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Introduction

As an extension of a result due to W. D. Barcus and J. P. Meyer [4], T.

Ganea [8] has recently proved a theorem concerning the fibre of the extension

EΌCF-+B of a fibre map p : E-*B to the cone CF erected over the fibre F.

In this paper we shall establish a generalized Ganea theorem which asserts

that the homotopy type of the fibre of a canonical extension ξ' of a triad
/ g

A—>Y<—B (cf. [13]) is determined by those of / and g (see Theorem 3.4).

This generalization yields a proof of a well-known theorem of Serre on relative

fibre maps (see Corollary 3.9) and, as done by various authors (cf. [1], [10],

[12]), a theorem of Blakers- Massey (see Corollary 4.4).

Our result can be used to derive a dual EHP sequence which generalizes

a conditionally exact sequence established by G. W. Whitehead [15] and Tsuchida-

Ando [14]. The dual product introduced by M. Arkowitz ([2], [3]) allows

us to describe the third homomorphism in that sequence.

Throughout this paper we will work in the category of spaces with base-

points, generally denoted by *, and based maps. Homotopies are assumed to

respect base-points. The closed unit interval is denoted by /. Given a path

ω : I-+X in X, we denote by ωu,v the path defined by ωu,υ(t) = ω((1 — t)u+ tv),

where O^u^v^l. For paths ω, τ with ω(l) = r(0), the path consisting of ω

followed by τ will be denoted by ω + r, and the inverse of ω by — ω. As usual,

Ω and S are used, respectively, to denote the loop and suspension functors. EX

and CX denote the space of paths in X emanating from the base-point and the

cone over X respectively.

We are indebted to T. Ganea for sending us a preprint of [8].
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§ 1. Preliminaries
/ g

Let A—>Y<—B be a triad and let E/,g be its mapping track, as defined in

[13], i.e.,

Ef,g={(a, r, b)e AxY1 xB\f(a) =

with projections Pi : Ef,g-+A, P* ' E/,g-+B. In particular, let E/ and Eg be,

res

g

f g
respectively, the mapping track constructed for the triads A—>Y<—*, *—>Y

B, which are usually called the fibres of /, g.

Let / : ΩY^Ef,g be the natural injection. Then we have

LEMMA 1.1. (see [13]) /*(ri) = I*(r*) for n, n^πiV, ΩY) if and only if

there exist a^π(Vy ΩA), /5GTΓ(F, ΩB) such that n = (Ωf)*(cc) +r2+ iΩg)*(β).

Now let Jι : EP2-*E/t 7.2 : EPί-+Eg be the maps induced by the following

homotopy-commutative diagram

P i

•I
B —

LEMMA 1.2. (Dual excision theorem) Zi and 72 are homotopy equivalences.

Proof. W e def ine Γ2 : Eg->EPl b y Γ2(β, b) = (e; *, β, b), w h e r e e is t h e

constant path at the base-point of A. Then it is easily seen that Γ2 is a homo-

topy inverse of X2.

g

be homotopy-commutative. This induces the map X : Eftg-*Ef*,g> and the com-

mutative diagram

— * 7
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where the vertical maps are appropriate projections.

LEMMA 1.3. There exist a homeomorphism Ξ .' EX-*EΦUΦ2 and an injection

I : ΩEf>>g' -> JEΦ^Φ, such that the following diagram is homotopy commutative-'

ΩY\

in which i and P are natural injection and projection, respectivelv. In particular,
g h

for a triple A—>B—>C, the fibre of the natural map 7 : Ehog->Eh is of the

same homotopy type as Eg.

Proof. It is sufficient to define Ξ by setting

Ξ(a9 T, β; a, γy b) = i(α, a), (fog, r ) , (βt b))

for a<ΞA, b^B, γe Y\ ac^EA', βe EB', f <=E(Yfl), γ(0) =f(a), r(l)=g(b),

ai l) = ψi(a), βil) =ψ2(b), where h : I2-*I2 is a homeomorphism indicated by

the following picture:

• )

f 8
Now, let a cotriad Λ<—Z—>B be given. We define its mapping cylinder

Cf,g to be the space obtained from A V ( I x /)/(* x /) V B by the identifications

/(*) = (x, 0), = (Λ;, 1), X. The injections /i : A-+Cf,e, h : B-+Cfίg
g

are obviously defined. The mapping cylinder of a cotriad *<—X—>J5 is denoted

by Cg, which is usually called the co fibre of g. Any point

x in Cf,g, Cg or SX which is given by

i(f) = U ί), O^ί^l.

Lemma§ 1,l^X.3 are dualized as follows;

X defines a path
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LEMMA 1.1'. Let Q ' C/,g-*SX be the map defined by shrinking A and B

to a point. Then Q*(n) = Q*(ϊ2) for n, γ2^ π(SX, V) if and only if there exist

αeττ(SA, V), βeπiSB, V) such that n = (S/)*U) + r 2 + (Sg)*(β).

LEMMA 1.2'. (Excision theorem) Let '/[ : Cf->d, and X[ ' Cg-*Ch be the

maps induced by the homotopy-commutative diagram

f
A

\S

Then X[ and J\ are homotopy equivalences.

LEMMA 1.3'. Let the diagram

be homotopy-commutatiυe, and let

\

be the associated commutative squares. Then, for the mapping 7J Cf,g->C/>.g>

induced by the above transformation, we have a homeomorphism Ξr '- CX/-*CΘI,Θ2

such that the following diagram homotopy-commutes:

V
C/.t

-* SX'
i

•*- scv -*- s2x.
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In particular, the cofibre of the natural map Cg-*Chog induced by a triple
g h

A—>B—>C, is of the same homotopy type as Ch.

