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1. Introduction. In an earlier paper (1), published in this journal, a 
necessary condition was given which the reciprocal of a polynomial without 
multiple roots must satisfy in order to be a characteristic function. This 
condition is, however, valid for a wider class of functions since it can be shown 
(2, theorem 2 and corollary to theorem 3 ) that it holds for all analytic character­
istic functions. The proof given in (1 ) is elementary and has some methodological 
interest since it avoids the use of theorems on singularities of Laplace transforms. 
Moreover the method used in (1) yields some additional necessary conditions 
which were not given in (1) and which do not seem to follow easily from the 
properties of analytic characteristic functions. The purpose of this note is to 
supplement (1 ) by establishing these conditions and by deriving the results for 
rational functions which need not be the reciprocals of polynomials without 
multiple zeros. It should be remarked that Takano (3) extended the conditions 
of (1 ) to the reciprocals of polynomials having multiple roots. 

2. Necessary conditions for rational characteristic functions. In this note 
we derive the following 

THEOREM. If the rational function <j>(t) is a characteristic function then the 
following three conditions are satisfied: 

(a) <t>{t) has no poles on the real axis. All the poles and zeros of 4>(t) are either all 
located on the imaginary axis or they occur in pairs ± b + ia, symmetric with 
regard to this axis. If </> (/) is written as the quotient of two polynomials then the 
degree of its numerator can not exceed the degree of its denominator. 

(b) If b + ia (a, b real, a ^ 0, b ^ 0) is a pole of §{f) then </>(/) has at least 
one pole ia (a real) such that sgn a — sgn a and \a\ < \a\. 

(c) Let a be the imaginary part of the poles of 4> (t) which are closest to the real 
axis in the upper {lower) half plane. If 4> (t) has not only the pole ia but also poles 
± b + ia (a, b real a ^ 0, b ^ 0) then 

(i) no pole of the form b + ia can have a higher multiplicity than the pole ia 
(ii) if the only poles of </> (/) with imaginary part a are ia and ± b + ia and if 

these poles have equal multiplicity s we have 

AltSa
s - 2\Ci,s\ (a* + b^s>0. 

Here AitS is the coefficient of (1 — it/a)~s and C\,s is the coefficient of 
(1 — it/ (a + ib))~s, in the expansion of <p(t) into partial fractions. 
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Conditions (a) and (b) correspond to conditions (a) and (b) of (1); the proof 
is practically identical with the proof given in the earlier paper so that we have 
now to establish only (c). We shall therefore assume from now on that <t>(t) 
satisfies (a) and (b). We can then write 

v ^ - m 
where t is a real variable while P(z) and Q(z) are polynomials in z with real 
coefficients. 

3. Proof of condition (c). We divide the zeros of Q(it) into four groups: 
(i) zeros ifih (h = 1, . . . , /A) on the positive imaginary axis; 

(ii) zeros — iaj (j = 1, . . . , v) on the negative imaginary axis; 
(iii) p pairs of complex zeros in the upper half plane iwk and iwk where 

Wk = ck + idk (k = l,...,p); 
(iv) n pairs of complex roots in the lower half plane —ivm and —ivm where 

vm = am + ibn (m = 1, . . . , n). 
The quantities am, bmj ck, dk1 aj} /3h are positive numbers. We denote by qmi 

Pjy rk, ah the multiplicities of the zeros vm, ajy wk, fih respectively. It is sufficient 
to prove (c) only for one of the half planes. (See the argument used in (1).) 
Therefore it is no restriction to suppose that Q(it) has zeros in the lower half 
plane. The assumptions of condition (c) imply then that v > 0 and n > 0. 
According to condition (a) of our theorem, the degree of P{z) cannot exceed the 
degree of Q(z); we obtain therefore from (1) the decomposition of <j>(t) into 
partial fractions 

(2) 
v Pi A n gm |~ •-* 

0(0 = z-j As 77 J7~/ \X + ^ 2^ 77 ^ /„, \x + iTi x=i (1 — ti> OLA " I xTi L ( l — it/vm) 

