ON THE FUNDAMENTAL EXISTENCE
THEOREM OF KISHI

MITSURU NAKAI

1. Notation and terminology. Let 2 be a locally compact Hausdorff space
and G(x, y) be a strictly positive lower semicontinuous function on the product
space 2x 82 of 8. Such a function G(x, y) is called a kernel on 2. The
adjoint kernel G(x, y) of G(x, y) is defined by G(x, ¥) =G(y, x). Whenever
we say a measure on £2, we mean a positive regular Borel measure on 2. The
potential G.(x) and the adjoint potential G.(x) of a measure u relative to the
kernel G(x, y) is defined by

Gu(®) = (G(x »du(») and Gulw = {G(x ») du(»)

respectively. These are also strictly positive lower semicontinuous functions on
£ provided p=0.

We say that a kernel G(x, ¥) on 2 satisfies the continuity principle when,
for any measure p with compact support S, the finite continuity of the restric-
tion of Gu(x) to S, implies the global finite continuity of G.(x) on £.

A property is said to hold G-p.p.p. on a subset X in 2, when the property

holds on X except a set E which does not contain any compact support S, of

a measure » %0 with finite G-energy SGy(x) dv(x). Notice that SGv(x)dv(x)=

SGVV(x) dv(x). Hence the notion G-p.p.p. is equivalent to that of G-p.p.p.

2. Result. M. Kishi [4] [5] proved the following important existence

theorem in the potential theory with non-symmetric kernel :

Assume that the adjoint kernel G(x, y) of G(x, y) satisfies the continuity
principle.  Given a non-empty separable compact subset K of 2 and a strictly
Dositive finite upper semicontinuous function u(x) on K. Then there exists a

measure p with support S, in K such that
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Gu(x) = u(x)
G-pp.p. on K and
Gu(%) < u(x)
everywhere on S,.
In contrast with the symmetric case and also in the view point of the
application, it is desirable to avoid the separability condition in Kishi’s theorem

on the given compact set K and the aim of this note is to do this. Namely,
we shall prove

THEOREM: Assume that the adjoint kernel G(x, y) satisfies the continuity
principle. Given an arbitrary non-empty compact subset K of 2 and a strictly
Dositive finite upper semicontinuous function u(x) on K. Then there exists a

measure p with compact support S, in K such that

Gu(%) = u(x)
G-pp.p. on K and
Gu.(x) < u(x)

everywhere on S,.
To prove this theorem, we may assume without loss of generality that
u(x) =1 identically on K.
In fact, consider the function G'(%, ¥) on X x K defined by
G'(x, y) =G(x, »)/u(x).

Clearly G'(x, y) is again a kernel on K. Moreover, the adjoint kernel G'(x,y)
satisfies the continuity principle on K along with G(x, v). To see this, assume
that G.(x) is finitely continuous on the support S, (S K) of a measure ..
Then

GlL(%) = S(G(y, %)/ u(y))du(y) = (infrxxG(7, z'))S(l/u(y))du(y).

Taking x in S, and noticing that infx.xG(z, 2') >0, we see that the .function

1/u(y) is p-integrable on K. Hence the set function

WX = § (1/u(r)) du(y)
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is again a positive regular Borel measure on K and S, =S, and G.(%) =G.(x)
on K and so G,(x) is finitely continuous on S,. Thus by the continuity
principle assumed for G(x, »), G,(#) is finitely continuous on £ and a fortiori
on K. Hence G)(x) is finitely continuous on K.

If we get the theorem concerning this new kernel G'(x, ¥) and the constant
function 1, then we get the theorem concerning G(x, y) and #(x). Hence

hereafter we always assume that u(x) =1 identically on K.

3. Fundamental lemma of Kishi. The method of our proof is an un-
countable version of the interesting method of Kishi [4], [6]. The starting
point and also the key of Kishi’s method is the following lemma of algebraic
character which we shall give an alternating proof using the finite points

version of Gauss-Frostman-Ninomiya’s variation :

Lemma 1 (Kishi [5], Theorem 1.3). Given strictly positive numbers ari
(k,i=1,2,...,n). Then there exists a system t1, ts, . - . , tn 0f nom-negative
numbers such that

Dianti=1
for all k=1,2,...,n and

Simaiti<1
Jfor all j such that tj=0.