The following lemmas will be needed in the later sections.

LEMMA 1.4. Let f ' Y-+ ΩX be the map adjoint to f : SY^X, and suppose

that f and X are, respectively, m- and n-connected. Then f is min(2 n, m)-con-

nected.

Proof. By Lemma (4.1) of Berstein-Hilton [6], we have the commutative

diagram

l
HάSY) Ί—¥ HάX),

where a is the homology suspension. Since a is onto for iίk2nΛ \ and mono-

morphic for i^2 n, we obtain the desired conclusion.

LEMMA 1.5. Suppose we are given f : SY-+X and its adjoint / : Y-+ΩX

and let f, Y be, respectively, m , n-connected. Then f is [min(m, 2w + 2 ) + l ]

connected.

Proof. It is sufficient to observe that, in the following commutative diagram,

the homotopy suspension E is onto for /<;2 n + 2 and monomorphic for i£2 n + 1:

/*
τr, -i(y) > m(

l
ίr, (SY)

§ 2. Joins and co joins

h h

Given a triad A—>A\IB<—B consisting of inclusions, we denote its map-

ping track Eiuit by A*J5, which is called the cojoin of A and B (cf. [2]. Hilton

uses the notation A*'B in [9, p. 238]\ We have the diagram
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ΩA

ΩB

Let Ab£ be the flat product of A and B, i.e., the fibre £ j of the injection

J ' A V B->AxB. Thus the sequence

£ J

Afc>£—->A V 5—>A x £

is essentially a fibre triple.

LEMMA 2.1. ^i <wκ/ />2 tfre null-homotopic.

Proof. Let r * A V J3 -> A be the retraction resulting from shrinking B to

base-point. Note that A*J3 is the space of paths in AV5 which emanate from

A and end in B, and that p\ is the fibre map which assigns to each path the

starting point. Then we can readily see that a null-homotopy ^ i - 0 is generated

by the correspondence (r, ί)-*rr(f), O^f^l, γ^A*B.

In the light of Lemma 2.1, we have exact rows in the following diagram

Θ πk{ΩB) ^πk( Q(A V

Since the composition ($/)*° (*i*-h *2*) is the direct sum representation, it fol-

lows by a routine argument (cf. [8, the proof of Theorem 3.2]) that I*°(ΩL)*

is bijective. Hence we have established

PROPOSITION 2.2. ([2, p. 22]) I°(ΩL) : Ω(AbB) -• A*B is a weak homotopy

equivalence.

COROLLARY 2.3. Suppose that A is mconnected and B n-connected. Then

A*B is (ra-f n — 1)-connected.

M. Arkowitz ([2, 3]) has defined the dual product [α:, β] of αeτr(F, ΩA)

and βGπ(V, ΩB) to be the unique element γ<=π(V, Ω(AbB)) such that (ΩL)*

(γ) = - (Ωii)*(oc) - (Ωi2)*(β) + (Ωii)*(a) + (Ωi2)*(β). Further, we denote the

element /*( - (Ωi2)*(θ) -h (Qi^i*)) e π( V, A*J5) by <a, β>, and call it the
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cojoin product of a and β. This is nothing but the second dual product Za, β]'

defined in [2].

PROPOSITION 2.4. ([2, p. 22]) The weak homotopy equivalence 1°(ΩL) sends

[or, £] to <a, β>.

Proof. This is easily seen by noting, in view of Lemma 1.1, that

/*( - (JWiWα) ~ (Ωi*)*(β) + (Ωii)*U) + (Ωi2)*(β))

Now let / : V-+ΩA, g : F-*££ be representatives of or, 0 and let / : SV

-+A,g' SV-+B be adjoint to /, g respectively. / and g obviously induce the

map f*g : SV*SV-+ A*B. Let ε : V-+ΩSV be the natural injection defined by

ε( v) = v, v^ V, With these notations we have

LEMMA 2.5. (/*#)*<e, ε> = <α, |9>.

Proof. This follows from the fact that α: = (i?/)*(e), j9= ( ^ ^ ( ε ) and from

commutativity of the diagram

We mention here the relationship between the cup-product and the cojoin

product. Let A, B be the Eilenberg-MacLane spaces K{GU p+ 1), K(G2, q + 1)

respectively. Let

cE:Hp+Q(A*B; G)^HΌTΏ(Hp+Q(Ω(AbB)); G)^Hom(G, G)

be the cohomology class corresponding to the identity homomorphism of G,

where G is the tensor product Gi0G 2. Then Arkowitz [3] has proved

PROPOSITION 2.6. <a, 0>%) = <xϋ β for a<= HP(V; Gι), β<=Ξ Hq(V; G2).

Dually, the join A*B of A, B is defined to be the mapping cylinder Cpup%

pi p2

of the cotriad A<~—A x B—+B, where pu p2 are the projections. Any point of

A*B is represented by the symbol (1 - t)a®tb9 « ε A, 6 e B, O^t^l. We have

the diagram
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in which / i-0 and i 2 - 0 . Also, if we denote the cofibre of i V B — > A x B by

A#B, we have a cofibre sequence

A V £^>A x B-^A#B.

