fields F_1, \ldots, F_m .

(3) This is a routine calculation using the definitions.

To study the relationship between Γ and R, it often suffices, by Lemma 2.3, to assume Γ is a field. We make this reduction whenever it is feasible.

The following simple example shows that even if R is of finite rank, locally irreducible and $\Gamma(R)$ is a field, $\Gamma(R)$ need not be a field of definition for R.

EXAMPLE. Let A be the subgroup of Q generated by $\{1/p \mid p \text{ is a prime}\}$, and let $R = Z \oplus A$ with ring structure defined by (m,a)(n,b) = (mn,mb+na). Then, for each prime p, $R_p \cong Z_p \oplus Z_p$ is irreducible, and $\Gamma(p) = Q \oplus (0)$. Thus, $\Gamma(R) = Q \oplus (0)$. Note that $\Gamma(R)$ is not a field of definition of R. Indeed, R has no field of definition. In this example, QE(R) is the ring of lower triangular 2×2 rational matrices, while $\operatorname{Hom}_{\Gamma}(QR,QR)$ is the ring of all 2×2 rational matrices. Compare with Theorem 1.3 (1).

In the remainder of this section we show that $\Gamma(R) \cap R$ is an *E*-ring in any case, and that, with an additional assumption, $\Gamma \cap R$ is a quasisummand of *R*. For the sake of convenience we denote

supp
$$(R) = \{p \in \mathbb{Z} | p \text{ is prime and } pR \neq R\}.$$

Let $C = C(R) = \Gamma \cap R$, and, for each $p \in \text{supp}(R)$, let

136

 $C(p) = \Gamma(p) \cap R$. Plainly, *C* is the pure subring of the centre of *R* generated by $\{C(p) | p \in \text{supp}(R)\}$. Moreover, by Theorem 1.3, for each $p \in \text{supp}(R)$, C(p) is an *E*-ring and $R_p \simeq [C(p)_p]^n$ for some n = n(p). We next show *C* is an *E*-ring.

THEOREM 2.4. Let R be a locally irreducible ring. Then C = C(R) is an E-ring.

Proof. Let $\phi: C \to C$ be an endomorphism of C with $\phi(1) = 0$. We will show that $\phi = 0$. It is an easy exercise to verify that this implies C is an E-ring (or see [4]). For a given prime $p \in \operatorname{supp}(R)$, regard ϕ as an endomorphism of $C_p \subset R_p$. Note that C_p is a $C(p)_p$ -submodule of R_p , which is quasi-equal to a free $C(p)_p$ module. If π is (quasi-) projection onto one of the free cyclic summands of R_p , then $\pi\phi(C(p)_p) = 0$, since $\pi\phi(1) = 0$ and $C(p)_p$ is an E-ring. This implies $\phi(C(p)) = 0$ for each prime $p \in \operatorname{supp}(R)$.

Now let $q \neq p$ be primes in $\operatorname{supp}(R)$ and $0 \neq x \in C(q)$. Then, with π as above, $a \neq ax \neq \pi\phi(ax)$ induces an endomorphism θ of $C(p)_p$. Moreover, $\theta(1) = 0$ since $\phi(x) \in \phi(C(q)) = 0$. Since $C(p)_p$ is an *E*-ring, $\theta = 0$. It follows that $\pi\phi(C(p)C(q)) = 0$, and hence that $\phi(C(p)C(q)) = 0$. An induction argument shows $\phi(C(p_1)\dots C(p_k)) = 0$ for any primes p_1,\dots,p_k . Hence $\phi(C) = 0$ and *C* is an *E*-ring.

We next consider the question of finding a necessary and sufficient condition for C to be a quasi-summand of R. We start with a simple lemma from commutative ring theory.

LEMMA 2.5. Let C be a Dedekind domain. Suppose $A \supseteq B$ are torsion free C-algebras and P is a prime in C with A_p/B_p P-bounded. If B/PB contains no nilpotent ideals, then $A_p = B_p$.

