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On Asymptotically Orthonormal
Sequences

Emmanuel Fricain and Rishika Rupam

Abstract. An asymptotically orthonormal sequence is a sequence that is nearly orthonormal in the
sense that it satisfies the Parseval equality up to two constants close to one. In this paper, we ex-
plore such sequences formed by normalized reproducing kernels for model spaces and de Branges-
Rovnyak spaces.

1 Introduction

When working in Hilbert spaces, it is very natural and useful to deal with orthonor-
mal bases. However, in many situations, the system we are interested in does not form
an orthonormal basis but is close to one. The investigation of such bases has a long
history. It began with the works of Paley-Wiener [16] and Levinson [13], mainly for
exponential systems. In this context, functional models have been used in [12] to-
gether with some other tools from operator theory. The model spaces Kg of the unit
disc are subspaces of the Hardy space H*(ID) invariant under the adjoints of multi-
plications. Their theory is connected to dilation theory for contractions on Hilbert
spaces. The paper [12] has inspired a fruitful line of research on geometric properties
of systems formed by reproducing kernels for Kg. Not only did it enable the recapture
of all classical results on exponential systems, but it also provided many new results
in a more general context. In [4], following the line of research in [12], the authors
studied the case when the system of normalized reproducing kernels (K?ﬂ ), for Kg
is asymptotically close to an orthonormal basis (see definition below). This is a par-
ticular case of unconditional basis where more rigidity is required. It should be noted
that in [12] and [4], the additional assumption

(L1) sup |®(1,)| <1
nx1

is required. Under that assumption, the projection method developed in [12] and
used in [4] linked the properties of (K?ﬂ ), with those of normalized reproducing ker-
nels («y,), for H*(ID). Volberg proved in [19] that («,,), is an asymptotically or-
thonormal basis for its closed span if and only if (1, ), is a thin sequence (a stronger
condition than Carleson’s condition). This beautiful result was recently reproved by
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Gorkin, McCarthy, Pott, and Wick [11] by a direct and easier method using ideas from
interpolation theory.

Following the work of Baranov [2] for Riesz bases, we are interested here in in-
vestigating asymptotically orthonormal bases of reproducing kernels for K¢ without
requiring assumption (1.1). In this situation, the projection method no longer applies,
and the main tool here will be Bernstein’s type inequalities. We also work in the more
general context where model spaces Kg are replaced by de Branges—Rovnyak spaces
H(b). We should mention that we work in the upper-half plane, but most results
transfer easily to the unit disc.

The plan of the paper is the following. The next section contains preliminary ma-
terial; in particular, an analogue of Bari’s theorem is given, which completes a result
given in [4]. In Section 3, we study the stability of asymptotically orthonormal se-
quences with respect to perturbation of frequencies. The main results of the paper are
Theorem 3.6, Corollary 3.13, Theorem 3.24, and Corollary 3.27. In Section 4, we study
the case of exponential systems. Finally, in the last section, we examine what happens
when one projects an AOB (Kii )us1 On a subspace H(b,) of H(by).

2 Preliminaries

2.1 Asymptotically Orthonormal Sequences

Let H be a Hilbert space, and let X = (x,,) ,>1 be a sequence of vectors in . We recall
that X is said to be:

(a) minimal if for every n > 1, x,, ¢ span(x, : € # n), where span(:--) denotes the
closure of the finite linear combination of (---);
(b) a Riesz sequence (RS) if there exists two constants ¢, C > 0 such that
¢ Z janl* < | Z anxal5c < C Z |an|?
n21 n>1 n=1
for every finitely supported sequence of complex numbers (a, ) 43
(c) an asymptotically orthonormal sequence (AOS) if there exists No € N such that for
all N > Ny there are constants ¢y, Cy > 0 verifying

2.1 cN Z lan> < | Z anxn |3 < Cy Z lan|*

n>N n>N n>N

for every finitely supported sequence of complex numbers (a, ), and

lim ¢y =1= lim Cy;
N—oo N—oco
(d) an asymptotically orthonormal basic sequence (AOB) if it is an AOS with Ny = 1;
(e) aRiesz basis (RB) for H if it is a complete Riesz sequence, that is, a Riesz sequence
satisfying span(x, : n > 1) = K.
It is easy to see that (x, ) n»1 is an AOB if and only if it is an AOS as well as an RS. Also,
(%0 )ns1 is an AOB if and only if it is minimal and an AOS. The well-known result
of Kéthe-Toeplitz ([14, p. 136]) says that if X = (x, )1 is a complete and minimal
sequence of normalized vectors in J{, then X is a Riesz basis for J{ if and only if X is
an unconditional basis for J{. The reader should pay attention to the fact that AOB
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does not imply completeness; an AOB is a basis for its span but not necessarily for the
whole space.

We recall also that for a sequence X = (x,) 51, the Gram matrix Tnc = (T, p) n,ps1
is defined by

Fn)p: <xn;xp>j{, (n,pzl)

If X = (x,)ns1 is a complete and minimal sequence and X* = (x}; )51 is its biorthog-
onal sequence, that is, the unique sequence (x; )51 in I satisfying

1 ifn=2¢
s * = 671 = ’
oo X )ac = On.e {0 ifn#e,

then the interpolation operator Jx is defined as

].'Xx:(<f’x;>f}f)n217 (xeiH).

We finally recall that X = (x,),»1 is a Riesz basis for J if and only if there exists a
(unique) invertible operator Ux:: H — £2 such that Uy (x,,) = ey, n > 1, where (e, ) ys1
is the canonical orthonormal basis for £2. The operator Ux is called the orthonormal-
izer of X. We refer the reader to [9,14,20] for details on general geometric properties
of sequences in an Hilbert space.

Bari’s theorem (see [14, p. 132]) gives several characterizations for a sequence to
be a RB in terms of its Gram matrix and the interpolation operator. An analogue
of Bari’s result for complete AOB is also available. A part of this can be found in
[4]. To complete the picture, we need two preliminaries results. First, we introduce a
notation. Let T € L(H;, H,). We say that T € UK(H;, H,) if T is invertible from
J; onto 3, and can be written as T = U + K, where U, K € £(3;, H,), U is unitary,
and K is compact.

Lemma 2.2 Let 3(;, 75, H; be Hilbert spaces.

(1) Ile € UK(J{I,J{z) and T2 € UIK(U{Z,G{3), then T2T1 € UfK(le,ng)
(i) IfT e UK(H, ), then T e UK(H,, ).
(iii) If T e UK(H, FC), then T* € UK(Fz, 3).