Applying the same argument as in the proof of Proposition 2.2 to the diagram

)*}
->Hk(SA)®Hk(SB)

0+r. Hk(S(A%B))< Hk(S(AxB))<r—

we obtain.

PROPOSITION 2.21. (SK)°Q : A*B-*S(A%B) is a weak homotopy equivalence.

Now recall that the generalized Samelson product «α, /3» e 7r(S(A Vδ), F)

of αrGTrίSA, F) and β<^π(SB, V) is defined to be the unique element γ such

that q*(r) = ~ (S£i)*(α:) - (Sί3)*(β) + (Sί1)*(α:) + (Sίiϊ)*(^) in the exact sequence

0«-π(SAVSB, V)±-π(S(AxB), V)<—π(S(AΛB), F)*-0,

where AΛβ is the smashed product AxB/AVB and gf : S(Ax B)-*S(Aί\B)

is the identification map. Note that, in this argument, A and B are assumed

to have non-degenerate base-point. The generalized Whitehead product Cor, j9]

is defined to be the element ©*( - (Sp2)*(β) + (Sfr)*(α:)) e ^(A*5, V). We see

from Lemma 1.1' that the homotopy equivalence A*B-> S(A/\B) transforms

«a, ff» to [α, j9].

We shall need, in §5, the map W : ΩA*ΩB-*B\>A which is defined by

(2.7)

for USΞΩA, β(=ΩB. Then the following lemma is well-known (cf. [8, §2]).

LEMMA 2.8. W is a weak homotopy equivalence.

Dually, we define W : A%B->SA*SB as follows:
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(2.9)

f (ft, 1-2/),
W'(a, ft)(ί) =

ί (a, 2 f - l ) ,

:, 1-s),

:, l - 2 s

, l - 2 s ί ) ,

^ ( ^ , fto, S ) ( ί )

FΓ'(ύ5o, ft, S ) ( ί ) =

v ( Λ , 1 —

(ft, 1-5),

for flGil, b<^B, O^s^l. I regret to say that I was unable to show the dual

of Lemma 2.8, but we will content ourselves with a partial result (see Corol-

lary 5.10).

Let the diagram

§ 3. Extensions of triads

Pi

(3.1)

f g
be associated with a triad A—>Y<—B, and consider the mapping cylinder CPι

Pi P 2

of the cotriad A<—E/,g—>B. We define the natural extension

of the triad (f ' g) over CPup2 by setting

f'U r, b; t) = dt), ξ'(a)=fia), ξ'(b)=gib)

forαεΛ^^re Y1, O ί̂̂ l.

Next, let fVg : A V 5 ^ 7 b e the map determined by / and g, i.e., the com-
f\Jg p

posite A V Z?—^ Y V F—>y, where V is the folding map. We define

by setting, for (a, γ, b)<=E/,g, 0^

(a, 4 S ) G C Λ

VUr, ft, s)= H - y - j e F ,

, (ft, 4 - 4 S ) G C S ,

Introduce the homotopy-commutative diagram
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Q

(3.2)
ΛVB———>• y

+ k γ

Y >• C/,e •

I „ I
Cv •* c v ,

in which C is the map induced by the upper square and the unlabelled arrows

denote the appropriate injections and identification.

The following proposition is an extension of Proposition 1.6 of Ganea [8].

PROPOSITION 3.3. C : Cv-+Cv ts a homotopy equivalence.

Proof. C is given explicitly as follows: if 2 5^1, then

C'ty) =y<= Yy C'ia, s) = *, ζ'(b, s) = *,

C'U, r, b, t; s) = (a, r, b, t; 2s);

if 2s>l, then

T, C'(α, s) = (a, 2 s - 1) e C/wr, C'(&, s) = (6, 2 s -1),

, r, i 2 T s -1)'

for cone parameter s and cylinder one t. We consider ε' :

e'(^) -y> e'(β, s) = (a, s), e'(^, s) = ib, s),

?̂  given by

, r, ̂  «#' s) = ?, r» by
—λ—Q s}9 s<4u^4 — s,

4 — 2 s J — — *

for suspension parameter w. It is a troublesome but routine matter to verify

that e' is a homotopy inverse of C.
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One of the main objects in this section is to prove the following theorem

which generalizes Theorem 1.1 in [8].

THEOREM 3.4. The fibre Ev of ξf Cpup2-* Y has the same homotopy type

as the join E/ *Eg of the fibres of f and g.

Proof. We define F : E]*Eg-*E\. and G : E*^E/*Eg by setting, for

« e A, btΞB, a, β, r, -re Yι, Ogf^l,

r F(a, a) = (-*', a), F(β b) = (β; b)

i (βo.2ί-i; a, cc + β, b, t), 1^2

G(τ ; β) = (β, β τ ( 1 ) - r ) , G ( r ; 6) = ( r + βτα,, b),

G(τ; a, r, b, t) = ( l - f ) U ro. ί- r ) θ ί ( r + ΓM, b),

where ex denotes the constant path at x.

