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Abstract

In this paper we consider an initial value problem for systems of impulsive differential-
difference equations is considered. Making use of the method of comparison and differential
inequalities for piecewise continuous functions, sufficient conditions for practical stability
of the solutions of such systems are obtained. Applications to population dynamics are also
given.

1. Introduction

One of the most important aspects of the theory of stability of the solutions of dif-
ferential equations is practical stability. The main results in this area are due to
A. A. Martynyuk ([16-18]).

The main problem in the theory of practical stability consists of studying the
solutions of systems of differential equations, given in advance the domain where the
initial conditions change, and the domain where the solutions should remain when the
independent variable changes over a fixed interval (finite or infinite). In recent years
this theory has been developed very intensively ([13-15,18]).

The practical stability of the solutions of a system of the form

x=f(t,x) (1.1)

can be considered by studying the relations between this system and a system

ii = F(t,u) (1.2)
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so that the practical stability of the solutions of System (1.2) should imply the practical
stability of the solutions of System (1.1). These relations are obtained by employing
differential inequalities. System (1.2) is usually of lower order and its right-hand side
possesses a certain type of monotonicity which considerably simplifies the study of
its solutions. Actually, this is the essence of the method of comparison in the theory
of practical stability.

In recent years the mathematical theory of impulsive systems has also been inten-
sively advancing (see [13-15,20]).

Impulsive differential-difference equations are a generalization of impulsive differ-
ential equations. They are adequate mathematical models of processes and phenomena
which undergo changes in state by jumps and for which a dependence on the history
of the process is observed at each moment.

At the present time the theory of such equations is undergoing rapid development
(see [2-7]).

In this paper we study the practical stability of the zero solution of a system of im-
pulsive differential-difference equations by means of piecewise continuous Lyapunov
functions [20] and the comparison principle coupled with the Razumikhin technique
([14,19]).

2. Statement of the problem, preliminary notes and definitions

Let R" be the w-dimensional Euclidean space with norm | • |, ft be a domain in R"
containing the origin and let h > 0. Let <p0 e C[[tQ — h, t0], ft]. Consider the initial
value problem

x(t)=f(t,x(t),x(t-h)), t>t0, t^xk,

x(t) = <po(t), t€[to-h,to], (2.1)

Ax(rt) = x(xk + 0) - x(xk) = Ik(x(xk)), rk > tQ, k = 1, 2 , . . . ,

where *b e R, f : (t0, oo) x ft x ft ->• R", Ik : ft -* R", k = 1, 2 , . . . , to = x0 <
Ti < r2 < • • • and lim^oo xk = oo.

Together with this problem consider the problem

«(0 = F(t, u), t > to, tjL Tk,

u(to + 0) = «o, (2.2)

Au(rk) = Jk(u(rk)), xk > to, k = 1, 2 , . . . ,

where F : (t0, oo) x G -> Rm, Jk : G -+ Rm, k = 1, 2 , . . . , G is a domain in Rm

containing the origin and u0 € G.
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Introduce the following notation: R+ = [0, oo);x(t) =x(t;to,<po) is the solution of
Problem (2.1); J+(to, <p0) is the maximal interval of type [to, P) in which the solution
x(t) = x(t;to,(po) is defined; u{t) = u{t;t0, u0) is the solution of Problem (2.2);
J+(to, «o) is the maximal interval in which the solution u(t) = u{t; to, u0) is defined;
K is the class of all continuous and monotone increasing functions a : R+ -> R+

such that a(0) = 0 and a(r) -> oo as r -*• oo; K* is the class of all continuous
functions a : (t0, oo) x R+ —*• R+ which are monotone increasing with respect to
their second argument and such that a(t, 0) = 0 and a(t, r) —*• oo as r -»• oo;
Co = C[[t0 - h, to], Q]; \\<p\\ = meatelkl-h,h] \<p(t)\ is the norm of the function cp e Co;
Qk = {(t, x) € (r0, oo) x Cl : r*_i < t < rk], k = 1,2,

The solutions x (t) of problems of the form (2.1) are piecewise continuous functions
with points of discontinuity of the first kind xk > t0, k = 1,2 at which they are
continuous from the left, that is, at the moments of impulse effect rk the following
relations are valid:

x ( r t - 0 ) = J c ( T t ) , x(T* + 0 ) = x ( T t ) + /t(Jc(Tt)), 4 = 1 , 2 , . . . .