Proof The proofs of (i) and (iii) are straightforward and are left to the reader. Let us
prove (ii). Assume that T = U + K is invertible with U unitary and K compact. Then
write T = U(I + U*K) = UV with V = I + U*K. It is clear that V is invertible and
I1=V1'+V1U*K. Hence, V7! =T - V'U*K, and we get

T =vUu* =U* - VIU*KU?,
which implies that T~' € UK (H,, H, ). [

Lemma 2.3 Let X = (x,) 1 be a complete AOB for H and let Cy be the constant
appearing in the right inequality of (2.1). Then for every N > 1 and f € JH, we have

> {f>xadacl” < Cnllfl5c.

n>N
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Proof Let us denote by Py: £2 — £* the orthogonal projection defined by

PN(Zanen) =) anen,

n>1 n>N

where (e, )n»1 is the canonical orthonormal basis of £2. For every a = (a,)ns1 € €2,
define
Vya =3 ayxy.
nx1
Since X is a Riesz basis, this map Vy defines a continuous and invertible operator
from ¢* onto H. Moreover, for a € £%, we have
[VaePyalie = | 30 anxall3c < Cn - lanl® < Cullalz,
nxN nxN

which gives | Py V| = || VxPy|| < /Cy. But is is easy to see that Vi = Jy+, whence
|PnJox+ | < /Cn, and we get the desired inequality. [

Theorem 2.4 Let X = (x,)n»1 be a complete and minimal sequence of vectors in K,
X* = (x) 1 its biorthogonal sequence. The following assertions are equivalent:

(i)  The sequence X is a complete AOB for 3.

(ii) There exists an operator Ux € UK (I, €2) such that Ux(x,) = e, n > 1.

(iii) The Gram matrix defines a bounded and invertible operator on €% of the form I+K
with K compact.

(iv) Jor € UK(F, €2).

(v)  The sequence X* is a complete AOB for 3.

(vi) There exists an invertible operator Ux: H — € such that Ux (x,) = ey, n > 1,
and if Ux y:span(x, : n > N) — span(e, : n > N) is the restriction of Ux to
span(x, : n > N), then

Jim U] =1= lim [UZy].
(vii) Forevery N > 1, there are two constants Cy, Cy, > 0 such that

* —1
(25) Cy £ 15 < ZI »xn)acl® < Cwllf13¢

forevery f e H © span(x1, %2, ..., xN-1) and imy_,. Cy =1 =limy_0 Cy.
(viii) The sequence X* is complete in H and for every N > 1, there are two constants
Cn, Cy > 0 such that

(2:6) > Wfoxudsc? <Culfl5e and 30 1(foxm)acl® < CRIf 150

n>N n>N
forevery f e H and limy_,o Cy =1=limy_, Cj.
Proof The equivalences between (i), (ii), and (iii) are contained in [4, Proposi-
tion 3.2]. The equivalence with (iv) follows from Bari’s theorem, the fact that Jx» =

Vi = (Ux')*, and Lemma 2.2. Let us now prove the others implications.
(ii) = (v): Since

One = (Uxxn, Uxxe)er = (X, Ux U xe) ¢,

https://doi.org/10.4153/CJM-2017-001-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-001-9

1316 E. Fricain and R. Rupam

we have x; = U} Uxx, = Uxep, € > 1. Thus, Ux+ = (Ux.) ™" and X* is a complete and
minimal sequence. Now (v) follows from Lemma 2.2 and the implication (ii) = (i)
applied to X*.

(v) = (i): Use the implication (i) = (v) applied to X*.

(i) = (vi): By Bari’s theorem, Uy is a bounded and invertible operator from H
onto £%. Moreover, for every x = ¥,y dnX,, we have

Z |a,,|2

[Un, NxHez = H Z apen

and using (2.1), we get
en|Ux,nx[z < 215 < Cn [ Ux w7

Thus, Cy 2 < [Ux,n]| < c_l/z and ||Ux, x| — 1as N goes to co. Similarly, we prove
that | Ux,NH — las N goes to co.
(vi)= (i): By Bari’s theorem, X is a Riesz basis. Moreover, we have

2 2
| 3 ana] = URin( X anen) |, < NURNI? Y lanls
n>N n>N n>N

Z |an|2 = H UX,N( Z anxn)
n>N n>N
Then we obtain

2
[Uxn ] X JanP < | 2 anta |, < IURNI? X laul
n>N n>N n>N

2 2
< Ul -
p s ” UDC,NH n;\r AnXn 5

Since |Ux,n| and U5\ | go to 1as N goes to oo, we get that (x,) 451 is a complete
AOB for I.

(i)= (vii): The right inequality in (2.5) follows from Lemma 2.3. Since (x}; )1 is
also a complete AOB for I, for every N > 1, there are two positive constants cy;, Cy

satisfying
(2.7) cN Z |la,|* < H Z anx, < Cxy z |anl®,
n>N n>N n>N
and cy;, C}y gotolas N goes to co. Moreover, for every f € Hospan(xy, X2, ..., XN-1),
we have
f z xn ﬂ{xn;
n>N
and (2.7) gives

1£15c < Cx 22 1f> xa)acl

n>N
This proves the left inequality in (2.5).
(vii) = (v): Since

-1
G Uf 15 < 2 1S xndacl” < Gl [5c,

n>1

for every f € X, the operator Jx« is invertible from H onto £*. Hence, accord-
ing to Bari’s theorem, the sequences X and X* are Riesz basis for }{. Moreover,
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every f =Y ,on anx; with (a,)nsn € €% satisfies f € H © span(x;,...,xy-;) and
(f>xk)9c = ak, k > N. Hence by (2.5), we have

2, an,

2
:}C)
n>N

2
G| X anxi|, < X lanP < Cy
n>N n>N
and (x}) 1 is an AOB.
(i) = (viii): Follows immediately from Lemma 2.3 and the fact that (i)=(v).
(viii) =(i): Let f = .5 dnXn, Where (a,),>n is a finitely supported sequence of
complex numbers. Then applying the second inequality in (2.6) gives us

Z lan|* < C;,’ Z AnXn
nxN

2
n>N 3t
On the other hand, by duality and Cauchy-Schwarz inequality, we have

2 2 2
|5 sl = s [ s = s | 5 antensh
n>N I geJ n>N gedH "n>N
llgll3c<1 [[gllac<t
<Y lanl sup Y [(xn gl < Cn X lanl. n
n>N geH n>N n>N

lgllses1

We now give two simple conditions on the Gram matrix, one necessary and the
other one sufficient for a sequence to be an AOB.

