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1. Introduction

In connection with the analysis of mathematical models of real processes undergoing
short time perturbations, in the last years the interest in the differential equations with
impulses remarkably increased. Going back to the papers of Mil'man and Myshkis [4,
5] the investigations of this subject are now extended to different directions concerning
applications in physics, biology, electronics, automatic control etc.

On the other hand, the description of many dynamic systems calls for very high-order
mathematical models due to the presence of small physical parameters like time
constants, masses, inductances, capacitances and similar "parasitic" parameters. Often
such systems exhibit "slow" and "fast" phenomena simultaneously and are stiff for
computations. The suppression of the small parameters in this case leads to a lower
order system and therefore the perturbations presented by these parameters are called
singular. Starting from the fundamental result of Tichonov [6] a great number of papers
have been published developing the singular perturbation approach alleviating both
dimensionality and stiffness difficulties. This approach is especially useful in control
theory of singularly perturbed systems (see the overview of Kokotovic [3]), where many
new problems concerning such systems arise, as well.

The present paper is devoted to a boundary value problem for a linear singularly
perturbed system (containing "slow" variables and stable and unstable "fast" variables)
with impulses. An asymptotic procedure for solving this problem is constructed (Section
3) and justified (Section 4) by means of a specific modification of the method of
boundary-layer functions proposed in Vasileva and Butuzov [7]. Similar results are
obtained in Hehimova and Bainov [2] for periodic singularly perturbed systems with
impulses.

The boundary value problem considered in the paper arises not only in case of
modelling processes which undergo impulse actions, but also in solving optimal control
problems for singularly perturbed systems with a criterion depending on the state at
some fixed moments of time. The reason is that in this case the adjoint system is also
singularly perturbed, but containing impulses at these moments. A control problem of
this type is considered in Section 5, where a solution technique is proposed, based on
the asymptotic approximations developed in the previous sections.
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2. Problem statement

Let tt <t2< ••• <tp be given points in the open interval (0, T). Consider the following
system of linear differential equations with impulses:

A(t)x + B2(t)y+f2(t), t±tt (1)

= P">x(t,.) + a, Ay(ti) =

where t e [ 0 , T], (x,y)eUm x R\ Afc), B£t), ffi) (j=l,2) and P">, S(i>, a,, b, ( i= l , . . . , p )
are matrices (or vectors) with appropriate dimensions, e is a small positive parameter
presenting the singular perturbation. We use the notation Ax(ti) = x(ti + 0)—x(ti—0),
Ay(ti) = y(ti + O)—y(ti—0), supposing for convenience that all the functions considered
are continuous from the left, namely x(t,—0) = x(t,), y(tl — O) = y(tl).

Let the boundary conditions for the system (1) be given by

x°2, y(O) = y°, (2)

where x is presented as x = (xux2), x^eU11, x2eRm~\
Setting e = 0 in (1) we obtain the so-called reduced system

(t)y+f1(t), t + v,

(3)

with the initial condition

y°. (4)

Further we use the following notation.

1. Given a vector z = (z1;..., zq) and (q x r)-matrix A — {a,;} we denote

r

\z\= max |z,|, \A\= max £ |<Jy|-
l g i g l S i S l

2. By Cq[0, T] we denote the space of all piecewise continuous functions
w:[0, T]-*M9, eventually discontinuous at the points tlt...,tp, but continuous from the
left. This space will be normed by ||w|| = sup{|u>(t)|:f e[0, r ] } .
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3. By (^'[O, T] we denote the set of all functions w()eC,[0 , T] with a continuous
derivative vv() existing on each interval (tf,t<+i]> ' = 0,1 p + 1 (where to=0, tp+1 = T),
and such that the right derivative w(t( + 0) also exists for i = 0,...,p+1.

Let the following conditions be fulfilled.

Al. The matrices A}{-), Bj(-),j=l,2, are ^V + l times continuously differentiate;

A2. The matrix A^t) has the following block-diagonal form:

(A^t) 0
Al{t)={ o

where 4n( t ) is a (/e x fc)-matrix with strictly negative real parts of its eigenvalues
(ReA(^11(t))<0), while for the (m — k) x (m — fc)-matrix -422(0 the real parts of the
eigenvalues are positive (ReA(A22(t))>0);

A3. Presenting the matrices P(I), i= 1,. . . , p in the block-diagonal form

p(0 p(0
21 r22

according to the block-diagonal form of A^i), we assume that the matrices £ + S(i),
E + P{I\ and £ + P(202. i = !.•••. P. are non-singular (E is the identity matrix);

A4. The functions / / ) , ; = 1,2, belong to £[0, T].

