ON THE ZEROS OF A CLASS OF CANONICAL PRODUCTS OF INTEGRAL ORDER

by N. A. BOWEN
(Received 8th April 1963)

1. Introduction

In (1) I obtained \dagger an asymptotic formula for the number of zeros of an arbitrary canonical product $\Pi(z)$ of integral order but not of mean type, all of whose zeros lie on a single radius, from a knowledge of the asymptotic behaviour of (i) $\log |\Pi(z)|$ as $|z|=r \rightarrow \infty$ along another radius l, with certain side conditions. After proving the analogous theorem in which $\log |\Pi(z)|$ in (i) is replaced by $\mathscr{I}\{\log \Pi(z)\}$, I show in this note that, at a cost of replacing l by two radii l_{1} and l_{2}, both of these theorems may be generalised to include a class of canonical products of integral order whose zeros lie along a whole line. In one of the resulting theorems \ddagger (Theorem II) I find the asymptotic number of zeros on each half of the line of zeros; another theorem (Theorem III) includes a previous result of mine. \S

2. Notation, Reference Formulae and Lemmas

In this paper $\left(a_{n}\right),\left(b_{n}\right)$ denote non-decreasing sequences of positive numbers; $j(r) \geqq 0, k(r) \geqq 0(j(0)=0=k(0))$ denote the numbers of a_{n}, b_{n} respectively in $|z| \leqq r$, and $n(r) \equiv j(r)+k(r) ; J, K$ are non-negative constants; $S(z, a, \gamma, q)$ is the canonical product of genus q defined by

$$
S(z, a, \gamma, q)=\prod_{n=1}^{\infty}\left(1+\frac{z e^{i \gamma}}{a_{n}}\right) \exp \left\{-\frac{z e^{i \gamma}}{a_{n}}+\ldots+\frac{(-1)^{q}}{q}\left(\frac{z e^{i \gamma}}{a_{n}}\right)^{q}\right\}
$$

and

$$
P(z, a, b, \gamma, q) \equiv S(z, a, \gamma, q) S(z, b,-\gamma, q)
$$

where γ is real.
The following formulae may be found useful for reference:

$$
\begin{aligned}
& \mathscr{R}\left\{\log S\left(r e^{i \alpha}, a, \gamma, q\right)\right\}=(-1)^{q} \int_{0}^{\infty} \frac{r^{q+1}\{t \cos \overline{q+1} \overline{\alpha+\gamma}+r \cos q \overline{\alpha+\gamma}\} j(t) d t}{t^{q+1}\left(t^{2}+r^{2}+2 t r \cos \overline{\alpha+\gamma}\right)} \\
& \mathscr{I}\left\{\log S\left(r e^{i \alpha}, a, \gamma, q\right)\right\}=(-1)^{q} \int_{0}^{\infty} \frac{r^{q+1}\{t \sin \overline{q+1} \overline{\alpha+\gamma}+r \sin \overline{q \overline{\alpha+\gamma}\}}\} j(t) d t}{t^{q+1}\left(t^{2}+r^{2}+2 t r \cos \overline{\alpha+\gamma}\right)} \\
& (\alpha+\gamma \neq \pi) .
\end{aligned}
$$

[^0]I suppose also that $V(t)$ is any function of the form

$$
V(t)=(\log t)^{S_{1}}\left(\log _{2} t\right)^{S_{2}} \ldots\left(\log _{m} t\right)^{S_{m}}, \quad t \geqq t_{0}
$$

where the $S_{u}(u=1,2, \ldots, m)$ are real and not all zero, and t_{0} is chosen large enough to ensure that $V(t)$ is positive and monotonic.