If for some positive integer./ we have xk < ij +h < zk+i, k = 0,1,2,..., then in the
interval [T, + h, r t + i ] the solution x(t) of Problem (2.1) coincides with the solution
of the problem

[y(Tj+h)=x(Xj+h),

and if xj, + h = rk forj =0,1,2,..., k = 1,2,..., then in the interval [r; + h, xk+l]
the solution x(t) coincides with the solution of the problem

\y(t)=f(t,y(t),x(t-h + O)),

[y(Tj +h)= x(Zj +h) + Ik(X(Zj + h)).

If the point x(zk) + Ik(x(zk)) $ Q, then the solution x(t) of Problem (2.1) is not
defined for t > rk.

DEFINITION 1. Let k, A, and B be positive constants (k < A, B < A). The trivial
solution of Problem (2.1) is said to be:

(1) Practically stable with respect to k, A if

€ R)(y<p0 e Co : \\<Po\\ < k)(3<p e K*)(V/ € /+(f0> <Po)) :

\x(t; to, <po)\ < <p{to, IIPoll) and (p(t0, k) <A.
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(2) Uniformly practically stable with respect to k, A if

WVo e Co : \\<po\\ < A)(3p e K)(Vr0 € R)Qtt e J+(t0, cp0)):

\x(r,to,<po)\ <<p(\\<Po\\) and <p(k) < A.

(3) Contractively practically stable with respect to k, A, B if

(Vib € tf)Otyo e Co : Hvoll < X)(3«? e K*)(3t/r : (r0, oo) -> /?+)(Vr € J + (

\x(t\ to, <po)\ < <f(t0, \\<PoM(t), <p(t0, k)f(t) < A and

vKr0, ^)iK4> + r) < B for some r > 0.

(4) Contractively uniformly practically stable with respect to k, A, B if

(VVo € Co : M < k)(3<p e K)(3^r: «,, oo) - * /?+)(Vr0 e J?)(Vr e / + ( ' o ,

I*C; <b, «Po)l < «P(IIW>ll)iKO, *»(A.)^r(O < A and

<p(k)\J/(t0 + T) < B for some T > 0.

Introduce in /?m a partial ordering defined in the following natural way: for u, v 6
/?"* we will write u > v(u > u) if and only if Uj > VJ(UJ > Vj) for any y =
1 ,2 , . . . ,m.

DEFINITION 2. The function ^ : G -> i?m, G C Rm is said to be monotone

increasing in G if ty(u) > ijf(v) for M > v and V'(«) > ^C1') f° r M ^ v(u< v € G).

DEFINITION 3. The function F : (t0, oo) x G -*• Rm is said to be quasi-monotone
increasing in (f0, oo) x G if for each pair of points (t, u) and (t, v) from (t0, oo) x G
and for j e {1, 2 , . . . , m] the inequality /^ (/, u) > f} (f, v) holds whenever M, =
Uy and M, > u, for i = 1 ,2 , . . . , m,i ^ j , that is, for any fixed t € (Zo, oo)
and any j e [1,2,... ,m] the function F;(f, M) is nondecreasing with respect to

In the case when the function F : (/0, oo) x G —• Rm is continuous and quasi-
monotone increasing all solutions of Problem (2.2) starting from the point (to, u0) e
(t0, oo) x G lie between two singular solutions—the maximal and the minimal ones.

DEFINITION 4. The solution « + : [t0, P) -*• Rm of Problem (2.2) is said to be a
maximal solution if for any other solution u : [t0, a) —• Rm of Problem (2.2) the
inequality u(t) < u+(t) holds for t e [to, P) D [r0, a ) .

