ON THE ZEROS OF A CLASS OF CANONICAL
PRODUCTS OF INTEGRAL ORDER

by N. A. BOWEN
(Received 8th April 1963)

1. Introduction

In (1) 1 obtained  an asymptotic formula for the number of zeros of an
arbitrary canonical product TI(z) of integral order but not of mean type, all
of whose zeros lie on a single radius, from a knowledge of the asymptotic
behaviour of (i) log | II(z)| as | z | = r— oo along another radius /, with certain
side conditions. After proving the analogous theorem in which log | (z)|
in (i) is replaced by #{log Il(z)}, I show in this note that, at a cost of replacing
I by two radii /; and /,, both of these theorems may be generalised to include
a class of canonical products of integral order whose zeros lie along a whole
line. In one of the resulting theorems  (Theorem II) I find the asymptotic
number of zeros on each half of the line of zeros; another theorem (Theorem
11) includes a previous result of mine.§

2. Notation, Reference Formulae and Lemmas

In this paper (a,), (b,) denote non-decreasing sequences of positive numbers;
J(r)=Z0, k(r)=0 (j(0) = 0 = k(0)) denote the numbers of a,, b, respectively in
|z | £r, and n(r) = j(r)+ k(r); J, K are non-negative constants; S(z,a, 7, q) is the
canonical product of genus g defined by

. © iy iy —1)¢ iv\gq
Sz, a,y,9)= ] (1+ z_e_) exp{— CLARTI (—Q—(zi—) },
n=1 a, a, q a,
and
. P(Z, a, b, ?s q) = S(Z, a,?y, q)S(Z, b’ -7 q)’
where 7 is real.
The following formulae may be found useful for reference:

Rlog S(re*, a, v q)}=(—1)"r 7 {rcos g+ Laty+rcos guty}ide,
0 11 (2 4+ rt+2tr cos a+y)

© rati{tsin g+ 1 a+y+rsin ga+7y}j(1)dt
0 12 (124 r* +2tr cos a+7y) ’
(a+y*mn).

F{log S(re®, a, 7, @)} = (—1)* J

1 (1), p. 299, Theorem 2, part (ii).
1 For statements and proofs of the theorems, see sections 4, 5, 6.
§ (1), p. 313, Theorem 3, part (ii).
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I suppose also that V() is any function of the form
V(1) = (log 1)**(log, °* ... (log,, 1)*~, 121,
where the S, (u = 1, 2, ..., m) are real and not all zero, and ¢, is chosen large

enough to ensure that V() is positive and monotonic.
Let p be a non-negative integer and let

h(z) = (—1DP712PV(2) if V()]0 as r1o0,.c.coccvevrereneeenenes ¢))
hz) = (—DPzPV(2) if V(r)Too as rfoo. ccoeeeiveeiiiniinninnnns )

3. We shall need the following results.

Lemma 1. Let Y/(2) be an analytic function of z = re”, regular for |arg z | <=
and on the negative real axis with the possible exception of logarithmic
singularities.I Suppose also that y(2) is real on the positive real axis and that

@) |¥@|=o(r*"") as|z] =r-0,
(ii) fﬂ | Y(re®)| do = o(r) as r— oo,

where s is an integer.
Then for | arg z | <n we have

(=) * [ 5 {Y(te'™)}dt -1
il = +O(] z N 0
(iii) ¥(2) =), " rero (2] +0)
where A is any positive constant.

Lemma 2. If the indices (s—1), s in (i), (ii) of Lemma 1 are replaced by
(s—1), (s+1) respectively, then the analogue of (iii) is

(=1 [ R {Y(te'™))dt s
W) == L 1D +0(|z |, (z+0).

Proofs of Lemmas 1 and 2. Lemma 1 is obtained by considering the contour

integral
1 2y ()d
¥(z) = —.j ZY0de
2ni Jr 0°(6—2)
where I is the contour formed by the radii arg z = 4+ joined by the circum-
ferences of the circles |{ | = 4, || = R, and z lies within this contour. Lemma

2 is obtained in the same way,} the indices s in the contour integral being
replaced by (s+13).
Lemma § 3. Casel. Let V(r)|0asrtoo. Then from

log S(re™, a, 0, g)~Jh(re'®) (a constant,0<a<n) ............ 3

+ By “ logarithmic singularities,” which do not arise in this paper but arose in (2) from
which the analogous Lemma 2 below is taken, I mean the singularities of (z) at the zeroes of
p(z), say, where J(z) = log p(z) and p(z) is an arbitrary canonical product.