Under the conditions A1-A4 we prove the existence of a solution of the boundary
value problem (1), (2). We construct also an asymptotic expansion of this solution with
respect to the small parameter e, including terms in a "stretched time scale" modelling
the fast movement of the trajectory near the boundary and near the moments t, of
impulse actions. The expansion of the solution of (1), (2) z(t, e) = (x(t, e), y{t, e)) takes the
form

z(t,e) = z((,e) + 7i(">z(T1,e) + e<i)z(<7f,£), t,<t£tl+1, (6)

where z(t,s) and the boundary-layer functions n(i)z(-,e) and 2(1>z(-,e) are presented as
series:

z - ( t , £ )=f ekzk(t), te[0,T\, (7)
* = o

JIWZ(T,, e) = £ 8»4°*(T«) (i = 0 , . . . , p), (8)
* 0

e<"z(ffl, e) = £ e*&oz(ff.) (»' = 0, ..., P), (9)
k = O

Here Tj=(t — tt)/e and «7j=(( —t1 + 1)/e, te(t(, t i + 1) are the stretched time scales. The
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additional condition

for the boundary-layer functions yields their local influence on the solution approxi-
mation. An algorithm constructing the above expansions is described in Section 3.
The convergence of the series obtained is proved in Section 4, where an estimation of
the difference in the uniform metric between the solution and its J^th approximation is
also found.

3. Formal asymptotic expansion of the solution

First, we shall find an appropriate formal asymptotic expansion of the solution
z(t, s) = (x(t, E), y(t, s)) of the boundary value problem (1), (2) in the form given in (6)-(9).

The reduced problem (3), (4) can be presented as

x(t) = 4>(t,y), t + tt ( l l)

(12)

where

<t>{t,y)=-A-1\t)Bl(t)y-A-l\i)fl(t),
(13)

F(t)=f2(t)-A2(t)A^(t)f1(t).

System (12) with initial condition (4) has a unique solution given by

o \ £ (14)
0 0<rv<r

where V(t, s) is the fundamental matrix solution of (15), normalized at t = s:

Substituting (6) in system (1) we obtain

dx dnli)x dQil)x

at dxi d<Ji

= Al(t)x(t, e) + Al(ti + ezyi)x(Ti, e) + Al(ti+x+EO^)x(oi, s)

t, E) + B^t, + etdnPjtTi, e) + Bl(ti+1+ erdQwy(<Tb e

i, i = 0,

(15)
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dy dn(i)y dQ{i)y

dt dx{ da{

= eA2{t)x{t, e) + eA2(t, + ex^x^i, e) + eA2(ti+1 + «r,)Gwjc(ff,, e)

+ eB2(t)y(t, e) + eB2(t, + ex^n{i)y(xh e) + eB2(t, + x + ea,)QU)y(oh e) + e/2(t),

t,<t^tl+l, i = 0, l , . . . ,p (16)

and from the impulse action equalities in (1)

x(tj + 0, e) + 7T(°x(0, e) + Q(i)x - — — , e

V £

=(P(1) + £) x(ti,e) + n('-l)x[-—^-,e)

(17)

ti + 0, E) + n(i)y(0,e) + Q{i)y

ly(th 6) + ;r<'-»>y f^ -^ 1 , e ) + e(I)y(0,8)1 + ft,.= (S"> + E)

In the above equations (16) and (17) we replace z, n(l)z and Q{i)z by the expressions (7),
(8) and (9) and present the matrices /!/!,+et,-), i4/t,- +1 + ea,), JB/t,- + et,) and B/ti+1 +£<T;)
0=1,2) as power series with respect to e. Comparing the coefficients of each power
of e (these depending on t, T, and ah separately) we obtain a system of equations with
respect to the coefficients in (7), (8) and (9). Substituting (6) in (2) we get the boundary
conditions

4= t £k*UT)+ t ^&x{^ZlA+ t «*Gtt(0W0), (18)

y°= I *M0)+ I £*40)y(0)+ f ^Q^yf-A
k=l k = 0 k = 0 \ £/

where the additional indices 1 and 2 appear due to the separation of the fast state to a
stable and an unstable part, namely x=(x1,x2)eUk x Um~k.
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For the first term {xo(t), yo{t)) we obtain the system

(19)

The boundary-layer functions nflz^,) and QU'zfo) satisfy

^ M ° ^ (20)