The minimal solution of Problem (2.2) is defined analogously.
Let e e Rm, e = ( 1 , 1 , . . . , 1) and [u : 0 < u < e] C G. Further on we shall

consider only such solutions of (2.2) for which «(/) > 0. Hence, the following
modification of Definition 1 seems to be the most appropriate.

https://doi.org/10.1017/S1446181100012128 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012128


[5] Practical stability of impulsive differential-difference equations 529

DEFINITION 5. The trivial solution of Problem (2.2) is said to be:

(1) Practically u-stable with respect to X, A if

(Vr0 e R)(yu0 6 G and 0 < u0 < ke)(3<p € K*)(3a € K)(Vf e 7+(r0, M0)) :

o, \uo\)e and <p(f0, A.) < a(A).

(2) Uniformly practically u-stable with respect to k, A if

(VM0 € G and 0 < u0 < Xe)(3(p e K)(3a e K)(Vr0 € /?)(Vr € J+(t0, u0)) :

M+(f;f0. «o) 5 ^(l"ol)e and

(3) Contractively practically u-stable with respect to X, A, B if

(Wo € K)(V«0 e G and 0 < M0 < Xe)(3<p € K*)

(3a € K)(3V : (lb, oo) - • R+)(Wt € 7+(/0 ) «0)) :

u+(t; to, M0) < <^('o, \uo\)f(t)e, (p(t0, X)f(t) < A and

^)(fo, X)\fr(to + T) < a(B) for some r > 0.

(4) Contractively uniformly practically u-stable with respect to X, A, B if

(VM0 € G and 0 < M0 < ke)(3(p e K)(3a € K)

(3^r : (to, oo) ->• /?+)(Vr0 e R)Q¥t e J+(t0, u0)) :

u+(t; t0, M0) < (p(\uo\)ilr(t)e, <p(X)ir(t) < a (A) and

(p(k)xj/(t0 + r ) < a(B) for some r > 0.

In what follows we shall use the class Vo of piecewise continuous auxiliary functions
V : [t0, oo) x £2 -*• G which are analogues of Lyapunov's functions [20].

DEFINITION 6. We shall say that the function V : [f0, oo) x fi -»• G belongs to the
class Vo if:

(1) The function V is continuous in each of the sets Qk,k = 1 ,2 , . . . and V(t, 0) = 0
for t 6 [t0, oo).

(2) The function V is locally Lipschitz continuous with respect to its second argu-

ment x in U/fcl, ^*-
(3) For each k = 1, 2 , . . . there exist the finite limits

V ( T t - O , j e ) = lim V(t,x), V(xk + 0,x)= lim V(t,x)
/->r» »-<-rt

I'.jOeHt (/,x)6£Vn

and

V ( T 4 - 0 , J C ) =
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We also introduce the following classes of functions:

PC[[to, oo), Q] = {x : [t0, oo) -> Q : x(t) is a piecewise continuous function
with points of discontinuity of the first kind xx,x2,... at
which it is continuous from the left};

Q, = [x € PC[[to, oo), ft] : V(s,x(s)) < V(t,x(t)),
t - h < s < t, t > to, V € Vo}-

Let V € Vo,t>to,t^zk,k=l,2,...andxe PC[[to, oo), Q]. Introduce the
function

D.V(t,x(t))= lim iafa-x[V(t + a,x(t) +af(t,x(t),x(t - h))) - V(t,x(t))].
<T->0-

Introduce the following conditions:

HI. / 6 C[(to, oo) x J2 x Q, /?"].
H2. / ( r , 0 ,0 ) = 0 , /€«b,oo) .
H3. The function / is Lipschitz continuous with respect to its second and third

arguments in (fo, oo) x £2 x SI uniformly on t e (t0, oo).
H4. Ik € C[Q, R"],k = 1,2
H5. The functions (I + Ik) : Q -> Q,k = l,2,..., where / is the identity in SI.
H6. / t ( 0 ) = 0 , * = 1,2
H7. to = T0 < t] < r2 < • • •.
H8. lim^oo tk = oo.