^m 

JAtA {l-it/a^ ' HAxtA L(l-it/vmf ' (l-it/vmfj 

i ŷ  ŷ  B?hx _i_ y^ Vs J?lA i ^kX 

"*" fci fci (i +~it/hf "*" fci fci L(iTaM)x "*" (i~+it/wkf\ ' 
If either ju or p should be equal to zero, then the corresponding sum is omitted. 
From formulae (3.11), (3.12), (3.21), (3.22) of our earlier paper we can compute 
the frequency function 

We see that, for x > 0, 

(3) /(*) = ±t 4f^*--« n (X ) 
x-i 

+ 2-J e 2-, ^F777 IGn.x vme + Cm,x vm e 

; = i x.i r . ( \ ) 
X - l 

X ZZÔWÎ 
I f x "7! IS —h— I -v ' I f 

r(\) 
A similar expression can be found for f(x) if x < 0 and JU ̂  0 or £ ^ 0 but is 
not needed in the sequel. If /x = p = 0 then f(x) = 0 for x < 0. 
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We choose our notation so that 
(4.1) a i < a2 < . . . < On, 

ai < a2 < • • • < OLV. 

We denote by N the greatest integer such that a^ = a,\ for j = 1, 2, . . . , N. 
Clearly 1 < N < n and we have aN < aN+i in case N < n. It is convenient 
to put 
(4.2) t = max [qh q2, . . . qN]. 

We can then write (3) for large positive values of x as 

(5) /(*) = e-*<" x»-1 [^fj^f- + "(I)] + e~xa> x'-'Mx) + o(l)] 

where 

(5.1) h(x) = f ) - ^ - [Cm,, »i e- t e S" + C„. « vL eixb-]. 

The summation is here to be extended over all integers m (1 < m < N) for 
which qm = /. 

Since we assume that conditions (a) and (b) are satisfied we have <x\ < a,\. 
We write 

ta i\ /PI i f a i < °i» 
(6.1) 5 = < 

(max [pi, /] if ai = a\. 
We see then easily from (5) and (5.1) that for large positive values of x, 
(7) /(*) = e-*"'x-1 [g(x) + o(l)], 

where 

__i^J^L_ jf a i < a i o r jf ai = ai ancJ i < p i = Sf 

r(pi) 
A(x) if «i = a\ and pi < t = 5, 

-J S 

"wTL + ^(x) if a i = ai and Pl = t = 5* 
We are now ready to establish condition (c). Let us first assume that a\ = «i 

and pi < t then 
f{x) = e~

xai Xs'1 [h(x) +o(l)]. 

It is seen from (5.1) that h(x) is an almost periodic function without constant 
term; according to the lemma given in (1), h(x) assumes also negative values. 
From the almost periodicity of h(x) it follows easily t ha t / (x ) must assume 
negative values for some sufficiently large values of x. This proves part (i) of 
condition (c). 

We next consider the case a± = a\ and pi = t = s. Since the function 
A s 

•ft- 1, S ^ 1 I 7 / \ 

~rW + h{x) 
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is almost periodic we conclude from (5.1), (7) and (7.1) that/(x) is nonnegative 
for positive x if and only if 

(8.1) A1,sa1
s+ Y,[Cm,sv

s
me-ixbm + Cm,sv

s
meixbm]>0 

ra=l 

for all x > 0 (summation extended over integers m for which qm = s). 
If we write Cm,s vm

s — RmtS [cos 6m>s + i sin dmiS] we obtain easily from (8.1) 
N 

(8.2) Ahsais + J2 2 Rm,s cos (6m,s - bmx) > 0 for x > 0. 
m=l 

If in particular iV = 1 this reduces to 

Ai,sais + 2i?i iScos (dltS - bix) > 0 forx > 0, 

and therefore 
(8.3) ^ 1 , s a 1

s - 2 ^ 1 ( S > 0 . 

If we write here for R\,s = \CitS Vis\ and for ai = a and for v\ = ia + b we obtain 
the statement (ii) of condition (c). 

It is worthwhile to remark that the above reasoning would still hold for 
certain irrational meromorphic functions. 
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