Proposition 2.8 Let X = (x,) 1 be a sequence of normalized vectors in H and let
I = (T,p)n,p1 be its Gram matrix. The following hold:

M I
Jim (sup 3 ILpl) =0

R nxN p>N
p#n
then (x,) u»1 is an AOS.
(i) If (xn)ns1 is an AOB, then

lim (37 [T,p?) =0.

n—oo le

p#n

Proof (i) Let (a,).»1 be a finitely supported sequence of complex numbers and de-

note by
en = sup Z T, pl-
nxN p>N
p#n
Write

2
> anxy . 3 antp(xn xp)ac= Y. lanl*+ Y. andyTap.
n>N n,p>N n>N n,p>N
ntp
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We will prove the inequality

(2.9) ‘ Z aHTPFn,p‘ <en Z |a,,|2.
n,p>N n>N
n#p

Using that ab < (a® + b?)/2, for every real numbers a and b, and [T, p| = [T, we
have

_ 1
> anapfn,P| <3 S (lanl® +lap*)[Tn,p|

n,p>N n,p>N
n#p ntp
= Z |“n|2|rn,p| = Z |a,,|2 Z |Fn,p|’
n,p>N n>N p=N
n#p p#n

which gives (2.9). Therefore,

(1-en) Z lan|* < H Z AnXn
n>N

2
. <(1+en) Z |a,,|2.
n>N

n>N

Since ey — 0 as N — oo, the sequence (x, )1 is an AOS.
(ii) Since X = (x5, ) u>1 is an AOB, we know from Theorem 2.4 that 'y = I+ K, with
K compact. In particular, we have

|(Txc - Deullz: = [ Kenlz >0, asn — oo

It remains to note that

|(Tx = Denlze = 3 [Tp*. u
p>1
p#n
We end this subsection with two stability results. The first one is inspired by an
analogue result of Baranov for the Riesz basis property [2]. The second one is a gen-
eralization of a result appearing in [4, Proposition 3.3].

Proposition 2.10  Let (x,) 451 and (x,)ns1 be two sequences in H. Assume that there
exists No € N such that for all N > Ny there is ey > 0 verifying
(2.11) > e xn = x,)? < enllx[ 3

n>N
for every x € H and limy_.co ex = 0. Then (x,,) 51 is an AOS if and only if (x),) ys1 is
an AOS. Furthermore, if Ny = 1 and ¢ is sufficiently small, then (x,,) n>1 is a complete
AOB for H if and only if (x],) y»1 is a complete AOB for 3.

Proof Let (a,), be afinitely supported sequence of complex numbers. For the first
part, since (2.11) is symmetric with respect to x, and x,, it is sufficient to show that if
(x4 ) n>1 is an AOS and if ¢y and Cy are the constants appearing in (2.1), then we have

2
(cn+en—2/cnen) D, lan|* < H > anx;, 5 S (Cu+en+2¢/Cnen) Y. |an|*.
n>N

n>N n>N

For simplicity, define gy := 3,5 n anX, and gy = ¥ ,5n dnx,, and write

lan - glic = (&v = gh 2 an(xa=x1)) = D ulgn = gho X — %1).

n>N n>N
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Then using the Cauchy-Schwarz inequality and (2.11), we get
1/2 1/2
v - ghlie < (X 1anl?) (X ew — ghvsxn = %1)F)
n>N n>N
1/2
<Ven( X lan) " llgn - ghloc

n>N

We thus have | gn—gn [ 7¢ < /en|(an)nsn| e2. We now obtain the desired inequalities
as follows:

H n;\]anx; b2 H n;\]anxn . ‘ n;\ran(x,1 -x1) ‘}C
5 CN( Z |an|2)l/2 _\/a( Z |an|2)1/2
nzN n>N
= (\/a_\/a)( Z;\r|an|2)1/2_
n>

And similarly,

|3 a], < (Von s va( 3 laf?) "

n>N n>N

Assume now that (x, ), is a complete AOB for H{. Then we know that the op-
erator Jx«, defined by Jx«x = ({x, x,))ns1, is an isomorphism from H onto £2. The
inequality (2.11) for N = 1 implies that || Jocx — Joor+ | < v/1. Therefore for ¢, sufficiently
small, the operator ] is also an isomorphism from H onto £2. It follows from Bari’s
theorem that (x;,),; is a Riesz basis for H{ and thus a complete AOB for K. [ |

Proposition 2.12  Let X = (x,)ns1 be a complete AOB for H and let (x),)ns1 be a
sequence in H satisfying

2 e = xp 3¢ < U |72

n>1

Then (x),) ns1 is a complete AOB for 3.

Proof Let x € H. Then we have

> xx =) < xl3¢ 30 Ixn = x5 = enll 130
n>N n>N

where ex = ¥,.5n [ x4 — x,||3¢. It follows by hypothesis that ey — 0 as N goes to oo.
Hence, by Proposition 2.10, the sequence (x,),>1 is an AOS. It remains to prove that
(x7,) n>1 is minimal and complete. For that purpose, define T: H — H by T(x,) = x
n >1,andlet § > 0 such that

!
n’

> I =3 50 < 8 < U |72

n>1
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Then for every finitely supported sequence of complex numbers (ay, )1, we have

(I-T) Y anxal| = || Y an(xn —x),)
n>1 n>1
1/2 1/2
< (3 lan?) (;Zluxn—x;HZ)

n>1

1/2
<VO(Ylanl?) < Vo[ Ux]| X anxa -
n>1 n>1
Since (x,)u»1 is a Riesz basis for 3, the operator I — T is bounded and |I - T| <
V8| Ux| < 1. Thus, T = I - (I - T) is bounded and invertible. In particular, we
deduce that (x/,),»1 is complete and minimal. [ |

2.2 De Branges-Rovnyak Spaces

Let H* denote the space of bounded analytic functions on the upper half-plane C, =
{z€C:3(z) > 0} normedby || f|lec = sup,c, |f(2)|andlet Hy® = {g e H* : | gllo <
1} be the closed unit ball of H*. For b € H;°, the de Branges—Rovnyak space 3{(b)
is the reproducing kernel Hilbert space of analytic functions on C, whose kernel is
given by
b i 1-b(A)b(z)

ki(z) = i T
By definition, f(1) = (f, k%), forall f € 3(b) and A € C,, where (-, -}, represents
the inner product in H(b). The space H{(b) can also be defined as the range space
(I - T, Ty )Y*H? equipped with the norm that makes (I- T, T} )/ a partial isometry.
Here H? is the Hardy space of C,, that is, the space of analytic functions f on C,
verifying

AzeC,.

U= sup( [ 1/t in) ) < oo

and T, is the Toeplitz operator on H* with symbol ¢ € L= (R) defined by T, (f) =
P.(¢f), f € H?, where P, denotes the orthogonal projection of L?(R) onto H.

These spaces (and, more precisely, their general vector-valued version) were intro-
duced by de Branges and Rovnyak [6,7] as universal model spaces for Hilbert space
contractions. Thanks to the pioneer works of Sarason, we know that de Branges-
Rovnyak spaces play an important role in numerous questions of complex analysis
and operator theory. The book [17] is the classical reference for H(b) spaces. See also
the recent monograph [9].

In the special case where b = @ is an inner function (that is, |®| = 1 a.e. on R),
the operator (Id —Tg T )/? is an orthogonal projection and 3 (®) becomes a closed
(ordinary) subspace of H? that coincides with the so-called model subspace

Ke = H> © ®H? = H*> n © H2.