In the proof of the main results we shall use the following lemma:

LEMMA 1 ([5,6]). Let the following conditions hold:

(1) Conditions H1-H8 are met.
(2) The function F is quasi-monotone increasing, continuous in the sets (zk, r*+i] x

G, k € N U {0} and u+ : J+(to, u0) -*• Rm is the maximal solution of Problem (2.2).
(3) For each k 6 N U {0} and v e G there exists the limit

lim F(t, u).
(»,U)->((,D)

l>Tk

(4) The functions tyk : G - » Rm, fk(u) — u + Jk(u), k = 1,2,..., are monotone
increasing in G.
(5) The function V e Vo is such that V(t0, <Po(to)) 5 "o and the inequalities

D_V(t,x(t))<F(t,V(t,x(t))), r / r * . * = 1 , 2 , . . . ,

t = rk, k = 1,2

are valid for t e J+Oo, <po) andx € Q,.
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Then V(t, x(t; tQ, <p0)) < u+(t; t0, u0), where t € J+(t0, <p0) n J+(t0, u0).

COROLLARY 1. Let the following conditions hold:

(1) The conditions of Lemma 1 are satisfied.
(2) There exists a function a e K such that

a( | je | )< max ^ ( f . x ) , (t,x) 6 [t0, oo) x Q. (2.3)

Then for t € J+(t0, <po) H J+(to, u0) the following inequality is valid:

\x(t;t0, <po)\ < a~l[maxuUt;tQ, u0)]. (2.4)

PROOF. Since for the function V € Vo the conditions of Lemma 1 are satisfied, then
from (2.3) we deduce the inequalities

a(\x(t;t0, <po)\) < max Vj(t,x(t;t0, <p0)) < max uUt;t0, M0),
\<j<m l<J<m '

where f e y+(fe» ^o) H 7+(/o. «o), which imply Inequality (2.4).

3. Main results

THEOREM 1. Let the following conditions be fulfilled:

(1) 77ie conditions of Corollary 1 are mef.
(2) There exists a function b € K* SMC/I f/ia/

V(ib,J:)<ft(<b,l*l)«, * e £ 2 . (3.1)

(3) yt(0) = 0 , * = l , 2 , . . . .
(4) F ( / , 0) = Ofor t € [t0, oo).
(5) J+(t0,u0) = [to,oo).

(6) /+(r0,<p0) = [>o,oo).

Then the following assertions are valid:

(1) If the trivial solution of (2.2) is practically u-stable, then the trivial solution of
(2.1) is practically stable.
(2) If the trivial solution of (2.2) is uniformly practically u-stable, then the trivial

solution of (2.1) is uniformly practically stable.
(3) If the trivial solution of (2.2) is contractively practically u-stable, then the trivial

solution of (2.1) is contractively practically stable.
(4) If the trivial solution of (2.2) is contractively uniformly practically u-stable,

then the trivial solution of (2.1) is contractively uniformly practically stable.
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PROOF. Inequality (3.1) implies the inequalities

V(t0, (poih)) < b(to, \<Po(to)\)e < b(t0< \\<po\\)e

and, applying Corollary 1 for u0 = b(t0, \\(po\\)e, we get the estimate

\x(t;to,<po)\ < a-l[maxu+(t;to,bOo, \M)e)]. (3.2)

(1) If the trivial solution of (2.2) is practically M-stable, then a function <pt € K* exists
sothatw+(f;r0, b(t0, \\(po\\)e) < <pi(to, \\(po\\)eand(pi(to,X) < a(A). Then (3.2) yields

[x(t;to,<po)\ < a"'[«>i(<b, \\<Po\\)] = <p(k, \\<Po\\)
and

cp(t0, X) = a-'E^db, k)] < a~l(a(A)) = A.

