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Description of complex flow
behaviour using global
dynamic modes
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A novel method for performing spectral analysis of a fluid flow solely based on
snapshot sequences from numerical simulations or experimental data is presented by
Schmid (J. Fluid Mech., 2010, this issue, vol. 656, pp. 5-28). Dominant frequencies
and wavenumbers are extracted together with dynamic modes which represent the
associated flow structures. The mathematics underlying this decomposition is related
to the Koopman operator which provides a linear representation of a nonlinear
dynamical system. The procedure to calculate the spectra and dynamic modes is
based on Krylov subspace methods; the dynamic modes reduce to global linear
eigenmodes for linearized problems or to Fourier modes for (nonlinear) periodic
problems. Schmid (2010) also generalizes the analysis to the propagation of flow
variables in space which produces spatial growth rates with associated dynamic
modes, and an application of the decomposition to subdomains of the flow region
allows the extraction of localized stability information. For finite-amplitude flows this
spectral analysis identifies relevant frequencies more effectively than global eigenvalue
analysis and decouples frequency information more clearly than proper orthogonal
decomposition.

1. Introduction

The analysis of complex flows using global modes has become commonplace among
fluid dynamicists. The term ‘global modes’ has been used variedly to denote entities
such as linear eigenmodes that depend on more than one inhomogeneous-direction
(Theofilis 2003), proper-orthogonal-decomposition (POD) modes that characterize
the most energetic fluid elements in the flow and balanced modes that represent
flow structures that are most easily forced and measured by actuators and sensors
in flow-control applications (Bagheri, Brandt & Henningson 2009a). With the rapid
advances in computer power and numerical methods, the calculation of such global
modes has become feasible. For stability calculations the method of choice is a
Krylov subspace technique (Edwards et al. 1994; Barkley, Blackburn & Sherwin
2008), while for POD modes and balanced modes efficient snapshot methods have
been devised (Sirovich 1987; Ilak & Rowley 2008). However, none of these methods
extracts structures associated with dominant frequencies for finite-amplitude flows,
and most are difficult to apply to flow fields obtained from experiments. The novel
dynamic mode decomposition (DMD) of Schmid (2010) generalizes the concept of
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global modes to these situations and can be used to describe complex flow behaviour
using a reduced number of degrees of freedom.

2. Overview

The DMD is a technique to process a sequence of snapshots sampled in constant
intervals Ar from numerical simulations or experiments. Let us denote the kth flow
field of this sequence by u; and assume the dynamical system that generated this
sequence to be in the form

ups1 = fug). (2.1)
For linear problems, the right-hand side of (2.1) reduces to f(uy) = Auy = e u;, with
L representing the linearized governing equations. A spectral analysis of the linear
problem then amounts to finding the global eigenmodes of A. The DMD method
generalizes the global stability analysis to the case when the snapshot sequence is
governed by a nonlinear process. Assuming a linear mapping between the snapshots,
a modified Arnoldi technique (see Ruhe 1984) is used to compute a low-dimensional
representation of this mapping on the basis of snapshots. Mathematically, this
representation approximates the ‘Koopman operator’ which is at the base of the
DMD. The Koopman operator K is defined as (see Mezic 2005)

Kg(uy) = g(f(ur)) = gury1), (22)

with g(u) being an observable of the flow field u, say, its kinetic energy. In (2.2), the
linear operator K replaces the nonlinear mapping f of (2.1); it is equivalent to the
assumed linear mapping A between the snapshots.

The eigenvalues p; of K give information about the temporal evolution of the
observable over the given time interval Az. The associated eigenfunctions ¢; of K
can be used in an expansion of the flow field. The complete recovery of the snapshot
sequence is then an eigenfunction expansion (see Rowley et al. 2009)

o0 0
uk=ZKkg0jvj =Z,u';<pjvj, (2.3)
j=1 j=1

where ¢; is the amplitude, and /,L]; and v; describe the temporal evolution and the
spatial structure, respectively. The DMD 1is a numerical technique to extract the
components of expansion (2.3) from a finite number of snapshots. For snapshots
stemming from a linear process, the Koopman modes v; reduce to the linear global
eigenmodes of the linear process, while for nonlinear periodic problems, they are
related to Fourier modes (see Rowley et al. 2009).