G°F can be deformed into the identity via a homotopy Φu, 0^w^2, whose

value Φu((l-t)(a, a)Θt(β, b)) is given by setting, if 0^2 ί^l, 0^«^l,

(1 - t)(at ao,2t + ac2t,i) θ ί ( - ^2(i-«)ί+«,i+ (a + i9)(i-«)ί+-^-,i, ^)

if 1^2*^2, O^M^I,

(1 - t)(a, (a + β)o, a-u)t+±- ~ βo, (i-«)(2/-iJ) θ t(βo,u-i + ft/-i,i, b) \

if 0^2 ί^l, l^w^2,

(l-t)(a, aQ,2ti2-u) + ̂  + a2t(2-u)+^,i)®t(βo,^ + β^,i, b)

if

F°G —1 is verified by taking a homotopy ?FM, 0^«^2, whose value ^ ( r ;

«, r, Λ t) is, if O^

(3; a, ( r o f ί - r ) O i i - f + ( r + rί.i)-f.i, ^,

where

- (r<u-r)2f-«f fi 0^2 ί^ l ,

if
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U> a, ro,(2-«)ί + ̂ i + r(2-«) ί+^l f t , b, ί),

where

ί -(ro.ί-r)(2-«,/+JίzLfι
{

Thus the proof of Theorem 3.4 is complete.
F

The composition Ef *Eg—>Ev—>CPι,Pt will be denoted by j : E/*Eg -» CFι,

This is given by

(3.6) K ( l - t ) ( a y c c ) ® t ( f a b ) ) = ( a , « + β , b ; t ) .

Consequently, the sequence

is essentially the fibre triple.

Combining Theorem 3.4 with Proposition 3.3 we obtain

COROLLARY 3.7. Suppose that f is p-connected and g q-connected. Then ξ'

and -η' are both (p +q+I)-connected.

Remark As in Proposition 1.5 of [8], there exists a map Γ : ΩY->ΩCPUP%

such that Ωξ'°Γ= identity. It is sufficient to define Γ by Γ(ω)(t) = (•, ω. * t).

Note that the diagram

ΩQ
ΩCpitpz ^ ΩSE/tg

r , r
ΩY >EAg

is commutative, in which a is the canonical injection

Now we shall deduce the well known theorem of Serre on relative fibre

maps from Corollary 3.7. For this purpose we prove.

THEOREM 3.8. Let Φι : CPι->Cg and Φz • Cp2-+C/ be the maps induced by

the homotopy-commutatiυe diagram (3.1). Then the cofibres of Φ± and Φ2 have

the same homotopy type as those of £'.

Proof. Let the diagram
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A

v
Ef.a

be associated with the cotriad Pl9 P2. Using this, the maps 1[ CPι-*d2 and

Xί '• Cp2-*dι are obviously defined. On the other hand, ξf : CPl,Pi-» Y determines

the maps k\ ' d2-+Cg and k2

 : Cix-*Cf. We see easily that the compositions

&i°Zί and k2°y[ coincide with Φγ and Φ2, respectively. Since both Ckt and Ck2

are equivalent to Cζ/ by Lemma 1.3', and since Zί and 7\ are homotopy equi-

valences by Lemma 1.2', we conclude that CΦL and CΦ2 are equivalent to Cv,

which completes the proof.

COROLLARY 3.9. (Serre theorem on relative fibre maps) Suppose that f is

p-connected and g qconnected, and that g is a fibration. Let ~φχ : Cπx-*Cgi ~Φ2

 :

Cκ2 -* C/ be the maps determined by the commutative square:

where K e r ( / g) is the fibre space induced from g by f. Then Φι and φ2 are

1)-connected.

This follows from Corollary 3.7 and Theorem 3.8, observing that ~φ\ and

151 are, respectively, equivalent to Φι and Φ i of Theorem 3.8.

THEOREM 3.10. Suppose that f is p-connected and g q-connected. Let V be

a 1-connected space such that 7r, ( V) =0 for i ^p + q + 1. If A, B, Y and V have

the homotopy type of CW-complexes, then the following sequence is exact:

π(SE/.g, V)

P , * ^ n(A, V) f

https://doi.org/10.1017/S0027763000012058 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012058


262 YASUTOSHI NOMURA

Let AJ-X~

§4.

->B be a cotriad

X

Lifting cotriads

and

>

£ *

let

JΌ,,g(4.1)

be the associated diagram. Consider the mapping track Eιulz of the triad Iu

Δ f^B

lι and let fΔg X-+ Ax B be the composition X—>Xx X—*A x B, where Δ is

the diagonal injection. We define ξ ' X-+Eιui2 and y '• Ef&g-+ΩCf,g by setting,

for x e X, a e EA, β e EB,
ξ(χ) =

( α(45),

?, ax β)(s) =

j9(4-4s),

Introduce the following homotopy-commutative diagram

C

ί I
x B

I'
>EJuJt9

in which I is the injection and C is the map induced by the lower (homotopy-

commutative) square

PROPOSITION 4.2. C •' E-n^Ex is a homotopy equivalence.

As shown in [12], we can deduce the Blakers-Massey theorem on excisive

triads from the Serre theorem on relative fibre maps. For this purpose we prove

THEOREM 4.3. Suppose that f is p-connected and g q-connected' Then ξ

and 7) are (p + q — 1)-connected.

Proof. We consider the homotopy-commutative diagram
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Cf.g,

in which the square is associated with the triad Iu 72. By Lemma 1.2', h and

/i are, respectively, p- and #-connected. Applying Theorem 3.8 to the above

square, the map

X : CPι->Cl2

induced by the above homotopy-commutative square, is (p + q + D-connected.

Now it is easily seen that the composition

x
Cf > Cp ι > Cι 2 ,

in which the first map is determined by £, coincides with the homotopy

equivalence X\ : Cf-*Ci2 of Lemma 1.2'. Thus, C/-+CPl is (p + q) connected,

and therefore, by resorting to Proposition 4.2 and the sequence

we can infer that ξ and η are KpΛ q — 1)-connected.