=o. (21)

From (20) and (21), taking into account (10) we have

ntfytz^ssO, Q^yi^i) = 0. (22)

Using the block-diagonal form of the matrix Al (condition A2) we replace (20) and (21)
by

° ' i x _ A /•»\7r<') WT ^ (VX\

- = Au(ti)n^2x(Ti), (24)

- ^ ^ = /411(t1+1)Q[i!1x((TI), (25)

—r^— = ^22Ui+i)Qo>2x(oi). (26)

d(T(

From (18) and (22) we find the initial condition

9<J(O) = y0 (27)
for the system (19). Thus the problem (19), (27) is exactly the reduced problem (3), (4)
and xo(t) = 4>(t,yo(t)), yo(0 = K0-

From (10) and (24), (25), using the spectrum condition in A2 we conclude that
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The equalities (18) and (17) give us

< ? (28)

(29)

i = l , . . . , p . (30)

For the solutions of the systems (23) and (26) with initial conditions (30) and (29) we
have

(31)

(32)

The condition A2 implies the existence of constants C and K > 0 such that

l l ^ l l \ \ \ \ i=l , . . . ,p . (33)

In a similar way we can find the coefficients of e* {k^. 1) in (6), (7) and (8). As a result
we obtain the systems

t±t, (34)

i> + E)Qk> ~

(35)

dnfy

(36)
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where

(37)

T h e init ial c o n d i t i o n s for n^y(x^, Qk
l)y{Pil, i=l,...,p, k=\,...,Jf a re given accord ing

t o (10) a s follows:

4'MO) = - ? Rin(s) ds, Q?y(0) = - f Hk'\s) ds. (38)
0 0

From the second equations in (35) and (36) and from (38) we get

nfy{^ = - j Rf(s) ds, QPrtffj) = - f H]!\s) ds. (39)

Taking into account (38) we rewrite system (34) in the form

(40)
PM = LB2(t) - A2(t)A; WBMlyt + Fk(t), t +1,

with the initial condition

obtained from (18), where

f Hk
i-l\s)ds+ 7°
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The solution {xk(t), yk(t)) of (40), (41) is given by

t))
(42)

hit) =-V(t, 0)nk
O)y(0) + \v(t, s)Fk(s) ds + £ V(t,

o o < tv < i

Using (10) we obtain from (18) the initial conditions for 7t̂ x(T,) and Qi^xia,):

={p{;\+E)xK1

i = T7p (43)

= - +f

Using condition A2 we obtain from the system (36)

da,

(44)

with (44) as an initial condition. Using the Cauchy formula we get

Gi?i*fa) = - f ^ " ( " + l )<""1)[Bi(t«+ i)et'V(s) + G^s)], ds,

Gi?2x(ff() = Gi?240)^lM<"+l)" + j'^11("+l)(""I)[B1(t,+1)Gi03<s) (45)
0

+ Gk
i\s)']2ds, i=0,...,p, a^O.
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Finally, solving the problem (35), (43) with QJt'VtO) obtained from (45) we get for

, ds,

(46)

Thus, the coefficients in the expansions (7), (8) and (9) are completely determined.
Moreover, using (33) we prove by induction that there exist constants C and K > 0 such
that the boundary-layer functions n^z(x^ and Q$z{a^ (/c = 0,...,Jf, i = l,...,p) satisfy
the estimations

||4'>Z(T,.)|| g Ce-"', x, ̂  0; ||Qloz(tfi)|| ^ C **«, *,£ 0 (47)

(here and further we use the letters C and K to indicate constants, which however, may
be specific in different relations).

The estimations (47) imply the convergence of all the integrals on infinite intervals
encountered above. Thus, the formal expansions (7), (8) and (9) are correctly defined.
The question of the convergence of these series will be investigated in the next section.

4. Convergence of the asymptotic expansion and existence of a solution

The main purpose of this section is to prove the convergence of the power series (6)
(described in (7), (8) and (9)) to a function z(t, e) being a solution of the problem (1), (2).
Moreover, we estimate the difference between the exact solution and the
approximation

£t,+,

in the uniform metric.
First we shall consider the following "fast" system with impulses

(48)

,) = /><•>((,.) + £,-

together with the boundary conditions

r1(0,£) = r?, r2(T,E) = r°2, (49)

where as above r=(rl,r2)eUk x Mm~k. This problem turns out to have a solution and
this solution will be estimated under the following conditions.
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Bl. The matrix A^t) is continuous and satisfies the condition A2 in [0, T~\:
B2. The matrices P f t + f and P(

22 + £, i=l,...,p, are nonsingular;
B3. The vector function \ji{t) belongs to Cm[0, T].