Proof. By assumption we can write $P^n A_p \subset B_p$ for some n > 0. Consider $I = PA_p \cap B_p$, an ideal in B_p containing PB_p . Then $\overline{I} = I/PB_p$ is an ideal in B_p/PB_p with $(\overline{I})^n = 0$. By assumption, we have $\overline{I} = 0$. That is, $PA_p \cap B_p = PB_p$. However, PC_p is a principal ideal since C is Dedekind. Thus, $PB_p = PA_p \cap B_p$ implies $B_p = A_p$. PROPOSITION 2.6. Let S be a torsion-free reduced algebra over the Dedekind domain C such that C is pure in S and

(1) QS and QC are fields,

(2) C has finite p-rank for all integral primes p;

(3) S_p is finitely generated over C_p for all integral primes $p \in \text{supp}(S)$.

Then S is finitely generated over C.

Proof. If $p \in \text{supp}(S)$, (3) implies that S_p is quasi-equal to a finite rank free C_p -module. It follows that S has finite p-rank for each prime $p \in \text{supp}(S)$. Furthermore, S_p is equal to a finite rank free C_p -module for each prime P of C, since such a P must contain an integral prime $p \in \text{supp}(S)$, and C_p is a PID.

Let *B* be the integral closure of *C* in *QS*. Then *B* is a Dedekind domain which is finitely generated as a *C*-module, with *QB* = *QS* ([13], p.46). It follows that $\overline{S} = BS$ is quasi-equal to *S*. To see this note that $I = \{x \in C | x\overline{S} \subseteq S\}$ is a non-zero ideal of *C* since *B* is finitely generated over *C*. Thus, *I* contains an integer since *QC* is a field.

We will show \overline{S}/B is bounded, hence finite. Let P be a prime in C and consider \overline{S}_p/B_p . By the first paragraph of the proof and the definition of B, $\overline{S}_p \doteq S_p \doteq B_p$ are equal to free C_p -modules. Therefore \overline{S}_p/B_p is P-bounded. If the ring B_p/PB_p is semi-simple, then \overline{S}_p/B_p is zero by Lemma 2.5. However, B_p/PB_p is semi-simple if and only if P is unramified in B, that is, PB is a product of distinct prime ideals of B. This is true for almost all primes P in C by a well-known result from ring theory ([13], p.62). Thus, \overline{S}_p/B_p is non-zero for at most finitely many primes P_1, \ldots, P_k in C. Since \overline{S}_p/B_p is P-bounded for $P = P_i$, $1 \le i \le k$, there exist integers e_1, \ldots, e_k such that

 $P_1^{e_1} \dots P_k^{e_k} \cdot \overline{S} \subset B$. However, the ideal $P_1^{e_1} \dots P_k^{e_k}$ contains an integer, so that \overline{S}/B is bounded. Thus, $S \doteq \overline{S} \doteq B$ is finitely generated over C.

Let R be locally irreducible and let $\Gamma(R) = F_1 \times \ldots \times F_m$, $R \doteq e_1 R \oplus \ldots \oplus e_m R$ be as in Lemma 2.3. Note that $C(R) \doteq e_1 C(R) \oplus \ldots \oplus e_m C(R)$. Let $\overline{C}(R) = \overline{e_1 C(R)} \oplus \ldots \oplus \overline{e_m C(R)}$, where $\overline{e_i C(R)}$ denotes the integral closure of the subring $e_i C(R)$ in the field F_i . We now can state a theorem giving a sufficient condition, in the global case, for C(R) to be a quasi-summand of R.

THEOREM 2.7. Let R be locally irreducible and assume that $\overline{C}(R) \doteq C(R)$. Then C(R) is a quasi-summand of R.

Proof. Denote C = C(R), $\overline{C} = \overline{C}(R)$. It suffices to assume that QC = F, F a field, since $e_1C \oplus \ldots \oplus e_mC$ is a quasi-summand of R if and only if each e_iC is a quasi-summand of e_iR . In view of the assumption that $\overline{C} \doteq C$, no harm is done, up to quasi-isomorphism, by assuming $\overline{C} = C$, that is, C is integrally closed in F. Let I be a non-zero ideal in C. Then, as before, I contains an integer and, since C has finite p-rank for all p, we have that C/I is finite. Thus, C is Noetherian, therefore Dedekind.

Next we show that the Beaumont-Pierce Principal Theorem, proved in [3] for torsion free rings of finite rank, holds for the locally irreducible torsion free reduced ring R, provided $C = \overline{C}$ (or, more generally, if $\overline{C} \doteq C$).