Since (pi e K*anda € K, then^? e K*. The practical stability of the solution x(t) = 0
of (2.1) is proved.
(2) If the solution u(t) = 0 of (2.2) is uniformly practically M-stable, then a function
<p2 € K exists so that u+(t; t0, b(t0, ||^oll)e) < ^2(ll^oll)« and <p2(k) < a(A). Then
(3.2) yields

\x(t;to,(po)\ < a'^^dkoll)] = <p(\\<Po\\)
and

Since cp2, a € K, then <p e K. Therefore the solution x(t) = 0 of (2.1) is uniformly
practically stable.
(3) If the solution u(t) = 0 of (2.2) is contractively practically w-stable, then a function
<p3 e K* and a function d : (t0, oo) -> R+ exist so that

u+(t;t0, b(t0, \\(po\\)e) < (pi(t0, \\<po\\)d(t)e,

(p3(to, k)d(t) < a(A) and <p3(to, k)d(t0 + r) < a(B) for some r > 0. Then (3.2)
yields

\x(t;to,<po)\ < a-l[<p3(to, \\<Po\\)d(t)] = (p(t0, \\<Po\\H(t),

where p e K ' and rff : (r0, oo) -> R+. Moreover,

<p(t0, k)t(t) = a~x[(p3(to,k)d(t)] < a-'(fl(A)) = A

and

<p(to,k)f(to + r) = a-l[<p3(to,k)d(to + r)] < a-'(a(fl)) = fl

for some r > 0. Hence the trivial solution of (2.1) is contractively practically stable.
Assertion (4) of Theorem 1 is proved in the same way as Assertion (3) of the same

theorem.
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In studying the practical stability of the solutions of Problem (2.1) it can sometimes
be suitable to represent the differential inequality used in Lemma 1 and Corollary 1 in
the form D_V(r,.x(O) < g{t, V(t,x(t)),x(t)), where g : (f0, oo) x G x £2 -> Rm.

Here we consider the auxiliary problem

x(t)=f(t,x(t),x(t-h)), t>t0, t£xk,
v{t) = g(t, v(t),x(t)), t > t0, t£ rk,

te[t0-h,to],
v(t0 + 0) = v0,

= Ik(x(rk)), rk > to, k = 1, 2

Av(zk) = Jk(v(rk)), xk > to, k=l,2,...,

where v : (t0, oo) —y G, x : (t0, oo) -*• £2, v0 € G, <po € Q .
We now introduce some notation: let (x(t; to, <Po, v0), v(t; t0, <Po, v0)) = (x(t), v(t))

be the solution of Problem (3.3); and let J+(t0, <Po, v0) be the maximal interval of type
[t0, P) in which the solution (x(t; t0, <po, v0), v(t; t0, <Po, v0)) is defined.

DEFINITION 7. The solution (*(/), u + (0) = (x(t; t0, <p0, v0), v+(t; t0, <p0, v0)) of

Problem (3.3) is said to be the v-maximal solution of (3.3) if for any other solution
(x(t),v(t)) = (x(t;to,(po, v0), v(r,to,<po, v0)) of (3.3) the inequality v(t) < v+(t)
holds for all t for which both solutions {x(t), u+(0) and (x(t), v(t)) are defined.

The u-minimal solution of Problem (3.3) is defined analogously. In this case the
method of comparison is based on a lemma whose proof is ahalogous to the proof of
Lemma 1.

LEMMA 2. Let the following conditions hold:

(1) Conditions H1-H8 are met.
(2) The function g is quasi-monotone increasing with respect to v, continuous in the

sets (vk, rt+1] x G x Q, k e N U {0} and (x(t), v+(t)) is the v-maximal solution of
Problem (3.3) defined in the interval J+(t0, <po, v0).
(3) For each k e N U {0} and (v, x) € G x Q there exists the limit

lim g(t,u,x).
( r u j r ) > ( < u j : )

(4) The functions fk : G -*• Rm, ^ * ( M ) = U + Jk(u), k = 1,2,..., are monotone
increasing in G.
(5) The function V € Vo is such that V(t0, <Po(to)) 5 v0 and the inequalities

D_V(t,x(t)) < g(t, V(t,x(t)),x(t)), t^xk, A: = 1 , 2

V(t + 0,x(t) + /*(*(*))) < *kiV(t, *(/))), / = zk, k = 1, 2 , . . . ,
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are valid for t € J+(t0, <p0, v0) andx e Q,.

Then V(t,x{t; t0, <p0)) < v+(t; t0, <p0, vo)far t e J+(t0, <p0, v0).