For the model space theory, see [10,15].
It turns out that the boundary behavior of functions in 3{(b) is controlled by the
boundary behavior of the function b itself. More precisely, let b = BI, O, be the
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canonical factorization of b, where
zZ-zy

B(Z) H iy, n

zZ-2Z,

is a Blaschke product, the singular inner function I, is given by

IM(z):exp(iaz—%‘/ﬂ;(i t2+1) dut ))

with a positive measure 4 on R singular with respect to Lebesgue measure dt such
that [, (1+ t*)™" du(t) < oo and a > 0, and Oy is the outer function

0u(2) :exp(%'fR(L+%+l) log b(1)]dt).

z—t t

For xo € Rand £ > 1, let

i Izn) [ du(t) [ |loglb(1)]]

dt
= |xo — zn|¢ R |xg — t[¢ R |xo — t[¢

Se(xp) =

and E¢(b) = {xo € R: S¢(x0) < 00}. The set E,(b) is related to nontangential bound-
ary limits of functions (and their derivatives) in H(b). More precisely, if S (xp) < oo,
then it was proved in [8] that for each f € H(b), the nontangential limit

f(xo) = lim f(2)

Z—UC()

exists, the function

K (2) = i l—b(xo)b(z)’

0 2 Z— Xo
belongs to H(b), and (f, k2 ), = f(x0), f € H(b). In that case, we also have k% |7 =
S2(x0) = |b"(x0)|. Moreover, if S4(xo) < o0, for every function f € H(b), f(z), and
f'(z) have finite limits as z tends nontangentially to xo. In [3], a Bernstein’s type
inequality is proved in the context of H(b) spaces. To state this inequality, we need
to introduce the following kernel. For zy € C, U E4(b), we define

2-b(z0)b(t
8,6 = ) 0))2( )
It is not difficult to see that p'/4 KL € L1(R) if and only if

|log[b(1)]]
R |t - Z()|2q

zeC,,

dt < oo,

where p(t) =1-|b(t)]>, t € R. Now, for 1 < p < 2 and q its conjugate exponent, we
define

wp(2) = min{ | (k) [P0, gL FIEDY, e T
where | - |, denotes the L9(IR)-norm with respect to Lebesgue measure dt on R.
We assume that w, (x) = 0, whenever x € R and at least one of the functions (k%)?
or p/18% is not in L9(R). Note that if f € 3((b) and 1 < p < 2, then f'w,, is well
defined on R. Indeed, if S4(x) < oo, then f'(x) and w,(x) are finite. If S4(x) = oo
then as shown in [3,8], | (k2)?|, = oo, which, by definition, implies that w,(x) = 0,
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and thus we can assume that (f'w,)(x) = 0. Moreover, note that in the inner case,
we have p(t) = 0 for a.e. t € R, and the second term in the definition of the weight w,,
disappears. We will need two useful estimates for the weight w,,. The first one, proved
in [3, Lemma 3.5], is valid for every function b € H;°: thereisa constant C = C(p) > 0
such that

Jz
(1= [b(2)) 7@

The second one, proved in [1] and valid when b = @ is an inner function, says that
there is two constants C;, C, > 0 such that

(2.13) wy(z) >C (zeCy).

Civo(x) <wp(x) < C,|@ (x)[ 7, (x €R),

where v (x) = min(do(x), [0’ (x)[™), do(x) = dist(x, 7(©)) and ¢(®) is the spec-
trum of the inner function ® defined as the set of all { € C, U {0} such that

liminf |®(z)| = 0.

Jiminf |©(2)]
It is known that every function f € Ke has an analytic continuation through R \
(6(®) NR). Moreover, the quantity vy has a simple geometrical meaning related to
the sublevel sets Q(®, §) = {z € C, : |©(z)| < §}. Namely, vo(x) = dist(x, Q(0, J))
with the constants depending only on & € (0,1).

We also recall that a Borel measure y on the closed upper half-plane C, is said to

be a Carleson measure if there is a constant C > 0 such that

(2.14) u(S(x,h)) < Ch,

for all squares S(x,h) = [x,x + h] x [0,h], x € R, h > 0, with the lower side on
the real axis. We denote the class of Carleson measures by C, and the best constant
satisfying (2.14) is called the Carleson constant of y and is denoted by C,. Recall that,
according to a classical theorem of Carleson, y € Cifand only if H? c L? () for some
(all) p > 0. In [3], it is proved that if y € C, 1 < p < 2, then there exists a constant
K = K(u, p) > 0 such that

(2.15) |f'wollzzuy <Kl flo, — feIH(b).

In other words, the map f ~ f'w, is a bounded operator from 3{(b) into L*(p). If
p = 2, then this map is of weak type (2,2) as an operator from H(b) to L?(u).

3 Some Stability Results

This section contains results about the stability of AOBs under certain perturbations.
We will often use techniques developed by Baranov [2] concerning the stability prob-
lem for the Riesz bases for Kg.

For A € C,UE,(b), we denote by ! the normalized reproducing kernel at the point
A, thatis, k8 = k8/[ k85 Let (Ay)ns1 € Cs U Ez(b) and G = U, G, © C, U E5(b).
We say that G is an admissible set for (1,) 51 if it satisfies the following properties:

(i) AneGy.
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(ii) For every z, € G,, we have

Hn\M lo _
n—eo K2 |,

(iii) Foreveryz, € G,,themeasurev =3}, 03, z,] is a Carleson measure. Moreover,
the Carleson constants C, of such measures (see (2.14)) are uniformly bounded
with respect to z,,. Here [A,, z,,] is the straight line interval with the endpoints
Ay and z,, and 4|y, ., ] is the Lebesgue measure on the interval.

For (1)1 € C, to be such that the sequence (Kin )ns1 is an AOS in H(b), we show
that there always exist non-trivial admissible sets G = U,, G,,. More precisely, we can
take

Gn:={zeC, :|z- A, <&,TN,},
where (&,,), is any sequence of positive numbers tending to 0. We first begin with a
technical lemma.

Lemma 3.1 Letb € H, (¢,), be a sequence of positive numbers tending to 0 and
let (An)u and (pn )y be two sequences in C, satisfying

(3.2) [An = pul < €2TA0, n>l.
Then
Ik, o
n—eo [k

Proof We easily check from (3.2) that

J
(3.3) 1—.5,1£j <l+e,, n>1

Since
1-16(2)
it - Lot
4ndz

>

it is sufficient to prove that

1-¢y < 1-|b(A,)] < 1+sn.
l+e, ~ 1=|b(pun)|  1-¢4

Using the Schwarz-Pick inequality, we have

<

1- b(/l Yo(un)' " An =

and (3.4) follows from [18, Lemma 7], which says that if A, 4 € D and satisfies
Ess

1-Au

(3.4)

< A = thn] <e,,
JA,

|S£,
then
l-¢ 1-JA| 1+¢
<
l+e 1-|ul " 1-¢
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Corollary 3.5 Letb € Hy°, (A,)ns1 © C, be such that (Kin),, is an AOS in H(b),

and let (&,) 451 be a sequence of positive numbers tending to 0. Define
Gn:={z€C,:|z-Ay| <, Ty}, n>1.

Then the set G = U,, G, is an admissible set for (A,,) 1.