Suppose further that g is a cofibration and

X Λ Coker </ : g>

is the associated commutative diagram, where Coker </ : g> is the space

obtained from ΛVJ5 by the identification/(#) =g{χ), x e X. Let

yj : JE/Δ^ ̂  Ω Coker </ : g>

be the map given by y = Ωq°vj, where q : Cf, g -> Coker </ : ^> is the canonical

equivalence. Note that, since g is an inclusion, EfΔg can be identified with the

space consisting of (α:, β) e EAxEB such that iΊα:(l) = ̂ 2/5(1), i.e., the space

Sιlrίi as defined in [13].
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Since rj is homotopic to m : Siit , 2 -> i? Coker </ : g> which is given by

and since the sequence

πkiΩ1 Coker </ : £>) -* τr*(7V;2)-+ πk(Siui2)—^πk(Ω Coker <f :^

is exact by Proposition 3.3 of [13], where Ti,,i2 is the subspace of EAxEBx

EE Coker </ : #> consisting of (α, β, γ) such that f (5, 1) = hais\ γ(1, ί) = i2j2U),

it follows

COROLLARY 4.4. (Blakers-Massey) If f and g are, respectively, p- and q

connected, and if g is a cofibration, then Tflf, 2 is (p + q- 2)-connected.

COROLLARY 4.5. Suppose that f is p-connected and g q-connected. Then, for

any CW complex V with dim V^pΛ- q — 2, the following sequence is exact:

, *(V; A)

f ^

v ^ π(V,B) h*

The dual of Theorem 3.8 is stated as follows:

THEOREM 4.6. Let Φ[ ' Eg->Eh and Φ[ : E/-+El2 be the maps induced by

the homotopy-commutative square (4.1). Then the fibres of Φ[ and Φ[ are homo-

topy-equiυalent to those of ξ.

§ 5. The dual EHP sequence

/ 8
In this section we construct, for a triad A—>Y<—B, a dual of the EHP

sequence and examine its behaviour. The dual EHP cohomology sequence was

first defined by G. W. Whitehead [15] and has been extended by Tsuchida-

Ando [14].

First, consider the map μ E}xEg-* E/tg defined by

μ((a, a), {β, b)) = {a, a + β, b)

for a<= A, b(=B, -a, β^EY, and the "projections" 77X : EJ x Eg-+ Ef,g} Π2 :

E~jxEg-± Ef,g defined by
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/7i((e, α), (j9, 6)) = (β, α, * ) ,

Z7i((β, «), (0, *>)) = (*, 0, 5).

We say that an element p^π(SEf,g> V) is primitive with respect to μ if

and only if (Sμ)*(p) = (S#i)*(p) + (SZ7i)*(p).

Now let

be the map which shrinks to a point the ends of the join. We have a map

where j : Ef*Eg->CPi,P2 and Q : CPl,P2->SEf,g are defined in (3.6), (3.2). Then

we see at once that J& = (Sμ)°q. Note that ,& is equivalent to the map

obtained from μ by the Hopf construction. The following lemma allows us to

call Jίf* the dual Hopf invariant associated with the triad /, g.

LEMMA 5.1. (cf. [10, Theorem 1]) p^π{SE/tg> V) is primitive with respect

to μ if and only if Jιf*(p) = 0.

Proof We consider the diagram associated with the join E}*Eg'-

(SPJ*^ π(SEf y V)

π(Ef.*Egf F)<- π(S(E/xEg), V)

Then, by Lemma 1.1', $*° (Sμ)*(p) = 0 if and only if there exist oc e τ:(SEJy V),

β€Ξπ(SEgf V) such that

(Sμ)*(p) = (S^j)*(α) + (Sp2)*(β).

Suppose first that the latter equality holds. We denote the injections

E}-+EfXEg, Eg->E} x Eg by *Ί, ί2 respectively. Applying (S0i)*(S/Ί)* to both

sides, we obtain (SIIi)*(p) = (Sίi)*(α). Similarly, (S772)*(p) = (Sp2)*(β). This

proves that p is primitive.

Conversely, since 77̂  = (TTk°ik) °pk, k = 1, 2, "primitive" implies the existence

of or, 0 such that (S/j)*(p) = (Spι)*(cc) + (SA)*(j9). q.e.d.

We now describe an approximation to the fibre and cofibre of ξf by means

of the ςoflbres of /, g. Let
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be the map obtained by shrinking the "center" E/)gx ~~ of the cylinder part

of CpltPs9 and let Φt : Cpt->Cg, Φι : CP2-»C/ be as in Theorem 3.8. Let

fti : y-> Cf and fe : Y^ Cg

denote natural injections and let

σi - E~f->ΩCf and σ2 : Eg-*ΩCg

denote the (Freudenthal) suspension maps given by

(5.2) σχ(ay a) = - α - δ,

for Λ G Λ / > G R α j G F7.

Introduce the diagram

j
Ej*Eg

tfl*tf2

(5.3) ΩCf*ΩCg

-+ Y

I" J
Cv

lw

cg\>cf

Yx Yyc
\φl

-+ CgMCf
/ K

where W is the map defined in (2.7) and Δ is the diagonal injection. That

homotopy-commutativity holds in the middle square, i.e., (fexfe)°J°ί '-/°

(ΦιVΦz)°μ', can be verified by taking the following homotopy:

. r, b
(5.4)

where O^w^l, O G A , Z>e β, r e Y7, O ^ ί ^ l . Therefore the map θ is induced

so that the right square be commutative. Moreover, using (3.6), (5.2) and

(2.7), we can verify the following:

cc)®s(β,
(b, 2-<

(a, 4S-2)GC/

I U+(3)(45-3)GC/
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tLoW°(σi*02)l((l-s)(a, a) ® s(β, b)) =•

I αr(4s-3)eC/

It follows that homotopy-commutativity holds in the left square.