COROLLARY 2. Let the following conditions hold:

(1) The conditions of Lemma 2 are satisfied.
(2) There exists a function a e K such that a(\x\) < mea.l<j<m Vj(t, x), where

(t, x) e [to, oo) x n.

Then for t € J+(t0, <p0, Vo) the following inequality is valid:

\x(t;t0, (po)\ < a"'[maxv+(r;r0, (p0, v0)]. (3.4)

Let P be the class of all continuous and monotone increasing functions <p : Rm -*•
R+ such that <p(0) = 0 and <p(v) -*• oo as v -> oo, while P* is the class of all
continuous functions (p : [t0, oo) x Rm ->• R+ monotone increasing along v, v(t, 0) =
0 and <p(t, v) —*• oo as |t>| -*• oo.

DEFINITION 8. The trivial solution of Problem (3.3) is said to be:

(1) Practically v-stable with respect to k, A if

(Wo 6 /?)(Vv0 € G and 0 < v0 < ke)(3<p € P*)

(3a € K)(V^0 € C0)(Vr € J+(t0, <p0, v0)) :

v+(t; to, <po, v0) < <p(t0, vo)e and <p(t0, ke) < a(A).

(2) Uniformly practically v-stable with respect to k, A if

(Vr0 € G and 0 < v0 < ke)(3<p e ¥)(3a € K)

(Vf0 € RWtpo 6 q>)(Vf 6 J+(t0, <p0, wo)) :

v+(t; t0, <Po, v0) < <p(vo)e and <p(ke) < a(A).

(3) Contractively practically v-stable with respect to k, A, B if

(Wo € R)(Vv0 € G and 0 < v0 < ke)(3y € P*)(3a € K)

(3^r : fa, oo) -»> /?+)(VVo € C0)(W € 7 + ( r 0 ,« , , uo)) :

v+(t; to, <p0, Vo) < <p(to, vo)rl/(t)e, <p(t0, ke)r}r{t) < a(A) and

<p(t0, ke)^(t0 + r) < «(5) for some r > 0.

(4) Contractively uniformly practically v-stable with respect to k, A, B if

(Vu0 6 G and 0 < v0 < ke)(3y € P)(3a € K)(3^r : (t0, oo) - • /?+)

(Vr0 € R)(V<p0 € Q)(V* e J+(t0, <p0, vo)) :

u+(r; /b, ^o. v0) < (p(vo)rlr(t)e, (p{ke)\fr(t) < a(A) and

(p(ke)i{f(to + r ) < a(B) for some r > 0.
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THEOREM 2. Let the following conditions be fulfilled:

(1) The conditions of Corollary 2 are met.
(2) There exists a function beK* such that V(t0, x) < b(t0, \x\)eforx e ft.
(3) g(t,O,O) = 0 forte [t0, oo).
(4) Jt(0) = 0 , * = l , 2
(5) J+{to,<po, v0) = [t0, oo).

Then the following assertions are valid:

(1) If the trivial solution of (3.3) is practically v-stable, then the trivial solution of
(2.1) is practically stable.
(2) If the trivial solution of (3.3) is uniformly practically v-stable, then the trivial

solution of (2.1) is uniformly practically stable.
(3) If the trivial solution of (3.3) is contractively practically v-stable, then the trivial

solution of (2.1) is contractively practically stable.
(4) If the trivial solution of (3.3) is contractively uniformly practically v-stable, then

the trivial solution of (2.1) is contractively uniformly practically stable.

The proof of Theorem 2 is analogous to the proof of Theorem 1; however, Defini-
tion 8 is used instead of Definition 5, and (3.4) is applied instead of (2.4).

4. Applications

4.1. The delay differential equation

U(t) = ru(t) \l - " ( f ~ T ) j , t > 0 (4.1)

called Hutchinson's equation [11], is a single species population growth model, where
r, r and K are positive constants. This equation has been studied by many authors;
see for example Cunningham [8], Gopalsamy [9], Kuang [12], Zhang and Gopalsamy
[21,22].