Proof It is obvious that the sets G, satisfy (i) and that condition (ii) follows from
Lemma 3.1. According to Proposition 2.8, there exists a constant C > 0 such that for
every n > 1, we have

S Ll < C,
p>1

where I, , = (x} | Kﬁp)b. Since
n

NIy -BODbALP | 9AO4,

|rn, |2: — > P
p Ay = L2 (1= [0(Aa) A= [6(Ap) ™ A, - 1,2

we obtain
Z JL.TAp
pz1 Mp - EP B
It is known (see, for instance, [14, Lecture VII]) that this condition implies that the

measure v = )., JA,0,, is a Carleson measure. Therefore, the sets G, also satisfy (iii).
|

Note that in [2, 3], similar sets were considered in connection with the stability of
the Riesz basis property. In that situation, condition (ii) can be replaced by the weaker
condition that there exist two positive constants ¢, C > 0 such that

Ik2, e
c< " < C, z2n € Gpon 21,
145 1o

and the set G,, can be taken as G,, := {z € C, : |z — A,,| < ¥JA, }, for sufficiently small
r>0.

Theorem 3.6 Letbe H{°,1< p<2,and (A,), c C, UE,(b) be such that (K;’n),,zl
is an AOS in H(b). Assume that G = Uy»1G, is an admissible set for (1, )ns1, and let
Un € Gy, n > 1. If there exists Ny € N such that for all N > Ny there is ey > 0 verifying

1
(3.7) su 7f w,2(z2)|dz| < €
v KL 12 o) 7 (2)|dz| < ex

and limy_,. €y = 0, then the sequence (Kf,n),,zl is an AOS in J(b). Moreover, if
(Kf{n)nzl is a complete AOB for H(b) and if we can take Ny = 1 and &, sufficiently
small, then (Kf,n),,zl is also a complete AOB for H (D).

Proof Let
b
b _ kl‘n

n - b >
I3, e
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K,. |» = las n —> oo, we easily see that (Kf," )us1isan
AOS if and only if (h%),3 is an AOS. In view of Proposition 2.10, it is then sufficient
to check the estimate

(3.8) >USf WP senlfli,  fed(b).

nxN
It follows from (3.7) and [3, Corollary 5.4] that every function f € H(b) is differen-
tiable on |4, 4, [, and the set of all functions in J{(b) that are continuous on [A,, y, ]

is dense in H{(b). Therefore, it is sufficient to prove (3.8) for functions f € H(b) con-
tinuous on [A,, y,]. Then

|f(/\n)_f(.”n)|2 1 y 2
(forex, = ho) = = fi(z)dz| .
g IS I&5 13 ‘ f[lmﬂn] ‘

By the Cauchy-Schwartz inequality and (3.7), we get

(om0 <ex [ I @wp(2)Pldel

for n > N. It follows from condition (iii) that v = }’,, o5, ,] is @ Carleson measure

with a constant C, that does not exceed some absolute constant depending only on
G. Hence, according to (2.15), we have

> foy, —h) <en Y f“ il ' (2)wp(2) |dz] < en | f'wp 22y < Ken fl-
n>N nofin

n>N

Since ey — 0as N — oo, Proposition 2.10 implies that (h2),s; is an AOS, and so is
(Kfjn )n>1. The second part for complete AOB follows also from Proposition 2.10. B

Remark 3.9 1f (1,)ns c C, and (K)L Y1 is @ complete AOB for H(b), then it is
sufficient to have (3.7) for N large enough to get that (K )us1 is @ complete AOB for
H(b). Indeed, apply Theorem 3.6 with the sequence

_JAs ifn <N,
Y= pn ifn>N,

and part (i) of the following lemma which shows that we can replace a finite number
of terms keeping the minimality and completeness.

Lemma 3.10 Letbe Hy® and A = (A,)ns1 € C,.

(i)  Assume that (k? Inz1 is a minimal and complete sequence in H(b). Then for
every u € C, A, the system {k¢ Juza U {kb} is still minimal and complete in
H(b).
(i) Assume that (k! ),,>1 is not complete in H(b). Then, for every y € Cy \ A, the
system {k? },,>1 U {k } is minimal.

This result was proved in [12] for the inner case. The general version is proved
similarly; see [9, Lemma 31.2]. We also need a version of this result for real frequen-
cies. We do not know if it is true in general, but we prove it when b = ® is an inner
function. The proof is based on the following key lemma.
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Lemma 3.11 Let ® be an inner function, xg € R\ (6(®) nR), and let f € Kg be
such that f(xy) = 0. Then there exists a Blaschke factor ] such that {J = -1} = {x,}
and f/(1+]) € Ke.

Proof Fix any a > 0, define

y=x9+iacC, and ](z):by(z):j:;.
Then
1+](z):2(z:;co) and {J=-1} = {x0}.
To check that f/(1+ ]) € Ke, first note that
f@) 1 fG)
1+](z)_2(f(z) mz—xo)'

Since xo € R\ (¢(©®) NnR), the function f extends analytically through a neighbour-
hood V, of xg, and we have

|f(2)] < Clz - xo], Z € V.

Hence, f/(z — xo) € L*(R) nN* = H?, where N* is the Smirnov class. We deduce
that f/(1+ J) € H2. It remains to note that

oF _ror
1+7 1+)

and since f € Ko, we have ©f € H>. Thus ©f/(1+]) € L*(R) n N* = H?. Finally,

f/(1+]) e H* n®H? = Ke. =

Lemma 3.12  Let © be an inner function and let (t,),»1 € E2(©).

(i)  Assume that t; ¢ 0(©) and (ky )1 is a minimal and complete sequence in Ke.
Then for every t € R\ (6(©) nR) and t # t,, n > 1, the system {k{ } s2 U {k?}
is still minimal and complete in Ke.

(ii) Assume that t, ¢ 0(®), n > 1, and (ky)us1 is not complete in Ke. Then for every
teR~N (0(®)NR) and t # ty, n > 1, the system {ky } 51 U{ky} is minimal.

Proof (i) First, let us prove that the system {k; } .52 U{k{} is complete. Let f € K¢
such that f(¢,) =0, n > 2and f(¢) = 0. According to Lemma 3.11, there is an inner
function J such that {J = -1} = {¢t} and f/(1+ J) € Kg. Define

J-J(t) f
= = - U +p

The function g belongs to Kg and it vanishes at every point t,,, n > 1. Hence, the com-
pleteness of (k{),»1 implies that g = 0 and thus f = 0. This proves the completeness

of {kP }u>2 U {k?}. As far as the minimality is concerned, note that for every n > 1,
there exists a function f,, € Kg such that f,(t¢) = 8,,¢, £ > 1. By the completeness
of {k®} 52 U {k?}, we necessarily have fi(t) # 0 and thus k ¢ span(ky : n>2).
Now fix n > 2. Using Lemma 3.11 one more time, there is an inner function J;
such that {J; = -1} = {#;} and f,/(1 + J1) € Ke. Now consider the function g, =
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((h = ()] + J1). Ttis clear that g, € Kg. Moreover, we have g,(t) = 0,

gn(te) =0,8# n,and g, (t,) = (J1(tn)=J1(2))/(1+J1(t,)) # 0 (since J; is a Blaschke
factor and thus is one-to-one). Hence, we get that k' ¢ span({k } 04 U {kP}).
This proves the minimality of {k{ } >, U {kP}.