Thus the system (48) consists of the following two systems, coupled by the impulse
relations only:

and

Ar2(ti) = Pf2r2(ti) + P2'> rt(td + c

(50)

(51)

, 2.

Denote by 4^(1, s,e) ( ^ ( s , 5, e) = E), fc = l,2 the fundamental matrix solution of the
system

te[0,T] (52)

without impulses. It is well known (see [1]) that under the condition Bl the following
inequalities hold

(53)

where Ko and K > 0 are appropriate constants. Denote

n
x«P1(r»,s,e),

"I

- i . £ ) J

(54)

U2(t,s,e) =

t, t,, £)(£ + P2"2 th S,
(55)

fe — 1

j = i
tJ+ u
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By direct calculations we see that Uk(t,s,e), k=l,2, is the fundamental matrix solution
of the corresponding homogeneous system with impulses

(56)

The estimations (53) and the presentations (54) and (55) yield the existence of constants
K, eo>0 and K > 0 such that for ee(0, ao]

(57)

\U2(t,s,e)\^KeKl'-'"\ O^t^s^T.

Consider the system (50) under the additional assumption that Pf2=0 ( i= l , . . . , p ) ,
and with the initial condition

r,(0,«) = r?. (58)

Lemma 1. Let conditions B1-B3 hold. Then there exist e o > 0 and a constant K1 such
that for every ee(0, eo] and te[0, T] the unique solution f^t, e) of the system (50) with the
initial condition (58) and with P(i2 = 0 (i=l,...,p) satisfies the inequality

(59)

Proof. The solution of (50), (58) with Pf2 = 0 is given by

fl(t,e) = Ul(t,O>e)r1+-\ui(t,s,E)il/l(s)ds+ £ U,(t, tv + 0,e)cvA. (60)
£ 0 0 < rv < i

Then inequality (59) follows from the first inequality in (57) and (60).

Lemma 2. Let conditions B1-B3 hold. Then there exist eo>0 and a constant K2 such
that for every £e(0, e0] and te[0, T] the solution r2(t,e) of the system (51) with Pfi=0
(i=l,...,p) resulting from the condition

(61)

satisfies the inequality

| j (62)
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Proof. We directly establish that the function

r2(t,e) = U2(t,T,E)r°2+-\u2(t,s,eW2(s)ds- £ U2(t,tv+0,e)(E + P2
v\ylcv,2 (63)

£T tstv<r

belongs to Cm-k[0, T~\ and satisfies (51) and (61). Then the estimation (62) follows from
the second inequality in (57) and (63).

Lemma 3. Let the conditions B1-B3 hold. Then there exists e o > 0 such that for
£6(0, EQ] system (48) with boundary conditions (49) has a unique solution r(-,s)eCm[0, T ] .
This solution satisfies the inequality

r(t, e)\\ ̂ K3 max |||tfr||, max |c,|, |r°| j ,||| | | j (64)

where K3 is an appropriate constant.

Proof. Denote by r^t; e; r2(^i)> • • • > r2(t
P)) t n e solution of the system (50) with the

initial condition (58), where r2(ti),...,r2(tp) are considered as parameters. Denote,
further, by r2(t; e; r2(t1),..., r2(tp)) the solution of the system (51) with the condition (61),
where r^t,) is replaced by rl(t{,s;r2{tl),...,r2(tp)), i = \,...,p. In orders to obtain a
solution of (48), (49) it remains to find the parameters r2( t i ) , . . . , r2(tp) such that the
following system of linear algebraic equations is satisfied

r2(ti;e;r2(tl),...,r2(tp)) = r2(ti), ( i = l , . . . , p ) . (65)

Using the estimations (57) we easily conclude that the determinant A(a) of this system
can be presented as

where At(fi) tends to zero together with e. Hence system (65) possesses a unique solution
r2(h),---,r2(tp) for all sufficiently small e. Then obviously r1(t,e) = ri(t,£;r2

)(t1),...,r2
)(tp))

and r2(t,e) = r2{t;e;r<
2\tl),...,r2\tp)) give a solution of problem (48), (49). The estimation

(64) follows from (59) and (62). The proof is complete.