In this section we consider the case where at certain moments biotic and anthropo-
geneous factors act on the population "momentarily" so that the population number
varies by jumps. Precisely we are concerned with the practical stability of the zero
solution of the equation of the form

iN(t) = rN(t)[l - WO - r)/K], t > 0, t ^ rk,

, k = 1,2, . . . ,

where 0 < ri < r2 < • • •; lim^oo xk = oo and ak are constants which characterize
the magnitude of the impulse effect at the moments xk.
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Let <px € C[[-r , 0], R+] and let N(t,<p{) be the solution of (4.2) for which
N(s, cpi) = (pds), s e t - r , 0], <p,(0) > 0.

We consider the function V(t, x) = (1 - x/K)2. Then the set Q., is

THEOREM 3. Let the following conditions be fulfilled:

(1) 0 < T, < r2 < • • •; lim^oo xk = oo.
(2) There exists a constant Ko < K such that 0 < Ko < (1 + ak)K0, k = 1, 2
(3) For each k = 1, 2 , . . . andNeR* the following condition holds: (1 +ak)N<K.

Then the zero solution of (4.2) w uniformly practically stable.

PROOF. For / > 0 and N eQ,we have

D_ V(t, N(t)) = 2(1 - N(t)/K)(-l/K)rN(t)(l - N(t - x)/K)
< -(2r/K)N(t)V(t,N(t)) < -2rV(t,

where t ^xk,k = 1,2, From Conditions (2) and (3) of Theorem 3 it follows that

i2

It is easy to see that the trivial solution of the problem given by

iu(t) = -2ru(t), t>O,t^xk,

(A«(rjt) = 0, k=l,2,...,

is uniformly practically M-stable. Then by Theorem 1 we obtain that the trivial solution
of (4.2) is uniformly practically stable.

4.2. Gopalsamy and Ladas [10] proposed a model of a single species population
exhibiting the so-called Allee effect [1] in which the per-capita growth rate is a
quadratic function of the density and subject to delays. In particular, they studied the
solutions of

N(t) = N(t)[a + bN(t - r) - cN2(t - r)], (4.3)

where a, c e (0, oo), b € R and T e [0, oo). If a > 0, b < 0 and c = 0, then (4.3)
reduces to an equation of Hutchinson's type (4.1).
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The purpose of this section is to consider the following model:

t-T)l t>O,t^xk,

k = 1,2

where a, b, c are continuous functions, a and c are positive functions, b e R;
0 < ti < T2 < • • •, lim^oo rk = oo and Ik are functions which characterize the
magnitude of the impulse effect at the moments r*.

Let a0 = max,e[_roo) a{t), b° = max,£(_riOO) b{t) and c0 = minre[_ro0) c{t). Intro-
duce the notation:

b° - y/b°2+4a0c0 , u2 =
2c 2c0

THEOREM 4. Let the following conditions be fulfilled:

(1) 0 < t! < T2 < . . . ; limjk_00 xk = oo.
(2) F(u) = 2u2g(ui)(u - Mi) is the function such that F € Kfor u € R+.
(3) [u + Ik(u)]2 < Gk(u), where Gk : [0, Ko] - • [0, K) and Gk € K, k = 1, 2 , . . . .
(4) The zero solution of the equation

k=\,2

is uniformly practically u-stable.

Then the zero solution of (4.4) is uniformly practically stable.

PROOF. Let V(t, N) = N2. Then the set Q, is given by

Q, = [N € PC[R+, (0, oo)] : W2(s) < N2(t), t - x < s < /}.

For f > 0, / ^ xk and W 6 fl, we have

D_ V(t, N(t)) = 2A^2(O[fl(O + Ht)N(t - T) - c(/)A^2(r - r)]

< 2N2(t)[a° + b°N(t - T) - c0W
2(r - T)]

From Condition (3) of Theorem 4 it follows that

V(rk + 0,N + Ik(N)) = [N + Ik(N)]2 < Gk(N), it: = 1,2

Since by Condition (4) of Theorem 4 the zero solution of (4.5) is uniformly prac-
tically u-stable then Theorem 1 implies that the zero solution of (4.4) is uniformly
practically stable.
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