(ii) Since (kg )us1 is not complete in Kg, there exists a function f € Kg, f # 0,
such that f(t,) = 0, n > 1. Fix n > 1. By Lemma 3.11, there is a Blaschke factor
Jn such that {J, = -1} = {¢t,} and f/(1+ J,) € Ke. Now consider the function
o = (Un = To(1)f)/(Q+ ],). Then f, € Kg, and we have f,(t) = 0, f,(t;) = 0,

¢ # n. Dividing one more time by 1 + J,, if necessary, we can assume that f,(t,) # 0.
Hence, we deduce that k) ¢ span({k}s1,e4n U{k{ }). On the other hand, if f () #
0, we immediately get that k® ¢ span(kf : n > 1). If f(¢) = 0, then we can use
Lemma 3.11 one more time to drop that extra zero. This proves the minimality of

{Kk§ bus1 U (&P} |

Let © be an inner function, (1,), c C, satisfying sup,,., [@(A,)| < L It is proved
n [4] that if (K}C?n),,zl is an AOS, there exists € > 0 such that (Kﬁn)nzl is an AOS for
all sequences (py, ) ns1 € C, satisfying

<eE.

F
It is easy to see that this can be generalized to the general case when the inner func-
tion O is replaced by a function b € H;*°; see [9]. Without the additional hypothesis
that sup, ., |b(1,)| < 1, we obtain the following stability result concerning pseudo-
hyperbolic perturbations.

Corollary 3.13 Letb € H{® and (A,)ns1 € C, be such that (Kf{n)nzl is an AOS in
H(b). Let y > 1/3 and (e, )n»1 a sequence of positive numbers tending to 0. For every
sequence (U, ) n>1 satisfying

(3.14) \A _”“ <en(1-|b(A))Y, >,

the sequence (Kzn )us1 is an AOS. Moreover, if(Kf{n)nzl is a complete AOB for H(b),
then (Kzn Yus1 is also a complete AOB for H(b).

Proof According to Corollary 3.5, if we define the sets
Gy={z€C,:|z- Ay <&, T},

then G = U,, G, is an admissible set for (A,,),s1. Let (4, )n>1 satisfy (3.14). Then we
have

(3.15) A = pinl < €2 (1= [6(Aa)]) TAn < 4T

Therefore, y, € G,. Without loss of generality, we can assume that y < 1, and since
y > 1/3, there exists 1 < p < 2 such that 2%1 =1-y. Let g be the conjugate exponent
=1-y. Using (2.13), (3.3), and (3.4), we have

(1-]b(An)))"?
G (Gr)?2

of p and note that p +1)

w;z(z) <
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for z € [A,, u,]- Hence,

1 [ -2 jfln (1_|b(/\n)|)17y
— w,(2)*ldz| < Co——— Ay — php|——5—.
R R e TP [ G W
Using (3.15), we obtain

1

=)
m f[ln’”n] wp(2) *|dz| < Csey.

The conclusion for AOS now follows from Theorem 3.6.
For complete AOB, we argue as follows. Let

_ /\n ifi’l<N0,
Yn= pn ifn > Ng,

where Ny will be chosen later. Since (y, )1 satisfies (3.14), we get from the first part
that

1 [ .
sup ——— w,(2) “|dz| < C5 sup ¢,.
o TR 12 it p(2)ldz| < G sup e,

Using that lim,.. £, = 0, we can choose Nj such that C3 sup, . €, is sufficiently
small so that, according to Theorem 3.6, we will get that (Kﬁn )us1 is @ complete AOB
for H(b). Then we can apply Lemma 3.10 to get that (Kzn)"ZI is a complete and

minimal sequence in H{(b). Since it is also an AOS, it is finally a complete AOB for
H(b). [ |

Remark 3.16 Note that in the case when lim,, o [b(A,)| = 1, condition (3.14) can
be replaced by the existence of a constant C > 0 such that

| Aw— Un
An = tn
Indeed, it is sufficient to take y > yo > 1/3 and note that

C(1-16(a)])” = en(1- 61",
with e, = C(1—|b(A,)])?Y™7° - 0asn — oco.

<C(l-p)), >l

In the inner case, we can also give a stability result when the sequences (1, ), and
(pn)n are on the real line. We first need a result on the construction of admissible
sets.

Lemma 3.17 Let © be an inner function, (t,)s»1 € E2(®) such that (Kf:)nzl isa
Riesz sequence in Kg and (€, )n»1 a sequence of positive numbers tending to 0. Define

(3.18) Gn={teR:[t—t,|<eavo(ts)}, n>1,

where vo(t) = min(dy(t),|®'(t)|™) and do(t) = dist(t,a(@)). Then the set G =
Un Gy is an admissible set for (A,) n1.
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Proof Consider the nontrivial case when vo(t,,) > 0. In particular, we have
[t — ta] < €ndo(tn), teGy.

Hence,

(3.19) (1-¢e,)do(tn) <do(t) < (1+e,)do(tn), teGy.

Now remember that when ¢ € R, kf) € K if and only if

= 2 d
@' ()] =a+ 2, [ dolx)
clt -zl Jrlt-xp

and in that case,
(3.20) [K213 =10 (1)]-

Here, (z¢)¢ is the sequence of zeros of ®, and ¢ is its associated singular measure.
Using (3.19), it is not difficult to check that for every £ > 1and t € G,,,

t_
U 7| I
|tn — 2]
and for any x € supp o,
|t x|
1-¢,< <l+¢g,
|tn — x|
Hence,
1 1 /
(3.21) 10 (ta)[ < 10'(¢)[ < = )2|® (tn)l-

(1+¢,)?

It then follows from (3.20) that
LKL 1
Tte, [k ™ 1-en

and we get that G,, satisfies condition (ii). Condition (i) is trivial, and condition (iii)
follows along the same line as in [2, Lemma 5.1]. More precisely, using an increasing
continuous branch of the argument of ® on G, (note that 6(®) N G,, = @), it can be
proved that for t € G,,, we have

) 0 ()|
(3.22) kK (t,) > o
Now using the fact that
kP (tn)I?
2 |®,(:)| = DIk, w0 )P < ClkP |2 = ClO'(1)]
n>1 nx1

we see that the number of integers # such that t € G, is uniformly bounded. Hence,
condition (iii) is also satisfied. [ |

Remark 3.23  Itis natural to ask if Lemma 3.17 is satisfied when we replace the inner
function © by a general function b in the unit ball of H**. The difficulty is indeed to
get estimate (3.22).
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Theorem 3.24  Let ® be an inner function, let (t,)ns1 C E2(®) such that (Kff, Yus1 is
a complete AOB for Kg, and let (s,)n»1 be a sequence of real numbers. Suppose there
exists Ng such that for all n > Ny, there is e, > 0 verifying

(3.25) f[tmsn](|@'(t)| 1O/ (1)] 32 (1)) dt < &,
or
(3.26) Isn = tal < 4|®'(t,)|min(d5(,), |0 (t,)[?),

and lim,, e €, = 0. Then (KS' Yus1 is a complete AOB for Ke.