For the proof, we shall use the following theorem (see Kakutani [3] or
Nikaidé [7]1):

Kakutani’'s fixed point theorem: Let X be a compact convex set in the
euclidean n-space R" and f be a closed “point to set” mapping of X in X such
that the set f(x) is a non-empty convex set in X for any point x in X. Then

there exists a point x in X such that x belongs to f(x).
In our case, we take X as follows:
X=(@x=y ..., %) ER"; Dlaxi=1 x>0 (1=1,2,...,n)).

Then the set X is a compact convex set in R”. We also denote by X the

totality of non-empty convex subset of X. We consider the bilinear form

Lx, y1= 207120 k-1ai i vk,
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where x=(x;, ...,%,) and y=(y, ...,y,) are in R”. Clearly [x y] is
continuous on R"x R” and [, x]1>0. We set, for each x in X,

f(x)=(ye X; inf.exlz, x1=10y, x]).

Clearly f(x) belongs to X. Hence f defines a mapping of X into X. Moreover
f is a closed mapping, ie. for any sequences (%) in X and (y*) in X such
that »* € (%) and lim,x’ = ¥ and lim\y’ =y, we get y € f(x). In fact, for any
z in X, we have
[z, 2 1=[y" 21
Hence by making » /=,
[z, x1=[y, x]

for any z in X, which shows that inf.ex[z, #1=[y, #1 and so by the definition
of f(x), we obtain y € f(x).

Thus we may use Kakutani’'s fixed point theorem for our X and f. So

there exists a point x in X such that x€ f(x), or equivalently

[z, x1=1[x, x] for any z in X.

Now let
t=(ty ..., ta) =(;/[x «l, ..., %4/[x x]).
Then
[z, t]=1 for any z in X
and

[x t1=1.

Let Z* be the point in X whose k-th coordinate is 1 (¢=1,2,...,%). Then
we get, for all k=1,2, ...,

Shianti=[2 t1=1.
These relations with

EL:[Z’Z, tler=[x, t1=1
give
Shaiti=1 for all 7 with #;=0.

If this is not the case, there exists a j with #; %0 such that [/, t]1= ")t > 1.
Then x =[x, x1t;%0 and
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1=L[x #1=300 02 1w+ 2, 1)
> Zg=1. ki XE+ X = Slkam=1,

which is clearly a contradiction. Q.ED.
4. The case where G(x, y) is finitely continuous. Although we cannot
always choose a countable dense subset of K in general, we can always con-
struct a sort of countable dense subset of K relative to the kernel G(x, y).
For the aim, let
d(y, ¥') = supzex | G(y, 2) — G(¥', 2)|.
This d(y, ') defines a pseudo-metric on K. Concerning this, we have

LemMMmA 2. For any x tn K and for any positive number e, there exists a
neighborhood U of x in K such that d(x, x') <e¢ for any %' in U.

Proof. By the finite continuity of G(x, ¥) on K, for each point z in K,

there exist open neighborhoods U, of ¥ and V of z in K such that
|G(x, 2) —G(x!, 2")|<e/2

for any (&', 2') in U.x V.. Since K is compact, (V;).ex contains a finite
subcovering (V) of K. Let U= N},Uz;. Suppose that &' and z are
arbitrary points in U and K respectively. Then there exists a neighborhood

V., such that z belongs to V.. Since (#/, z) belongs to U, X Vs,
|G(x, 2) — G, 2)| < |G(%, 2) —G(x, 2)) |+ |G(%, z:) — G, 2)|<e.

Thus d(x, x') <e for any %' in U. QED.

LeMMA 3. There exist a sequence (%n)n-, of points in K and a strictly
increasing sequence (v(m))m-1 of positive integers and a family (Un(xp); 1<k
<v(m)) of open sets in K such that xr belongs to Um(xe) and UL Un(xe) = K
and Un(%e) D Upsr(xe) (B=1,2,...,v(m)) and

d(x, %) <1/2m  for any x in Un(x) (1< k<v(m)).

Proof. We construct such a system by induction on . Firstly, for each
point z in K, Lemma 2 assures the existence of an open neighborhood Vi(2)
of z in K such that d(x, z) <1/2 for each point x in Vi(z). By the compact-
ness of K. we can choose a finite subcovering (Vi(zi))7, of K of the covering

(Vi(2))zex. Weset »(1) =n,and % = zr and Ui (az) = Vi(z) (B=1,2, . .., »(1)).
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Assume that the system is constructed for m=1,2,...,s—1. By Lemma
1, for each point z in K, there exists an open neighborhood Vs(z) of z in K
such that d(x, z) <1/2s for any x in Vs(z). By the compactness of K, we
can choose a finite subcovering (Vs(2;))/s; of K of the covering (Vi(2))zex.
We set »(s) =v(s—1) +ns and %ys-n+r=2¢ (k=1,2,...,n) and we also put
Us(xr) = Vs(xp) N Us-i(xe) (B=1,2, ...,p(s—1)) and Vi(x) (B=p(s—1)+1,
v(s—=1)+2 ...,v(s—1)+mns). This completes the induction. QE.D.