Since QR is a finite dimensional algebra over QC = F, by the Wedderburn Principal Theorem, $QR = S^* \oplus N^*$, where S^* is a semisimple subalgebra of QR and N^* is the nil radical of QR. Let $S = S^* \cap R$, and $N = N^* \cap R$. We show that $R/S \oplus N$ is finite. Following [3], let $S_1 = \{x \in S^* | x + n \in R \text{ for some } n \in N^*\}$. It is easy to check that $S \subseteq S_1 \subseteq S^* = QS$ and that $R/S \oplus N \cong S_1/S$. Thus, it suffices to prove that S_1/S is finite.

We have enough machinery at our disposal to bypass the computations employed in [3] to establish that S_1/S is finite. Write $S* = M_1 \times \ldots \times M_j$ where each M_i is a full matrix algebra over a division algebra D_i . Up to quasi-isomorphism, it is enough to consider

https://doi.org/10.1017/S0004972700009795 Published online by Cambridge University Press

the case where $S \subseteq S_1 \subseteq S^* = M$, a matrix algebra over a division ring D. Since S_1 and S are full subrings of the simple algebra M, S_1 and S are finitely generated over their centres, K_1 and K respectively ([7]). Thus, since $QK_1 = QK$ is a field, the rings S_1 and S are quasi-equal to free modules over K_1 and K, respectively. It therefore suffices to show that K_1/K is finite. To see this, apply Proposition 2.6 to conclude that K_1 and K are both finitely generated C-modules. Thus K_1/K is finite and $R \doteq S \oplus N$. Moreover, it follows that $C \subseteq S$, since $C \doteq C \cap S \oplus C \cap N$ and $C \cap N = 0$.

To complete the proof of Theorem 2.7, we must show that C is a quasi-summand of S. As above, reduce to the case that $C \subseteq S \subseteq S^* = M$, M a full matrix algebra. Let $\Delta = \operatorname{Hom}_{QE(S)}(QS,QS)$. Then Δ is the unique smallest field of definition for $S([\mathcal{I}])$. Since multiplication by elements of F = QC commutes with $QE(R) \supseteq QE(S)$, then $F \subseteq \Delta$. But, by the first part of the proof, S is finitely generated over C, so that F is a field of definition for S. Hence, $\Delta \subseteq F$, so $\Delta = F$. Thus $S \doteq (\Delta \cap S)^{t} = (F \cap S)^{t} = C^{t}$ for some positive integer t. Note that we have actually established a little more than was required: namely that, in the general case, $QC = \Delta_1 \times \ldots \times \Delta_j$, with Δ_i the smallest field of definition for $M_i \cap R$, $1 \le i \le j$.

COROLLARY 2.8. Let R be as in Theorem 2.7. Then C(R) is a maximal E subring of R.

Proof. By Theorems 2.4 and 2.7, C is an E-ring which is a (pure) quasi-summand of R. If B is a subring of R with $B \supseteq C$, then C is a pure quasi-summand of B. It follows that B cannot be an E-ring, since pure quasi-summands of an E-ring must be fully invariant ideals in that ring ([4]), and $1 \in C$.

COROLLARY 2.9. Let R be a torsion-free ring of finite rank which is locally irreducible. Then C(R) is a quasi-summand of R.

Proof. In the finite rank case each F_i of Lemma 2.3 is an algebraic number field. It is well known that, in this case, $\overline{C}(R) \doteq C(R)$.

C. Vinsonhaler and W. Wickless

3. An infinite rank example

In this section we construct an example to show that the assumption that $\overline{C} \doteq C$ in Theorem 2.7 cannot be removed completely.

LEMMA 3.1. There exists an infinite set of primes $S = \{p_1, p_2, ...\}$ such that for all $i \neq j$, p_i is a square mod p_j and such that $p_i > i(i+1)/2$ for all i.

Proof. Let $p_1 = 5$ aand assume p_1, \dots, p_{n-1} have been chosen such that each $p_i \equiv 1 \pmod{4}$ and such that, for all $i \neq j$, p_i is a square mod p_i . Moreover, assume that $p_i > i(i+1)/2$ for $i \leq n-1$.