Proof We can of course assume that s, # t, and ¢, < 1/2. Both (3.25) and (3.26)
imply that there exists a point u, € [sy,t,] such that |s, — #,| < &,vo(u,). Then
vo(u,) < 4vo(t,) and |s, — t,| < 4e,v(t,). In particular, s, € G,, where G, is
defined as in (3.18) (replacing ¢, by 4¢,). Moreover, using (2.13) and (3.21), we can
write

1

K213

f[ ]W;Z(Z)Idzl sf[ ]|®’(t)|*1max(d(;2(t),|@'(t)|2)dt
tnsSn tusSn
$f[ (OO (1) + (D)) 1 5 e
tnsSn

Applying Lemma 3.17 and Theorem 3.6, we get that (x2 ) .1 is an AOS. It remains to
prove the completeness and the minimality of (KS )us1- We argue as in the proof of
Corollary 3.13 replacing Lemma 3.10 by Lemma 3.12. More precisely, define

ty ifn< No,
Xp = ]
sp ifn> N,

for some positive integer Ny. Then we have

1 f 5
sup ———— w,*(2) |dz| < sup €,
R ATCTEN AR i A
and we can find Ny such that, according to Theorem 3.6, the sequence (k2 )1 is a
complete AOB for Kg. Note that if t, € 0(®), then vo(¢,) = 0 and then s, = t,,
and if t, ¢ 0(®), then G, c R\ ¢(®) and then s, ¢ o(®). Hence, we can apply
Lemma 3.12 to get that (k)51 is minimal and complete in Ke. [ |

We also give an analogue of a result of Cohn [5] who studied small perturbations
with respect to the change of the argument of the inner function ©. First, we need to
introduce some more definitions. An inner function ® in C, is said to be a meromor-
phic inner function if it has a meromorphic extension to C. In that case, we know that
the argument of O is a real analytic increasing function on R. Moreover, we say that
an inner function O satisfies the connected level set condition (abbreviated ® € (CLS))
if there is & € (0,1) such that the set Q(®, §) = {z € C, : |®(z)| < 8} is connected.

Corollary 3.27  Let ® be a meromorphic inner function such that ® € (CLS), let ¢
be its argument, and let (t,)n>1 C R be such that (Kg)nzl is a complete AOB for K.
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Let (&, ) ns1 be a sequence of positive numbers tending to 0. If

lp(sn) = @(tn)] < &ns
then (KS’ Yns1 is a complete AOB for K.

Proof As noted in [2, Remark 1, p. 2419], since ® is (CLS) and (Kﬁ)n is a Riesz
sequence, there exits a constant C > 0 such that

|©' ()™ < Cdy(t), teG,.

Therefore,
o (@I d @) dts [ 10'(0]de= lp(ta) - pls)l < e
Then apply Theorem 3.24. ]

Example 3.28 Let®,(z) = ¢'*,a>0,and a € [0,27). Then
0, ({e"*}) ={tn=(a+2nn)/a:nel},
and (KS,“ )nez is an orthonormal basis for Kg,, the so-called Clark basis. If (s,) ez C

R is a sequence satisfying

lim =0,

n—+oo

o+2nm
Sn— |

a
then Corollary 3.27 implies that (k2) .z is a complete AOB for Ko, .

4 Example of Exponential Systems

In the particular case where ®,(z) = €%, the Fourier transform J maps unitarily
Ke, onto L?(0,a) and 3"(;{?“) = X4» where
5 1/2
00 = (o) e
Thus, the geometric properties (completeness, minimality, Riesz basis, AOS, AOB,
...) of system of normalized reproducing kernels (Kf\a: )n in Kg, and of normalized
exponentials system (x§ ), in L*(0, a) are the same. In [4], AOS (or AOB) formed

, AeC,.

by reproducing kernels k)cz)n are studied under the additional condition that

(4.1) sup|®(A,)| < 1.
n>1

In the particular case when ® = @, condition (4.1) is equivalent to
(4.2) inf(J1,) > 0.
n>1

Under that assumption, it is proved in [4, Proposition 7.2] that (x{ ), is an AOB in
L?(0,a) ifand onlyif (1,,), is a thin sequence, which means that
‘ Ak = An

lim H
n—eo k#n

Ak — Ay
Using Proposition 2.8, we construct a class of example of AOS where (4.1) (or
equivalently (4.2)) is not necessarily satisfied.
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Proposition 4.3  Let (A, )ns1 € C be a sequence such that
(i)  sup,|TA,| < oo;
(i) there exists a q > 1 such that |%| >qforalln>1

Then the sequence ()3 )n»1 is an AOS in L*(0,a) forall a > 0.

Proof We apply Proposition 2.8. Observe that

4j)tnjlm 1/2 ei(’ln_ﬁ)“ -1

Toom = (X1, X1,) = ( (1-e2a9h) (1 - e—ZaJ/\,,,)) i~ ) )
su 431, T, o
n,mgl (1 - e—ZujA,, )(1 - 672“3)‘"') >

provided sup, JA, < oo. IfJA, = 0 (that is A\, € R), the normalized factor
I,/ (1~ €249 should be understood as ™! and corresponds to || X3 HL2(0 o =4
It follows from (ii) that for m > n, we have |1,y > g™ ™|, |. Since g > 1 that implies
that limy,_,« |A,4| = 0. In particular, we can pick an integer N such that foralln > N,
we have |1, | > 1. For n > N, write

[ p +
m>N m m>N /\ _A ) N<m<n Mm”lj::n_l' n<m M ||1 T"‘|
m#n m#n m
1 1
+
_Z = n;n [An |(|L"'|—1)
1
< —
q_lNgn:<n| ol T |n;1qm “M |—1
1 1 1
S S —
] 2l B
Thus,
1
sup ¥ |Tpm| S -0, asN — oo.
n>N m>N |A |
m#n
Proposition 2.8 implies now that (x§ )uz1is an AOS in L*(0, a). [ |

Example 4.4 'The sequence A, = " + i/n,(r > 1) satisfies the assumptions of
Proposition 4.3 and JA,, — 0 as n goes to oo.