The middle square of (5.3) induces the map X - E*.-+CgbC/. We see at
F i

once from (5.4) that the composite E/*Eg—>Ev—>Cg\>C/ is given as follows:

f ( — 0C2s,i + τ) X ( — <*2s,i + β)
', b)) = <

where

r = C((α +j9) -b) + *]A,S, p = [(( - β - a) -a) + *J_izl i-s.
4 " 4

Further we have

-cc-a) 0^2s^l,

From these results we infer

LEMMA 5.5. TFo(ί;i*ίr2) is homotopic to X°F.

LEMMA 5.6. Suppose that f and g are, respectively, p- and q-connected and,

further, let Y be rconnected. Then W° (01*02) is Lp + q + min (py q, r-hl) + 1]-

connected and θ is \_p + q + min {py q, r) + 2\conmcted.

Proof. vSince the ad joints of <;i, σ2 are respectively (p + r+D- and {q + r

+ 1)-connected, it follows from Lemma 1.4 that ox and at are respectively min

(2p, p + r+1)-connected and min(2 q, q-\- r+ l)-connected. Thus, by Lemma

2.8, WΛ0ι*0z) is Lp + q + mm(p, q, r + 1) + l]-connected. To prove the second

half, note that, by Lemma 5.5, X is ίp -f q + min (i>, <gr, r 4- 1) + 1]-connected.

Introduce the homotopy commutative diagram

Ί
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in which the suspension maps Σ, a are respectively (p + q + r-t-2)-,

, q) + 3) -connected. This completes the proof of the second half.

LEMMA 5.7. The composition

SF Σ ζ'

S( E} *Eg) —*SEv—+Cv—>Cψ

is homotopic to SJ6< : S(E}*Eg) -> S2E/,g, where C is the equivalence in (3.2),

9 the map which results from shrinking C/vS and Σ the suspension map given by

Σ(r a, r, ft, s t) = ,
Ί}rfb,s 2t)<=CCPuPi 0^21

Σ ( r a t)=(a, 2t) if 2 t i l , = r ( 2 - 2 ί ) i/ 2 ί > 1 ,

Σ ( r ί b I V = (ft, 2f) if 2tύl, = r ( 2 - 2 ί ) if 2f>\

for a^A, fteB, r e y7, O^s^l, O^f^l, Γ G £ 7 .

Proof In the following diagram, the squares are homotopy-commutative:

SF

Since di°Σ*SF is given, explicitly, by

. „ , _. . S, ft, 5
, α ) θ s ( A ft), ί)

we see that homotopy-commutativity holds in the left triangle by (3.6). From

Jύf = Q°jt follows the conclusion of the lemma.

Let e - Cfvg-*Cτ/ and e' : Y-+Cχ> denote canonical embeddings. Combining

Lemmas 5.6, 5.7 with Puppe's sequence associated with y't we obtain the fol-

lowing reusit.

THEOREM 5.8. If f g and Y are respectively, p-, q- and r-connectedf and if

A, B and Y have the homotopy type of CW-complexes, then for any 1-connected

space V such that m( V) = 0 for i^p + q + r + 2? the following sequence is exact:
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π(SEftg9 V)<r—π{Cfvgi V)<r—π(S(E}*Eg\ V)<- πi&E/.g, V)
(Sjg) ,

π(SCfvg9 V)< π(S2(E}*Eg), V)< ,

where V* is (y)* and ®* denotes e*° (C'oΣ°SF)*-\ Further, if τr, ( F) = 0

+ r + 3, then the sequence

J
π(E}*Eg, ΩV)*- π(SEf,gt ΩV)<—π(

is exact.

Note that j2*(pi) = c 2*(p 2 ) for p,, p 2 e π ( S ( £ / * E 5 ) , F) if and only if p?. =

t ^ / * ( r ) + p1 for some τ<=π{S2Ef,g, V).

As an application of Theorem 5.8 we get.

PROPOSITION 5.9. Let A and B be, respectively, p- and q-connected Then

the map A : ΩA*ΩB-*S{B*A) defined by

Λ{(l-t)aθtβ) = (α + 0, ί),

is (p + q + min{p, q))-connected.

h 11

Proof. Consider the triad B—>BM A<—A. It follows from the theorem

of Blakers-Massey that the maps Φ\ ' ΩA-*E7iy Φ[ : ΩB-^E^ are {p + q-D-

connected (cf. Theorem 4.6), where Φ[y Φ[ are both induced by the commutative

diagram
_B

^ BMA.

Since B\ί A is minip, ^-connected and diVi2 is contractible, it follows from

Theorem 5.8 that ^/ : EJ^Ei,-*SEiui2 = S(J5*A) is (̂ > + ̂  + min(^, 4) +l)-con-

nected.

We see that the composite

Φ[*Φ[ Jέf
ΩA*ΩB >EJ^Eit—>S(B*A)

is just A. T h i s completes t h e proof, noticing t h a t Φ[*Φ[ is (p + q-\-mm(p, q))

connected.
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The above proposition enables us to obtain the following result mentioned at

the end of §2.