Let p be a non-negative integer and let

$$
\begin{align*}
& h(z) \equiv(-1)^{p-1} z^{p} V(z) \text { if } V(r) \downarrow 0 \text { as } r \uparrow \infty, \tag{1}\\
& h(z) \equiv(-1)^{p} z^{p} V(z) \text { if } V(r) \uparrow \infty \text { as } r \uparrow \infty . \tag{2}
\end{align*}
$$

3. We shall need the following results.

Lemma 1. Let $\psi(z)$ be an analytic function of $z=r e^{i \theta}$, regular for $|\arg z|<\pi$ and on the negative real axis with the possible exception of logarithmic singularities \ddagger Suppose also that $\psi(z)$ is real on the positive real axis and that
(i) $|\psi(z)|=o\left(r^{s-1}\right) a s|z|=r \rightarrow 0$,
(ii) $\int_{-\pi}^{\pi}\left|\psi\left(r e^{i \theta}\right)\right| d \theta=o\left(r^{s}\right)$ as $r \rightarrow \infty$,
where s is an integer.
Then for $|\arg z|<\pi$ we have
(iii) $\psi(z)=\frac{(-1)^{s+1}}{\pi} \int_{A}^{\infty} \frac{z^{s} \mathscr{I}\left\{\psi\left(t e^{i \pi}\right)\right\} d t}{t^{s}(t+z)}+O\left(|z|^{s-1}\right), \quad(z \neq 0)$
where A is any positive constant.
Lemma 2. If the indices $(s-1), s$ in (i), (ii) of Lemma 1 are replaced by ($s-\frac{1}{2}$), $\left(s+\frac{1}{2}\right)$ respectively, then the analogue of (iii) is

$$
\psi(z)=\frac{(-1)^{s}}{\pi} \int_{A}^{\infty} \frac{z^{s+\frac{1}{2}} \mathscr{R}\left\{\psi\left(t e^{i \pi}\right)\right\} d t}{t^{s+\frac{1}{2}}(t+z)}+O\left(|z|^{s-\frac{1}{2}}\right), \quad(z \neq 0) .
$$

Proofs of Lemmas 1 and 2. Lemma 1 is obtained by considering the contour integral

$$
\psi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{z^{s} \psi(\zeta) d \zeta}{\zeta^{s}(\zeta-z)}
$$

where Γ is the contour formed by the radii $\arg z= \pm \pi$ joined by the circumferences of the circles $|\zeta|=A,|\zeta|=R$, and z lies within this contour. Lemma 2 is obtained in the same way, \dagger the indices s in the contour integral being replaced by ($s+\frac{1}{2}$).

Lemma § 3. Case I. Let $V(r) \downarrow 0$ as $r \uparrow \infty$. Then from

$$
\begin{equation*}
\log S\left(r e^{i a}, a, 0, q\right) \sim J h\left(r e^{i \alpha}\right) \quad(\alpha \text { constant }, 0 \leqq \alpha<\pi) \tag{3}
\end{equation*}
$$

[^1]with the $h(z)$ of (1) follows the relation
$$
q=p-1
$$

Case II. Let $V(r) \uparrow \infty$ as $r \uparrow \infty$. Then from (3) with the $h(z)$ of (2) follows the relation

$$
q=p
$$

In both cases the asymptotic formula

$$
j(r) \sim J r^{p}\left|\frac{d V(r)}{d(\log r)}\right|
$$

follows.
Lemma 4.

$$
\begin{aligned}
& \text { (a) } \lim _{r \rightarrow \infty}\left|V\left(r e^{i \theta}\right)\right| / V(r)=1 . \\
& \text { (b) } \mathscr{R}\left\{V\left(r e^{i \theta}\right)\right\} \sim V(r) \\
& \text { (c) } \mathscr{I}\left\{V\left(r e^{i \theta}\right)\right\} \sim \theta \frac{d V(r)}{d(\log r)} .
\end{aligned}
$$

4. Theorem I. Let

$$
|\alpha|<\pi
$$

and let the canonical product $S(z, a, 0, q)$ of at most order $(q+1)$, convergent type, satisfy

$$
\begin{equation*}
\mathscr{I}\left\{\log S\left(r e^{i \alpha}\right)\right\} \sim J \mathscr{I}\left\{h\left(r e^{i \alpha}\right)\right\} \quad(\alpha \text { constant }) \tag{4}
\end{equation*}
$$

with the $h(z)$ of (1) if $V(r) \downarrow 0$ as $r \uparrow \infty$ (Case I), with the $h(z)$ of (2) if $V(r) \uparrow \infty$ as $r \uparrow \infty$ (Case II).