Projecting onto a Closed Subspace

Let by, b, € Hy° such that b,|by, in the sense that b; = b,b where b € H;*. In this case,
we know that H(b,) c H(b,), and more precisely, we have

j‘f(b]) = j‘((bz) + bzg{(b)

See [17, 1.10-1.11] or [9, Section 18.7] for details on this decomposition.
It should be noted that, in general, the above decomposition is not orthogonal.
However, for reproducing kernels, we do have such an orthogonal decomposition.
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Lemma 5.1 Let by = byb with by, b € H{®. Let A be a finite subset in C,. Then for
every ay € C, A € A, we have

(5.2) ” Z tnkbl

” Z a,lkhz

e

Proof First note that

(5.3) K2 = k2 + byby ()RS,

Now if LH and RH denote the left-hand side and right-hand side of (5.2), we have
LH = Z a,lai,‘kf{‘(‘u),

A ueA
RH= 3 ayaeky () + 3 aadubs()ba(w)k] ().
A ueA A ueA
It remains to use (5.3) to get (5.2). [ |

Let (A,,)ns>1 € C, and assume that (K,1 )us1 is a complete AOB for H(by). It is
very natural to ask if the sequence (x"2 v )u>1 remains an AOB in H (b, ). The answer
depends on the following ratio:

[ ls, 1= b (An)P
1K 2 1= 1ba(Aa) P
The following result says that if the behavior of b1(1,) and b,(A,) are comparable

as n — oo, then we can transfer AOBs between the respective de Branges-Rovnyak
spaces.

Ry, b, (1) =

Theorem 5.4  Let by = byb, where by, b € H®, and (A,,)us1 € C,. satisfying
Z|thl,b2(1’l) - 1| < 00,

If the sequerice (KAI Vns1 is a complete AOB for H(b,), then there is an integer p > 1
such that (KAZ ),,>‘l7 is a complete AOB for H(b,). Conversely, zf(;cf )ns1 is an AOB in

H(by), then (K}LL)"ZI is an AOB in H(b,).

Proof First note that (ki: ) u>11s complete in H(b,). Indeed, let f € H(b,), f L kii ,
n > 1. Since H(b;) c H(by), we can write

0= (£ k)0, = f(An) = (253" )i

Thus, f is orthogonal to ki‘ , 1 > 1, and the completeness of (k;l )1 in H(by) implies
that f = 0.
Since (Kil )us1is an AOB in H(by), for every € > 0, there exists N € N such that

(5.5) (1-¢) Y |aa* < H Z a, K < (1+€) Y |aal”.

n>N n>N
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Moreover, since the sequence (R;, p,(n) — 1), is in €', we can also assume that N

satisfies
L3
(5.6) Z( 1) <e
n>N Hkli Hb;
In particular, this guarantees that
L3
(5.7) l-¢e<
3% H

We now prove that (Kii )us1is an AOS in H(b,). Using Lemma 5.1, we have

‘Za k;‘ ’2_ Y ‘ +‘Z by(X,)KY H
n - n
s L P T e T R R a1
Thus,
| - by AT ' | . b K I
nsN K2, 152 |,
=1 - I,.
For I, use estimates (5.5) and (5.7) to get
(1-)° Y Jasf <(1-¢) Y Ja |2H : 1.l <[ ¥ a2 L =h
nsN v |k21G, e Hk 2H
2 |k )LL Hb1 2
<(+¢) ) |an’—; < (l+e) )2 > Jaal
n>N ” k/l: ”bz n>N

For I, we use (5.2), (5.6), and Cauchy-Schwarz inequality to obtain

B2k N = ow T3
P T J,< (Sl (5 )
T .
(o) B ) e R

It follows that («” 1. )n is an AOS. Now let p be the smallest integer such that (1?2 ) nzp
is an AOB in H(b,). If p = 1, then since (K/\2 Y1 is complete in H (b, ), we have the
result. Otherwise combining Lemma 3. 10(ii) and the fact that a sequence is an AOB
if and only if it is a minimal AOS, we conclude that (Kf{i )nsp is a complete AOB for
H(by).

Conversely, assume that (K/l{i )us1 is an AOB in H(b,). We note that

(:sz bl(n) - 1) = (I/Rbl hz(n) - 1)” < el'

Then using similar computations as before, we see that (KAI ) is an AOS in H(by).
It remains to check the minimality of (k ! )n21. Since (k ),,>1 is minimal in H(b,),
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there exists a sequence of functions y,, € 3(b,), n > 1, such that (v,,, kii Yo, = On,e
From the inclusion H(b,) c H(b;), we can write

<'//n’k,l{t,)b1 = V/n(/u) = (Wn’kiz>bz = 5n,€)

which proves that (kii )u>1 is @ minimal sequence in H(by). [ |

Corollary 5.8 Let by and b, be two functions in H{® such that they have a common
factor b, i.e., both by /b and b, [b are in H°. Moreover, assume that (Ry, ,(n) 1), € £!
and (Ry, (n) 1), € €. If(;cf{:),,zl is an AOB in H(by), then there is an integer p > 1

such that (Kii Ynsp is an AOB in H((b;).

The assumption that (R, ,,(n) — 1), € €' may appear very restrictive. However,
as the following result shows, in some particular cases, it is indeed also necessary.

Corollary 5.9 Let by = ©,b where b € H;® and ©®, is an inner function such that
00 ¢ 0(0;). Let (A,) ns1 be a sequence of points in C,. such that (Kil Yus1 is a complete
AOB for H(by) and
(5.10) sup ||kl 5 < oo.
n>1
Then the following are equivalent:
(i)  Thereis an integer p > 1 such that (K)(?n2 )nsp is a complete AOB for Ke,.
(1) (Rp,e,(n)—1), €

Proof (ii) = (i): Follows from Theorem 5.4.
(i) = (ii): We recall a well known fact (see [2, Lemma 4.4]) that sup,, [1,| < oo, pro-
vided oo ¢ 0(©,) and (K?ﬂz)nzp is an AOB in Kg, (in fact, it is sufficient that (KA n
is a frame).

Let y € C,. Then the function

b(y)b(z
£(2) = 0s(z )M
Y
belongs to @, () c Ke, + ©:9(b) = H(by). Since (;c/l{i)n isan AOB in H(b,), we
must have
>
n>1
2T,
ie., 0,(A, — < 00
Rlea0r| = EEriw:
We observe that, since sup,, |A,| < oo, when |y| is large enough, we have
1500, 1 b
An 4 |y|
Thus,

> 102(An )|2|£)7()t)\2 00.

n>1
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Since 1 - [b(A,)[* S JA,, we have

2 1-1b(An)[?
gl%(h)l (e <
ie.,
) 1631
> 102(An))| T <0
>3 HkAngI
Finally, we get

I3 15, = 1313
2. (1=Re,p,(n)) = Y, — = ——"—
n>l1 nzl1 ” k,\,, Hbl
In other words, (Re, (1) —1), € €. Since Ry, ,(n) = 1/Re, s, (n), it follows that
the sequence (R, @,(n) —1), isin €. [

Example 5.11 Note that (5.10) is, in particular, satisfied in the case when b = ® is
an inner function such that ® € L*°(R). Indeed, as was shown in [1, Corollary 4.7],
we have

K3,

2 < k2,12 = 10" CGen)[2,

where x,, = RA,,.

Remark 5.12  The results given in that section can also be proved when b; = ©; is
an inner function and the sequence (1,),»1 belongs to C, UR\ (0(®) nR).
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