1 For details see (2), p. 116.

§ (1), p. 299, Theorem 2, part (i).
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with the h(z) of (1) follows the relation
g=p-1.
Case II. Let V(r)loo as rfoo. Then from (3) with the h(z) of (2) follows the
relation
q=p.
In both cases the asymptotic formula
dav(r)

HO~Ir? | diog P

Sfollows.
Lemma 4,
(@) lim |V (ré®)|/V(r) = 1.
(b) RV (ré®)}~V (7).

dv(r)
d(log r)

(c) SV (reé®}~0

4. Theorem 1. Let

|a|<n
and let the canonical product S(z, a, 0, q) of at most order (q+ 1), convergent
type, satisfy ) '

F{log S(re’)}~JF{h(re’)} (aconstant) ..................... 4
with the h(z) of (1) if V(r)10 as rtoo (Case I), with the h(z) of (2) if V(r)]co
as rtoo (Case II). '

Suppose also that
snjp<|a|<(s+Drfp (s=0 integral)
and
J0) = ors+ 0w,

Then
q=p—1(CaseI), q = p(CaseIl);

and, in both cases,

av(r
d(log r)
Proof of Theorem I. It is not necessary to give details as the proof follows

the same lines as that of Theorem 2, part (ii), in (1), p. 299; we use here
Lemma 1 to obtain (3) for « = 0, and the result follows from Lemma 3.

j(ry~Jr?P

et (5)

Note on Theorem I. If, in Theorem I, the possibility sinpx = 0 were
permitted, the corresponding right-hand side of (4) would be o(r?V(r), and
consequently no precise information like (5) could be expected, since canonical
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av(r)
d(log r)

products of the form S(z, a, 0, ¢) with Jr? zeros would for all J(=0)
satisfy T £ {log S(re®)} = o(r*V(r)).

5. Theorem II. Let

O<y<m (y constant)
|a|<m—v (x constant) }

and let the canonical product § P(z, a, b, v, q) of at most order (q+ 1), convergent
type, satisfy

S{log P(re®)}~JF{h(re@* NI+ KF{(h(ré® M} .ovvvereeen.. @)
and
Slog P(re” )} ~JF{h(reé = ** M} + KF{h(re' ">~} ............ ®
where §
sinp(a+7y) £ 0, sinp(@a—y) # 0, .ocvereriiiininnnnn. ®

and the h(z) of (1) is used if V(r)|0 as rToo (Case 1), the h(z) of (2) is used if
V(r)too as rfoo (Case II).
Suppose also that

sn/p<|oa|<(s+Dn/p (s20 integral) ] (10)
with n(r) = o(r* izl
and either
O<y<n/2p } .............................. (11a)
with n(r) = o(r™'*’) |
or
Qk—Dn/2p<y<(2k+Dn/2p (k>0 integral) } (11b)
with n(r) = o(rx* Vr/27)
Then
q=p—1(Casel), q=p(Casell); ....c......... (12)
and, in both cases
av(r)
n()~(T+EK)IrP | ——— . e, 13
(r)~( or d(log 1) (13)
If, in addition,
sinp(a+7) F sinP@E—7) covveviiiiiniiniinennnen. (14)
and, with | o | and y interchanged, (10) with either (11a) or (11b) holds, then
, dv (r) av(r) |
r)~JrP k(r)~Kr? | ——2 1 15
i) diogn| d(log r) (13

t For the estimate for s#{log S(re=)} we should use (1), p. 298, Theorem 1, part (iv).
1 Defined in section 2. ]
§ The note at the end of section 4 explains the necessity of the assumption (9).
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Proof of Theorem II, Case I. Setting

Q(z) = P(z,a, b, v,9)P(z, b, a, 7, 9),
we observe that Q(z) is regular in | arg z |<7t—y, real on the real axis, and,
by (7), (8), the definition (1) of A(z), and the properties of ¥{(z) as listed in
Lemma 4 of section 3, Q(z) satisfies

F{0(re)}~2(~1)P~1(J + K)r*{¥V (r) cos py sin pa

— (& cos py cos pa—y sin py sin pa)

av
Zog r)}. ......... (16)

pa = sm, or py = (2k—1)n[2, or both, ........eeeennnn.. an

the right-hand side of (16) is o(r’¥(r)) and we can expect the method to give
no precise information about n(r).
If (17) does not hold, then (16) is equivalent to

F{0(re™)} ~2(~1)P~XJ + K)r*V(r) cos py sin pa,

from which, on putting ¥(z) = log Q(z*/%), assuming (as we obviously may
at this stage, since Q(r) is real) that «>0, and using Lemma 1 of section 3,
we find that

Now if

log QN ~2(= 1P (T +KIPV(I) COSPY «evevvverennnaananne (18)
by the argument used in (1), pp. 309-310, the “ order > requirements of the
lemma following simply from (10).