Theorem. Let conditions A1-A3 hold. Then there exist constants M and e o > 0 such
that for every ee(0, eo] the boundary value problem (1), (2) has a unique solution z(t,e) and
this solution satisfies the inequality

\ + l , te[0,T]. (66)

Proof. Introducing the new variables

u = x-XAt,e), v=y-YAt,e) (67)
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we transform (1) to the system

Eii = Al(t)u + B1(t)v+g1(t,e), t±t,

v = (B2(t) - A2(t)Ai 1(r)fli(0)» + DdKA^u + Bt(t)v-] +g2(t, e), t ± t,
(68)

where

g1(t,e) = A MX AU B) + BiW YAt,£) - £

dYjr

(69)

f ft **?-U* ( f L "^ i ) - fo
 eS^°x(^Y

From (2) and (67) we obtain the following boundary conditions for system (68)

ul(0,e) = pi(e), U2(T,E) = P2(E), v(O,e) = q(e), (70)

where

1 * = i k'1 \ e
(71)

From the relations (19)-{21), (27)-(3O), (34)-(38), (41), (43), (44) and (47) we conclude
that the estimations

^N0, | g l ( t , e) |gNl £^+ 1, re[0,T],

1, i = l,..., p,
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l(k= 1,2), |<z( £ )gN 6 ^ + 1 (72)

hold for all sufficiently small e > 0 (Nj,j = 0,...,6 are appropriate constants).
Given a constant p > 0, define the set

Tp = {w:w e Cn[0,T], | |w| |gp}.

Lemma 3 implies that the system

f 1(t)w+gl(t,e), t±t{

(73)
Ah(t() = P("fc(^ + a)(e)

with boundary conditions

fc1(0,8) = p1(e), W 0 = p2(e) (74)

has a unique solution h(f, w, e) E Cm[0, 77], when weTp. Then relations (64) and (72) yield
the existence of constants e o >0, Lo, Ll such that

| | | | | | | | p (75)

t, wue)-h(t, w^eJllgLollwi-Wzll, w^WjeT, (76)

for ee(0, eo].
For we 7̂ , we denote by <pew the solution of the following system

6 = (B2(t)-A2(t)A;1(t)Bl(t))S+D(t)\:Ai(t)h(t,w,e)
(77)

with the initial condition

v(0,e) = q(e). (78)

Then

f t,e), (79)
o

where K(t, s) is the fundamental matrix solution of system (15) and

G2(t, e) = V(t, 0)q(e) + } K(t, % 2 ( s , e) ds + X K(t, tv + 0)p\(B).
0 0<( <<
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From (79), taking into account that h(t, w, e) solves (73), we get

4>Ew = £ j V(t,s)D(s)fi(S)ds-\ V(t,s)D(s)gl(s,e)ds + G2(t,e),
0 0

(80)j \
0 0

where fi{tt) means /i(r,—0). The first term in the right-hand side of (80) can be written as

e j V{t, s)D(s)fi(s) ds
o

= e'j V(t,s)D(s)fi(s)ds
0

where

+ Z £ T v(t, s)D(s)fi(s) ds + e \ V(t, s)D(s)fi(s) ds,
1 = 1 ',• 'k

(81)

^ T Integrating by parts (81) we have

e\v(t,s)D(s)fi(s)ds
o

= eD(t)h(t)-sV(t,0)D(0)h(0)

-a t V(t, tt h{s)ds. (82)

From (82), using the estimations (72) and the boundedness of the matrices V(t, s) and
d(V(t, s)D(s))/ds for O ^ s g t ^ T, we obtain that

(83)e j V(t, s)D(s)fi{s) ds

for 0^ t^T, £E(0,£0], J/'1,^V8—appropriate constants.
The second term in (80) and the matrix G2(t, e) can be estimated also by means of

(72):

V(t, s)D(s)gl(s, £) ds

for Ogt^T; £6(0,£o], Jf9, Jfx0—constants. Using (80), (83), (84) and (85) we obtain

(84)

(85)

(86)

for we Tp, es(0, eo], J^n—a constant.
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Similarly we prove the inequality

-h2\\ (87)

for w1,w2eTp, hk = h(t,wk,e)(k=l,2), ee(0,£o], Nl2—a constant.
From estimations (75), (76), (86) and (87) we conclude that 4>e is a contractive

operator in Tp. Denoting by v(t, e) the unique fixed point of 4>t, we obtain that
(u(t, e), v(t, e)), u{t, E) = h(t, v(t, e), e), is the unique solution of (68), (70) for g e (0, £0].

Setting p = Ce with a sufficiently large constant C and using (75) and (86) we get

The above estimations together with (67) give us estimations (66). The proof is complete.