COROLLARY 5.10. W : A%B-*SA*SB, as defined in (2.9), is

{p, q) +2)-connected, if A and B are respectively p- and q-connected.

Proof. Consider the commutative diagram

Q SK
A*B -2L+ S(AxB) * S(A%B) > S(SA^SB)

TB*A

I
ΩSB*ΩSA

in which T is the switching map, A the map as defined in Proposition 5.9, Tf

the involution resulting from inversing suspension parameter, and a A, OB are

defined by aA(a)=a, σB(b) = -b. Since <SB*UA is (p + q-\- min(jf), ^)+3)-con-

nected and SK°Q is a weak equivalence by Proposition 2.2', we get the desired

conclusion.

LEMMA 5.11. Let e : Y^ ΩSY denote the canonical embedding, εiy)=y- Let

W : Cg#C/-+ SCg*SCf be the map described in (2.9). Then the homotopy

class of the composition

e θ W
Y—>Cξ—>Cg # Cf—>SCg * SCf

coincides with the cojoin product <(i2S#2)°e, (£S&i)°ε>, where ki : Y->C/, k2 :

Y->Cg are inclusions.

Proof. This follows from

(y, l-2ί)eSC/ 0^2 ί^l,

(yt2t-l)e- SCg

With the above preliminaries, we can establish the dual EHP sequence for

a triad A—^Y^-B.
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/ S

THEOREM 5.12. Let A—>Y<—B be a triad in which A, B, Y have the ho-

motopy type of CW-complexes. If /, g and Y are respectively p-t q- and r-con

nected, then the diagram

π(S(E/*Eg)t V) 4 πkS*Ef,gi V)

(SQ)*:

•a*
π(Cpltp2, V) ^ π(γt V)* - πiSCg^SC/, V) * ^ πiSCPltPl, V)

commutes and exact rows for 1-connected space V such that m( V) = 0 for i>p

-f <7-f min(j£>, q, r) -f 2, where JP* is the map induced by <(J2Sfe)°ε, (ΩSki)°εy

and R* = (W°θ°Σ°SF)*"1 is bijectiυe.

Proof. Note that W : Cg#C/-*SCg*SC/ is (p + q f mm{p, q) + 2)-con-

nected. Then we see that the theorem follows from (3.2), Lemmas 5 6, 5.11.

COROLLARY 5.13. If Y is r-connected, then, for a 1-connected space V such

that 7Γi( V) =0 for i>3r + 2, we have an exact sequence:

π(SΩY, V)< π(Y, V) < π(S(ΩY*ΩY), V) <r- κ{S2ΩYy V)

R*

πiSY^SY, V)

π(Y#Y, V).

This follows by applying Theorem 5.12 to the triad *-» y<-*.

In case where V is the Eilenberg-MacLane space in Corollary 5.13, JP can

be described in terms of cup-products in the light of Lemma 2.5 and Proposi-

tion 2.6.

Finally, we shall furnish ^ * with some meaning. Consider the situation

(3.1). Let v : Cfrg-*V be given and write u : F-* V for the composite
k v

Y—>C/Vg—>V. υ gives rise to liftings/ : A->EUy g : B~*EU. Let us denote

the action of ΩV on Eu by m : Ω V x Eu -+ Eu. Then we get.

PROPOSITION 5.14. Let τ denote the adjoint of y^iv). Then
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Moreover, given h : K->A, k - K-+B with f°h-g°k, we can find /: K-

Ef,g such that Pi°/-/z, P 2°/-#. We see easily that the composite

^->Cfvg—^SA V SB,

where the last arrow is the identification map resulting by shrinking Y to a

point, is homotopic to the difference j\ ° (Sh) - j2°(Sk), where j \ : SA-»SA V SB,

j2 ' SB-+SAVSB are inclusions. Thus, in case K is a suspension, v°7]f°(Sl)

w __ T I (see [5]).

Further, we assume foh-g°k-0. Then /̂ , ^ can be lifted to % : K^>EJ,

k : K-*Eg. We may choose the composite

{X, 36} Ai

for /. As y°cj^-0, v°rf is primitive with respect to μ. Therefore we get

A simple calculation shows

PROPOSITION 5.15. v°τ]to(Sl) SK-* V represents the difference - u/(h) + ug

(k) of functional u-operations.

§ 6. The EHP sequence

This section studies the situation dual to that considered in §5. Namely,

by generalizing a result of Ganea [8] to a cotriad, we will regain "symmetry".
/ g

Let A<—X—>B be a cotriad and consider the associated diagram (4.1).

The notations of §4 will be used without specific mention.

First, we try to seek an approximation to the fibre and to the cofibre of ξ.

Introduce the diagram

L J K
Eg^Ef —•* Eg\JEf > EgXEf —^> EgΰEf

(6.1)

+ ξ iμ i
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in which μ is the "multiplication" defined at the beginning of § 5, V the folding

map, Φ[ and Φ[ the maps as defined in Theorem 4.6, and q2, q\ are the projec-

tions. It-is easily seen that the middle square homotopy-commutes, and hence

induces the maps p, p.

THEOREM 6.2. Let /, g be respectively p , q-connected and let X be r-connected.

Then p is ίp-f q + minip, q, r.-f 1) - 1]-connected and v is Zp + q + minip, q, r

+ 1) — 2]-connected.