The sequence $4k(p_1, \ldots, p_{n-1}) + 1$ contains an infinite number of primes. Let p_n be a prime in this sequence with $p_n > n(n+1)/2$. Note that $p_n \equiv 1 \pmod{p_i}$ is a square mod p_i for $i \le n-1$. Since also $p_n \equiv 1 \pmod{4}$, quadratic reciprocity applies and each p_i is a square mod p_n .

Henceforth, S will denote the set of primes $\{p_1, p_2, \dots\}$ satisfying the conditions of Lemma 3.1. Let $\{x_j, y_j | 1 \le j < \infty\}$ be a set of algebraically independent elements over Q. For each prime p we will identify this set with a subset of \hat{z}_p which is algebraically independent over Z_p in the following way. For each j, let c_j and d_j be fixed integers. Choose a set $\{\alpha_{pj}, \beta_{pj} | 1 \le j < \infty\}$ in \hat{z}_p of elements algebraically independent over Z_p . Identify x_j with $c_j + p\alpha_{pj}$ and y_j with $d_j + p\beta_{pj}$. Note that, for all p, $\{x_j, y_j | 1 \le j < \infty\}$ is algebraically independent in \hat{z}_p , and $x_j \equiv c_j$, $y_j \equiv d_j \pmod{p\hat{z}_p}$. We will eventually impose additional requirements on c_j, d_j .

Let $K = Q[\{x_j, y_j, \sqrt{p_j}\}]$ be the ring generated by the set of all x_j, y_j , and $\sqrt{p_j}(p_j \in S)$. For each $p \in S$, apply Hensel's Lemma to identify $\sqrt{p_j}$, $p_j \neq p$, with an element of \hat{Z}_p . We can combine this with

140

our previous identifications of x_j,y_j to obtain an embedding of K into $\hat{q}_p \oplus \hat{q}_p \sqrt{p}$.

We now define a ring R by defining the localizations $\stackrel{R}{p}$ for each prime p. For $p \notin S$, let

$$R_{p} = Z_{p} [\{x_{j}, y_{j}, \sqrt{p_{j}} \mid 1 \leq j < \infty\}].$$

For $p \in S$, let $R_p = K \cap (\hat{Z}_p \oplus \hat{Z}_p p \sqrt{p})$. Then $R = \bigcap_p R_p$. Note that Z_p is pure in R_p for each prime p. It follows that p-height(1) = 0 in R for each prime p.

LEMMA 3.2. The integral domain R defined above is an E-ring. Moreover, as an abelian group R is homogenous of type equal to the type of Z.

Proof. It is easy to check that, for $p \in S$, R_p is irreducible of p-rank 2 and $\Gamma(p) = Q[\{x_j, y_j, \sqrt{p_j} \mid 1 \le j < \neg, p \ne p_j \in S\}]$ (refer to Section 2). For $p \notin S$, R_p is a free Z_p -module and $\Gamma(p) = Q$. Thus, $\Gamma(R) = K = QR$. By Theorem 2.4, R is an *E*-ring.

To see that R is homogeneous of type equal to the type of Z, pick $0 \neq a \in R$. Since $a \in K$ there exists a positive integer m with $ma = \sum g_i h_i$, where the sum is finite, $g_i \in \mathbb{Z}[\{x_j, y_j \mid 1 \leq j < \infty\}]$ and $h_i \in \mathbb{Z}[\{\sqrt{p_j} \mid 1 \leq j < \infty\}]$. Let $\overline{g}_i \in \mathbb{Z}$ be g_i evaluated at $x_j = c_j \cdot y_j = d_j$. Note that for $p \in S$, $ma \equiv \sum \overline{g}_i h_i \mod pR$. Let $b = \sum \overline{g}_i h_i \in \mathbb{Z}[\{\sqrt{p_j} \mid 1 \leq j < \infty\}] \subset R$. Since b is algebraic over Z, there exists $f(x) = f_0 + f_1 + \ldots + f_n x^n \in \mathbb{Z}[x]$ with f(b) = 0 and $f_0 \neq 0$. Then $f_0 = -b(f_1 + \ldots + f_{n-1}b^{n-1})$, and the p-height of b in R is less than or equal to the p-height of f_0 in R for all p. Thus, in R, type $b \leq type f_0 = type Z$. Since for all $p \in S$, $ma \equiv b \pmod{pR}$, the p-height of ma in R is 0 for almost all $p \in S$. For $p \notin S$, R_p is a free \mathbb{Z}_p -module. It follows that the p-height of ma in R is 0 for almost all $p \in S$. For all primes

p, the p-height of ma in R is finite for all p. We may conclude that type a = type ma = type Z.