5. Applications to control theory

In this section we apply the asymptotic algorithm presented in Section 2 in solving
optimal control problems for singularly perturbed linear systems with a criterion
depending on the state of the system at given moments of time. In this case the adjoint
system contains impulse actions and together with the original system forms a boundary
value problem for a singularly perturbed linear system with impulses.

Consider the following optimal control problem:

minimize £ {(hMQ + q\, *{Q)> + ({-fcyiQ + qt2, y{Q)>)

+ 1 ) «Rx(t), x(l)> + <Qu(t), u(t)» it (88)
0

subject to

1u + fl, x(0) = xo,

+ f2, y(0) = yo, (89)

x(T)eS,

where (x, j>)eR"x W is the state, ueW is the control variable, e is a small positive
parameter providing the singular perturbation, <•, •> denotes the scalar product. All the
above matrices and vectors have appropriate dimensions and may depend on the time t
in a sufficiently smooth way. The moments tt < • •• < tp are assumed to be from the open
interval (0, T).

Let the set S constraining the final state of the "slow" variable x be described by the
equations
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where #,(•) are differentiable and let the following be also fulfilled:

Cl . The real parts of the eigenvalues of the matrix AA are strictly negative;

C2. The matrices R and Q are positive definite and Q is nonsingular.

We shall briefly describe a numerical procedure for solving the problem (88), (89),
which alleviates both dimensionality and stiffness difficulties. The well-known approach
of reduction of the original problem (88), (89) to a boundary value problem is used.

Denoting for convenience by {£,, erf) e IRm x W the adjoint variable we can present the
adjoint system as

where JV(X) is the subspace of IRm spanned by the vectors g\(x),..., g't(x). Given a vector
(<!;, st}) e Um x W, the hamiltonian attains its maximum with respect to u at

Thus, the pair of the optimal trajectory and the corresponding adjoint variable satisfies
the following system of differential equations and boundary conditions:

x(0) = xo,

(90)

,/(T)=0

with impulses at the points

A£({,-) = p(,')x(t1) + qlp
(91)

Since the matrix AA is asymptotically stable, one can find a matrix K such that
A4.K + KAt = B2Q~lB2'. Introducing a new variable y = y + Kt\ instead of y we obtain
from (90) the following system

x(0) = xo,
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r,(T)=0.
(92)

The stable and the unstable fast variables y and rj are now separated and thus condition
A2 is fulfilled. The impulses (91) take the form

d = -e M ' f M - KpfK^Q + Kqfl (93)

In order to apply the asymptotic expansion developed in Section 2 we have to assume
additionally that

CT, n <0_ P s ( ' ) /7<'>_ M ( ' ) I—1 n
«^J. P2—£P2> Q2—£cl2> 1 — 1 , . . . , p .

C4. The matrices E — pfK and E + Kp^ are nonsingular, i = l , . . . , p .

Remark 1. The assumption C3 is natural. Often the original system describing the
dynamics is given in terms of the state variable z = y/e involving large coefficients in the
right-hand sides of the corresponding equations. If the state value z(tf) is penalized
similarly as x(t() by the criterion, then the normalizing substitution y = ez leads to a
criterion satisfying the assumption C3. Moreover, the most practically important case is

Remark 2. The presence of the fact phenomena y in the integral part of the criterion
(88) is also admissible, if the corresponding term is multiplied by the factor E0. The fast
subsystem in (92) will be weakly coupled in this case and similar asymptotic techniques
can be applied.

In order to solve the boundary value problem (92), (93) we can use some version of
the shutting method. Replace the final condition in the second equation in (92) by the
initial condition î (0) = ^0 and the initial condition in the third equation by y(0)=y0

+ Krj0. Thus, we obtain a new boundary value problem with impulses which will be
denoted by ^ ( ^ 0 . fo) (w e consider <̂ 0 and r\0 as unknown parameters). Let
(x, y, £, ti)(£0, t]0; t) be the solution of this problem. Our optimal control problem (88),
(89) is now reduced to the following system of n + m equations with respect to

(94)
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Each step of any iterative procedure for solving the last system requires the solution
of the problem 2?{^a, n0) for some fixed £,0, r\0. The last problem is exactly in the form of
(1), (2) and it is convenient to use the asymptotic expansion described in Section 2.
Practically, the first one or two terms of the expansion are enough, but the accuracy can
be increased (see estimation (66)) according to the current discrepancy in equations (94).
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