Let M(K) be the totality of all positive regular Borel measures on K. The
vague topology in M(K) is the topology defined by the total family of semi-
norms ,a-»]S f(x)du(x)|, where f runs over all elements in the Banach space of
all finitely continuous functions on K. A subset F of M(K) is said to be

bounded if sup(u(K); u€ F)< . Combining Tychonoff-Kakutani theorem
(see Loomis [6], Theorem 9 B, p. 22) with the representation theorem of Riesz-

Markoff-Kakutani (see Halmos [2], Theorem D, p. 247), we see that

LEmMA 4. The vague-closure of a bounded set in M(K) is vaguely compact.

Using these lemmas, we shall prove the theorem under the assumption that
the kernel G(x, y) is finitely continuous on KX K. Let Km= (%1, %, « « . , Zyomy),
where (xk)5-; is as in Lemma 3. By Lemma 1, there exists a positive measure
#m With support S,, in K such that

SG(x, ) dum(y) =1
on K, and

SG(x, ) dum(y) < 1

on S,,. Let a =mingxxG(%, ). Then « >0 and for a point x in S,,, ochum(x)
<Gy, (%) <1. Hence um(K)<1l/a (m=1,2,...). Let Fpn= (um; m=>n) and
Fn be the vague-closure of Fs in M(K). Since (Fn)s=: has the finite intersec-
tion property, by Lemma 4,
Nr-1Fnx0.

Fix a # in Ny-1Fs. Let 4= (1) be the totality of open neighborhoods 2 of x in
M(K) and A= (4, m); 2€4, m=1,2,...). For each a=(4, m) and o' =
(A, m') in A, we define a>a' if AC A’ and m>=m'. By this ordering, A becomes
a directed set. For each @ =(4, m) in A, we choose a measure g, such that
pa € AN Fp. If pg=pn, then we fix such a un in AN Fy for upe and set [al=

n. Since [a]> m, we see that
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limgpa = ¢ (vaguely) and lim.[al= .

Let x be an arbitrary point.in K. Since Ui Ui (#:) = K, x belongs to a
Ua)(x) (1<k<»([al)). Then by the definition of Upa)(%), d(%, xx) <1/2[a] and so

G(x, y) +1/2[al= G(xx, »)
for any y in K. Hence by using the fact that xr € Kaj,

Gua(x) + ,U-a(lf) /2[al= G;Lu(xk) >1.
Hence
Gu(x) =1img (G, (%) + pa(K) /2[a])= 1.

Next, suppose that x be an arbitrary point in S,. For any fixed positive
integer m, we can find a Un(%:) such that x€ Un(x) A1<k<p»(m)). We

assert that there exists an g, in A such that [a@,]>m and
Sua n Um(xk) x0
for any a in A with a>a,. In fact, let f be a finitely continuous function on

K such that f(x) =1 and f =0 outside Umn(xx). Then

0< {7(3) du(y) = 1ima{ 7 (5) dua ).
From this our assertion follows. Hence we can find a point % in Su, N Upm(e).
Then since d(x, %) <1/2m and d(xa, %) <1/2m,
G(x, ¥) < G(xr, ¥) +1/2m < (G(xa, ) +1/2m) +1/2m
for any v in K. Hence G,,(%) < Gy, (%a) + 1ta(K)/m <1+ 1/am and so
Gu(%) =1ime G, (%) <1+ 1/am.
Thus by making m, 7o, we get Gu(x) <1. Q.E.D.