Now
ri*{tcosq+1y+rcos qayH{ i) +k(e)}dt
1 r 1)
0g O(r) = A~ )j P

= 2log | Py(re")|,

where P,(z) is any canonical product of genus g, having only negative zeros,
n(r) = j(r)+k(r) in number. To P,(z) we now apply + Lemma 2 of section 3
with ¥(z) = log P,(z"'"), using (11a) or (11b), and (18).
We get
log Py(r)~(=1)P"'(J + K)r*¥(r)
and hence, by Lemma 3 (Case I) of section 3,
9=p-1
and
av(r)

d(log r)
as required.
For the other part of Theorem II (Case I), we also have }

sin p(a+ y)—sin p(a—7) += 0,

t For details, see proof of Theorem 2, part (ii), in (1), p. 299.

1 We notice that if sin p(ax+y) were equa.l to sin p(ax—7), the result (15) with specific J, K
could not be expected since the right-hand sides of (7) and (8) would involve (/4 K) and
so be unaltered for an infinite choice of non-negative J, X having a constant sum.

n(ry~(J +K)r?
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that is,
sinpy £ 0, cospa 0. cooiiniiniiiiiiiininn (19)
Let
I(0, o0, a, y, h) denote (—1)¢ fw r* {esin ‘H—lm-” sin @}h(t)dt_
) 1Y (24124 2tr cos a+7)
Then, on substituting from (13) into (7) we get {
I0, o0, a, v, )—I(0, 00, a, —y, )~JF {h(re'®* )= h(re'@=")},
that is,
10, o0, y, a, )+1(0, 0, y, —a, )~JF{h(ré?* )+ h(re'*==)}, ...(20)

and
10, ©, -y, a, )+1(0, 0, —y, —a, H~JF{h(re’ ")+ h(re'"7"9} | (21)
follows similarly from (13) and (8).

Since (20) with (21) is a particular case of (7) with (8), with | o [ and y inter-
changed,} the argument used to prove the first part of the theorem here yields
av(r)
d(logr)

and hence’ by (13), @  ssessessevessscscsrsseanrsaens
k(r)~Kr" .ﬂ(_’l
d(log 1)

Proof of Theorem I1I, Case II. The same method applies.
6. Theorem III. Let

j(ry~Jr?

O<y<n (y constant)
|a|<mn—y (x constant)

and let canonical product.§ P(z, a, b, y, q) of at most order (q+1), convergent
type, satisfy
R{log P(ré®)} ~JR{h(re'®*M} + KR{h(re'®""M} ............ (22)
and
R{log P(re” )} ~JR{h(re'"** )} + KR{h(re' =21}

where ||
cospla+7) + 0, cospla—9) % 0, .cooevrnvennreneennnnnn. (23)

and the h(z) of (1) is used if V(r)|0 as rtoo (Case I), the h(z) of (2) is used if
V(r)Too as rfoo (Case II).
Suppose also that
either
O<y<m[2p

1 Using (1), p. 298, Theorem 1, part (iv).

1 The radii which now have to be excepted are those given by (19).

§ Defined in section 2.

|| The note at the end of section 4 explains the necessity of the assumption (23).
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with
n(r) = o(r*/*");
or
Qk—NDr[2p<y<QRk+Dnf2p (k>0 integral)
with

n(r) = o(r(2k+ 1)1:/27);
and either

a=0;
or
0<|a|<nf2p
with
n(r) = o(r*'*1e1);
or
" (2s—Dnf2p<|a|<@s+D)n[2p (s>0 integral)

wit

n(r) — o(r(2:+ Dn/2 |a I).
Then
qg=p—1(Casel), q = p (CaseIl);

av(r)

d(logr)
Proof of Theorem III. This follows the same lines as the proof of the first

part of Theorem II, except that here Lemma 1 of section 2 is not required,

Lemma 2 being used for both of the main steps in the argument. In the special
case T in which & = 0, however, only one application of Lemma 2 is needed.

and, in both cases,

n(r)~( +K)r
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+ If« = 0 and y = 1, then p = 2k and hence (1), p. 313, Theorem 3, part (ii) is included
in Theorem III above. Part (i) however is notr given, since, by the properties of ¥(z), the

g
right-hand side of (22) here, for @ = 0, y = 4= and odd p, is of magnitude O(rP 7[(5% )
and not O(r?V(r)) as in the theorem quoted.

E.M.S.—R

https://doi.org/10.1017/50013091500010890 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010890