Critically, spectral properties of the flow are deduced directly from the data, without
reliance on an underlying model or set of equations. This particular feature introduces
great flexibility. For example, the evolution in time (in the above example) can be
replaced straightforwardly by an evolution in a spatial coordinate direction. By a
simple reorganization of the data into a spatially arranged sequence of snapshots,
the DMD will produce an inter-snapshot mapping that contains information about
preferred spatial wavenumbers and associated spatial growth/decay rates. In addition,
concentration on subdomains of the flow field allows the concentration on localized
flow phenomena and the dissection into various co-existing or competing dynamic
mechanisms. A further consequence of the data-based approach is the possibility
of processing composite observables of the flow. For example, time-synchronized
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FiGURE 1. Dominant DMD mode extracted from time-resolved particle image velocimetry
(PIV) measurements of the wake flow behind a flexible membrane, visualized by (a) vector
plots and (b) contours of the transverse velocity component.

measurements of velocity fields by PIV and of acoustic pressure signals from a
microphone array in the far field can be processed together to investigate the aero-
acoustic properties of a compressible flow.

An interesting example from Schmid (2010) showing the potential of the DMD
method features the spectral analysis of a flow past a U-shaped steel frame holding a
flexible latex membrane. Time-resolved PIV measurements from the wake are taken
in the plane of the steel frame and processed by using the DMD algorithm. In a
first pass, the snapshots have been aligned in time, yielding a temporal analysis of
the flow field. A distinct (non-zero) frequency could be detected corresponding to a
nearly neutral dynamic mode. The corresponding dynamic mode shows large-scale
vortical structures with a well-defined spatial scale and a weak amplitude decay in
the streamwise direction, as shown in figure 1. A subsequent spatial DMD analysis
of the same flow along the streamwise direction reproduced a preferred wavenumber
and spatial growth rate decay rate of the dynamic mode. A quantitative equivalence
between the spatial and temporal characteristics can be established, thus confirming
that the identical spatio-temporal structure has been identified by a temporal and
spatial DMD analysis (see Schmid 2010).

3. Future

The versatility of the DMD allows its application to a variety of evolution processes
and data formats, ranging from time-resolved PIV measurements to image sequences.
Fluid dynamical, acoustic, reactive, thermal and fluid-structural systems can be
analysed as long as the processed data accurately capture the relevant temporal
and/or spatial scales of the dynamic process. In the figure beside the title, two
representative dynamic modes extracted from the experimental data of flow over
an open cavity at an intermediate Reynolds number are visualized by vorticity
contours and velocity vectors. These images (L. Pastur & F. Lusseyran, 2010, private
communication) demonstrate the power of this technique in very complex situations.

As a final demonstration and a further generalization of the spatial DMD
framework, snapshots from experiments or numerical simulations do not have to
align with a particular coordinate direction, but instead may be taken along the
curved streamlines of a base flow. This is demonstrated by processing flow fields from
direct numerical simulations of a jet in crossflow (Bagheri et al. 2009b) projected
onto planes normal to the base-flow streamline, emanating from the jet nozzle, and
arranged equispaced along its arclength (see figure 2a). For the dominant Strouhal
number, a spatial instability with a distinct spatial wavenumber along the curved
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FiGure 2. Spatial DMD along a curved streamline for a jet in crossflow. (a) Flow field snapshot
visualized by the streamwise velocity component. The base-flow streamline emanating from
the jet exit is shown in black; the planes normal to this streamline (onto which the velocity
field is projected) are visualized in grey. (b, ¢) Two DMD modes are in the cross-plane normal
to the curved streamline (P. Schmid & L. Bagheri, private communication 2010).

streamline could be detected. Two representative dynamic modes (figure 2b, c¢) show
coherent vortical patterns near both flanks of the counterrotating vortex pair. These
examples illustrate the potential of the DMD method for extracting useful information
from experimental or numerical data sets. It is clear that there will be many others.

Special thanks to P. Schmid and S. Bagheri for the possibility to include the spatial
DMD analysis of the jet in crossflow, and for their insightful comments.
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