EXAMPLE 3.3. Let R be the integral domain of 3.2. Then there is an R-algebra A such that

- (1) A has rank 2 as an R-module.
- (2) A is an E-ring.
- (3) C(A) = R.
- (4) C(A) is not a quasi-summand of A.

Proof. Define a multiplication on $QR \oplus QR$ by $(r_1, r_2)(s_1, s_2) = (r_1s_1 + r_2s_2, r_1s_2 + r_2s_1)$. It is easy to check that this product gives an associative *R*-algebra structure on $QR \oplus QR$. Let *A* be the *R*-subalgebra of $QR \oplus QR$ generated by $R \oplus R$ and $\{\sqrt{p_j}(x_j, y_j) \mid 1 \le j < \infty\}$, where $S = \{p_1, p_2, \ldots\}$ from above. For $p_i \in S$, A_{p_i} is the ring generated by $R_{p_i} \oplus R_{p_i}$ and $\sqrt{p_i}(x_i, y_i)$, so that $p_i A_{p_i} \subset R_{p_i} \oplus R_{p_i} \subset A_{p_i}$. Since $\Gamma(R) = QR$, it is immediate that $\Gamma(A) = QR \oplus 0$. It is a straightforward calculation to show that $C(A) = \Gamma(A) \cap A = R \oplus 0$. For convenience, we identify *R* with $R \oplus 0$ in *A*.

Recall that $x_j \equiv c_j \pmod{pR}$, $y_j \equiv d_j \pmod{pR}$ for all primes p, where c_j , $d_j \in \mathbb{Z}$. We now show that c_j , d_j may be chosen so that A is an E-ring. Let $K_1 = Q[\{\sqrt{p_j} \mid 1 \le j < \infty\}]$, $R_1 = K_1 \cap R$. Then R_1 is a countable pure subring of R. List all pairs $(a_{1k}, b_{1k}) \in R_1 \oplus R_1$, $1 \le k$ where p-height $(a_{1k}, b_{1k}) = 0$ in $R_1 \oplus R_1$ for all $p \in S$. Choose c_1 , $d_1 \in \mathbb{Z}$ so that $c_1 b_{11} - d_1 a_{11} \neq 0 \pmod{p_1 R_1}$.

Let $K_2 = K_1[x_1, y_1]$, $R_2 = K_2 \cap R$. Then R_2 is a countable pure subring of R containing R_1 . List pairs $(a_{2k}, b_{2k}) \in (R_2 \oplus R_2) - (R_1 \oplus R_2)$ where p-height $(a_{2k}, b_{2k}) = 0$ in $R_2 \oplus R_2$ for all $p \in S$. Choose $c_2, d_2 \in Z$ so that $c_2 b_{ij} - d_2 a_{ij} \neq 0 \pmod{p_2 R_2}$ for ij = 11, 12 or 21.

142

Inductively define $K_n = K_{n-1}[x_{n-1}, y_{n-1}]$, $R_n = K_n \cap R$, and list the pairs (a_{nk}, b_{nk}) in $(R_n \oplus R_n) - (R_{n-1} \oplus R_{n-1})$ with p-height = 0 for all $p \in S$. Choose integers c_n, d_n so that $c_n b_{ij} - d_n a_{ij} \neq 0 \pmod{p_n R_n}$ for $1 \leq i < n$, $1 \leq j \leq n-i+1$. Note that there are n(n+1)/2 such pairs (i,j). Therefore the choice of c_n, d_n is easy since p_n was chosen larger than n(n+1)/2. In fact we can take $c_n = 1$. Then observe that, for each pair of indices ij, there is at most one choice of d_n for which $0 \leq d_n < p_n$ and $b_{ij} - d_n a_{ij} \in p_n R$. Since the number of index pairs is $n(n+1)/2 < p_n$, there exists at least one choice of d_n with $b_{ij} - d_n a_{ij} \notin p_n R$ for all ij.