5. General case. We shall prove the theorem without any additional
assumption. Let & be the totality of finitely continuous functions g(x, ¥) on
K x K dominated by G(x,y) and dominating the constant a = mingxxG(%, y) > 0.
The set @ becomes a directed set with the usual function ordering and.by

considering & as a directed sequence,
limg=gg(x, ¥) = G(x, »)

on KX K. By the preceding proof in §4, there exists a measure pg with sup-
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port Sy, in K such that

on K and

gug(X) <1

on S,,. Let x be in S,,, then ozSdug(y) <Gy, (%) <1 and so ue(K)<1l/a. Let
Fg = (g )@og=¢ and Fe be the vague-closure of Fy in M(K). Since (Fg)gew
has the finite intersection property, by Lemma 4, there exists a measure g in
the set Ng=gFe. Let 4= (1) be the totality of vague-neighborhoods 2 of u
and A=((4 &; A4, g€@®). For any a=(4, g) and a' = (1, g') in A, we
define a=>a' if ACA and g=g'. By this ordering, A is a directed set. For
each a= (1, g) in A, we choose a measure uq such that o= AN Fy; and if ua
= g, then we fix such a ug in AN Fy for u. and set [a]=g'. Since g'=g, it
is clear that

limgua = 2 (vaguely) and limsal(x, y) =G(x, y) on Kx K.

We first show that G.(x)>=1 G-p.p.p. on K. Contrary to the assertion,

assume that there exists a measure »=0 with support S, in K such that

SGu(x) dv(x) = g(jv(x)du(x) < o and G.(x)<1 on S,. By Lusin’s theorem (see

Halmos [2], p.p. 242-243), since SGu(x) dv(x) < de(x) < oo, there exists a com-
pact subset K; of S, with positive »-measure such that G.(x) and G,(x) are

finitely continuous on K;. Hence Gu(x) —1 is continuous on K; and so
D = supsex,(Gu(x) — 1) <0.

Let »; be defined by »:(X) =»(XNK;). Then », belongs to M(KX) and the
lower semicontinuous function G,,(x) is equal to the finitely upper semiconti-
nuous function G,(x) — Gy-y,(¥) on S,,. Hence G,,(x) is finitely continuous
on S,,. So by the continuity principle assumed for the kernel G(x, ¥), G,,(x)
is finitely continuous on £ and so on K. Thus

§Gu) don(2) = {600 dua() = lima{¢Fu(2) dpsal2)
= lima| G, () s ()

>lim supaS[a]pa(x) dvi(x) zgdm(x),

or
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{(Gu® - D anx =o0.

On the other hand, 5(G,L(x) - l)dm(x)sjpdm(x) = pvi(K) <0, which is a con-
tradiction.

Finally we show that G,.(x) <1 on S.. For the aim, let ¥ be an arbitrary
point in S, and T = (r) be the totality of neighborhoods r of x. We set B= ((r,
A gy reT, ied g=®) and for any b6=(r, 4, g) and &' = (¢, A, g') in B,
we define b=>¥' if tC1/, ACA and g=g'. Then B is a directed set. As in

§4, we can find an a4, in A such that
Sp, N0 for any a in A with a> a,.

Hence for any b= (¢, a) =(r, 4, &) in B, we can find a point x5 in S, Nt for

some @' with a'>a. We set [6]=a' and <bp =r. Then we see that

limp sy = ¢ (vaguely) and  limp[[611(x, ) = G(x, ) on KxK

and limpxp = x.
Hence for any fixed g’ in &, we get
1=1lim sups[[6]Tpup,)(x6) = lim supbg,i[b](xb).

Let ¢ be an arbitrary positive number. Since g/(x, ) is continuous on K x K.
we can find, for any » in K, neighborhoods 7y in T and Vy of y such that
|g'(x!, 9') — g'(x, y)|<e for any (#', ¥') in =y x Vy. Since K is compact, there
exists a finite subcovering (Vy,)i-; of K of (Vy)yex. Let o= MNj=i7y, which
is in 7. Then for any (#', ¥) in 7o x K, |g'(«', ¥) — g'(x, y)| <e. Clearly there
exists a b, in B such that for any d6=>b,, <b>C 1 Or x5 1. Hence for any
b= b,

lgr,(x5) — gl ()| < | g, (%) — g, (%) + | g1, (%) — gl(x) |
<em(K)+ g, (%) — gh(x)].

Thus we have lim supsg, (%) = g,.(x) — ex(K) and as ¢ is arbitrary,
lim supsgi,(xs) > &1(x).
Thus we obtain 1>g/.(x). By a Fatou type theorem (see Brelot [1], p. 7);
1= supgepg.(x) = SUPg/e@Sg’(x, »)du(y) = Ssupg«e@g’(x, ¥)du(y)

= {6 ») du(y) = Guto). QED.
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