Proof. Apply the suspension functor to the right square and then augment

as follows -

Qι SK
Eg *Ef > S(Eg x Ef) > S(Eg # E/)

Φί*Φ2 Is(ΦίxΦS

Q
E7L*Eh >

(6.3)
Sξ Si

SX * SEtut,

Sp

> , !•
Cf.

in which pi : Eiiti,-*A, p% : Eluιt-+B are projections, r the map determined by

the commutative diagram :

and / the map induced by the identification maps Q, Qs. It follows from 1.3'

that / is a weak homotopy equivalence, since Cr is homotopy-equivalent to the

mapping cylinder of a cotriad *«-Cξ->*. Also, by Theorems 4.3 and 4.6,

$1*02 is (p + q + m'm(p, q))-connected.

Define a map ξf Cpltp. -* C/tg as the canonical extension of a triad
h h

A—>Cf,g<—B (see §3). We see that £'°γ = identity. Since the fibre of £' is
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equivalent to Ej^Eι21 by Theorem 3.4, we get the following commutative

diagram

h €'*
0-^Hk(Ej^Ei2)—>Hk(CPuPt)—+Hk(Cf9g)-»0

! j t
h ' ' 7 '

0 <-Hh(Cτ)<——ffA (Cp^+t-HkίG/.g) -0 ,

in which the rows are exact for h^pΛ- qΛ mm{p, q, r+1)4-1. Chasing this

diagram, we conclude thet /*°./ is (p + q + mm(p, q} r+ 1) +l)-connected.

Now, since Qz°j :=Sμ°Q2l by (3.6), homotopy-commutativity of (6.3) implies

Upon noticing that SK°Qi is a weak equivalence by Proposition 2.2', we infer

that Sp is [/>+ <7 + min(i>, ,̂ r + Unconnected.

Finally, the connectivity of v follows from the homotopy-commutative

diagram

Sv
SiEg b E/) >

I . J
where the vertical maps are "suspension maps", the left of which is ίp + q •+

min(i>, #)]-connected, whereas, the right is Lp + q + mm(r,p + q- l)]-connected.

q.e.d.

Next, using the map μf Cf,g-*CfV Cg which results from shrinking the

center of cylinder to a point, we define the Hopf invariant

associated with a cotriad /, g as the composition

—>Ω{C/WCg)—>C/*Cg.

The following is dual to Lemma 5.1.

LEMMA 6.4. Let n ' C/lg-* C/V Cg, r2 : Cfwg-*C/V Cg be the "injections"

which are respectively the compositions of Cf,g-*Cff Cg (projections) with Cf,
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Cg-* C/VCg. Then H*(τ) = 0 for r e π( Vy ΩC/,g) if and only if the equality

i.f?μ')#(r) = (Ωn)*(τ) + (Ωr2)*{τ) holds.

Now we shall define F : C%-+C/*Cg, dual to the map F defined in (3.5).

Put

F'(X, s) = (μfχ)±^Lt Λ±^ = -XO,S+XQ,S X e X, O

where - i , s G (C/)2, i , ^ (C^)7. This corresponds to the map ^ defined by

Ganea [8]. We see easily that the following diagram is commutative:

Elull

•F

Observe that it seems difficult to define a dual of Gf given in Theorem 3.4.

LEMMA 6.5. TΛg composite map

injection ζ σ ΩF'

*E>E:>ΩC>Ω(C * Cg)

is homotopic to ΩH, where σ is the suspension map.

LEMMA 6.6. The diagram homotopy-commutes:

W'\

•I

where ω is the involution switching factors and </i, ΰι are given as follows:

cc{2s) 2s£l

(xf2-2s)

β(l~2s)

(#, 2-2s)

<τi(αr, X \ s) =

σ2(x, β s) =
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Hence, if f, g and X are respectively p-> q- and r connected, then F1 is

min(r + l,p, q) ~ Ώ-connected.

Proof. This follows by combining the following facts:

p is Lp±q + min(p, q, r + 1) - l]-connected by Theorem 6.2,

W is ίp + q+min(p, q) - 1]-connected by Corollary 5.10,

0i, ύ2 are respectively [p + min(p, r) +1]-, iq+min(qyr)+ΐ} connected by

Lemma 1.5.

LEMMA 6.7. Let U :• SΩE/-+X, k '- SΩEg-+X be respectively the composite

maps of canonical ones:

SQEf—>Ef^~>Xy g g

Then the homotopy class of the composition

t*t W v projection
ΩEf*ΩEg—>ΩE/*ΩEϊ—>E~g b E/—>E- >X

coincides with the generalized Whit ehead product [/i, /2], where t denote inversions.

This follows from the fact that the above composition is equal to P°(q2

VqJoLoWoiM).

Combining Lemmas 6.5, 6.6, 6.7 with Theorem 6.2 and noting that a is

{p + q + r— l)-connected, we get

THEOREM 6.8. Let f g and X be p-, q- and r connεcted respectively, and let

k be a positive integer. Then, for any CW-complex K with dim

min(r-f 1, p, q) - 3, we have the following exact sequence

π{K, ΩkhlEf*g)-> τr(/Γ, ΩE/Ag) ^A/rdf, Ω2C/,g)

^ (Ωξ)
π(K, Ωk+1X) > >π(K, ΩX)

π(K, Ω(C/*Cg))—>π{K, E/Δg)—>π(K, ΩC/fg)

p

πiK,

in which P* is the map induced by [/i, /2] and R the bisection (t*t)*° (ΩFf°ao
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