With this choice of c_j, d_j , the ring A becomes an E-ring. To see this, suppose $\phi: A + A$ satisfies $\phi(1) = 0$. It suffices to show $\phi = 0$. Since C(A) = R, ϕ is R-linear (Lemma 2.2). Let $\phi(0,1) = (a,b) \in A \subseteq QR \oplus QR$. Then $\phi(r,s) = s(a,b)$ for all $(r,s) \in A$. Thus, $\phi(\sqrt{p_j}(x_j, y_j)) = \sqrt{p_j}y_j(a,b) \in A$ for all $1 \le j$. Let m be a positive integer such that $ma,mb \in R$. Then $ma\sqrt{p_j}(y_j,x_j) = ma\sqrt{p_j}(x_j,y_j)(0,1) \in A$. Subtraction yields $(0,m\sqrt{p_j}(ay_j-bx_j)) \in A$. Hence, $m\sqrt{p_j}(ay_j,bx_j) \in R$. Let e be the largest integer dividing ma and mb in R and write ma = ea', mb = eb'. Choose j large enough so that $p_j > e$ and $(a',b') = (a_{ik},b_{ik})$ for some $1 \le i \le j$, $1 \le k \le j-i+1$. We may also assume that the fixed elements a',b' belong to $Q[\{\sqrt{p_r},x_r,y_r \mid r < j\}]$. Then $\sqrt{p_j}(may_j-mbx_j) \in R$ implies p_j divides may_j-mbx_j in R. Hence p_j divides $a'y_j-b'x_j$ in R, and therefore divides $a'd_j-b'c_j = a_{ik}d_j-b_{ik}c_j$, a contradiction to the choice of c_j, d_j .

We have shown that A is an E-ring with $C(A) = R \neq A$. In particular, C(A) cannot be a quasi-summand of A. This follows, as in the proof of Corollary 2.8, from the fact that any pure quasi-summand of an E-ring is a fully invariant ideal in that ring ([4]). But C(A) cannot be an ideal since $1 \in C(A)$.

C. Vinsonhaler and W. Wickless

References

- [1] D. M. Arnold, "Strongly homogeneous torsion-free groups of finite rank", Proc. Amer. Math. Soc. 56 (1976), 67-72.
- D. M. Arnold, R. S. Pierce, J. D. Reid, C. I. Vinsonhaler,
 W. J. Wickless, "Torsion-free abelian groups of finite rank projective as modules over their endomorphism rings",
 J. Algebra 71 (1981), 1-10.
- [3] R. A. Beaumont and R. S. Pierce, "Torsion-free rings", *Illinois J. Math.* 5 (1961), 61-98.
- [4] R. Bowshell and P. Schultz, "Unital rings whose additive endomorphisms commute", Math. Ann. 228 (1977), 197-214.
- [5] P. A. Krylov, "Strongly homogeneous torsion-free abelian groups", Siberian Math. J. 24 (1983), 77-84.
- [6] L. Lady, "A seminar on splitting rings for torsion-free modules over Dedekind domains", Lecture Notes in Mathematics 1006 Springer-Verlag (1983), 1-49.
- [7] R. S. Pierce, "Subrings of simple algebras", Michigan Math. J. 7 (1960), 241-243.
- [8] R. S. Pierce, "Associative Algebras", Graduate Texts in Mathematics, Springer-Verlag 88 (1982).
- [9] R. S. Pierce and C. Vinsonhaler, "Realizing central division algebras", Pacific J. Math. 109 (1983), 165-177.
- [10] J. D. Reid, "On the ring of quasi-endomorphisms of a torsion-free group", Topics in Abelian Groups, Chicago, 1963, 51-68.
- [11] J. D. Reid, "On rings on groups", Pacific J. Math. 53 (1974), 229-237.

- [12] J. D. Reid, "Abelian groups finitely generated over their endomorphism rings" Lecture Notes in Mathematics 874 Springer-Verlag (1981), 41-52.
- [13] I. Reiner, "Maximal Orders", London Math. Soc. Monographs, Academic Press (1975).
- [14] P. Schultz, "The endomorphism ring of the additive group of a ring", J. Austral. Math. Soc. 15 (1973), 60-69.

Department of Mathematics, University of Connecticut, Storrs, Conn. 06268, U.S.A.