Suppose also that

$$
s \pi / p<|\alpha|<(s+1) \pi / p \quad(s \geqq 0 \text { integral })
$$

and

$$
j(r)=o\left(r^{(s+1) \pi / \mid \alpha 1}\right) .
$$

Then

$$
q=p-1(\text { Case } I), \quad q=p(\text { Case II })
$$

and, in both cases,

$$
\begin{equation*}
j(r) \sim J r^{p}\left|\frac{d V(r)}{d(\log r)}\right| \tag{5}
\end{equation*}
$$

Proof of Theorem I. It is not necessary to give details as the proof follows the same lines as that of Theorem 2, part (ii), in (1), p. 299; we use here Lemma 1 to obtain (3) for $\alpha=0$, and the result follows from Lemma 3.

Note on Theorem I. If, in Theorem I, the possibility $\sin p \alpha=0$ were permitted, the corresponding right-hand side of (4) would be $o\left(r^{p} V(r)\right.$, and consequently no precise information like (5) could be expected, since canonical
products of the form $S(z, a, 0, q)$ with $J r^{p}\left|\frac{d V(r)}{d(\log r)}\right|$ zeros would for all $J(\geqq 0)$ satisfy $\dagger \mathscr{I}\left\{\log S\left(r e^{i \alpha}\right)\right\}=o\left(r^{p} V(r)\right)$.
5. Theorem II. Let

$$
\left.\begin{array}{ll}
0<\gamma<\pi & (\gamma \text { constant }) \tag{6}\\
|\alpha|<\pi-\gamma & (\alpha \text { constant })
\end{array}\right\}
$$

and let the canonical product $\ddagger P(z, a, b, \gamma, q)$ of at most order $(q+1)$, convergent type, satisfy

$$
\begin{equation*}
\mathscr{I}\left\{\log P\left(r e^{i a}\right)\right\} \sim J \mathscr{I}\left\{h\left(r e^{i(\alpha+\gamma)}\right)\right\}+K \mathscr{I}\left\{h\left(r e^{i(\alpha-\gamma)}\right)\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{I}\left\{\log P\left(r e^{-i a}\right)\right\} \sim J \mathscr{I}\left\{h\left(r e^{i(-\alpha+\gamma)}\right)\right\}+K \mathscr{I}\left\{h\left(r e^{i(-\alpha-\gamma)}\right)\right\} \tag{8}
\end{equation*}
$$

where §

$$
\begin{equation*}
\sin p(\alpha+\gamma) \neq 0, \quad \sin p(\alpha-\gamma) \neq 0 \tag{9}
\end{equation*}
$$

and the $h(z)$ of (1) is used if $V(r) \downarrow 0$ as $r \uparrow \infty$ (Case I), the $h(z)$ of (2) is used if $V(r) \uparrow \infty$ as $r \uparrow \infty$ (Case II).

Suppose also that
with

$$
\left.\begin{array}{ll}
s \pi / p<|\alpha|<(s+1) \pi / p & (s \geqq 0 \text { integral }) \tag{10}\\
n(r)=o\left(r^{(s+1) \pi /|\alpha|}\right), &
\end{array}\right\}
$$

and either
with

$$
\left.\begin{array}{l}
0<\gamma<\pi / 2 p \tag{11a}\\
n(r)=o\left(r^{\pi / 2 \gamma}\right)
\end{array}\right\}
$$

or
with

$$
\left.\begin{array}{c}
(2 k-1) \pi / 2 p<\gamma<(2 k+1) \pi / 2 p \quad(k>0 \text { integral }) \tag{11b}\\
n(r)=o\left(r^{(2 k+1) \pi / 2 \gamma}\right)
\end{array}\right\}
$$

Then

$$
\begin{equation*}
q=p-1(\text { Case } I), \quad q=p(\text { Case II }) \tag{12}
\end{equation*}
$$

and, in both cases

$$
\begin{equation*}
n(r) \sim(J+K) r^{p}\left|\frac{d V(r)}{d(\log r)}\right| \tag{13}
\end{equation*}
$$

If, in addition,

$$
\begin{equation*}
\sin p(\alpha+\gamma) \neq \sin p(\alpha-\gamma) \tag{14}
\end{equation*}
$$

and, with $|\alpha|$ and γ interchanged, (10) with either (11a) or (11b) holds, then

$$
\begin{equation*}
j(r) \sim J r^{p}\left|\frac{d V(r)}{d(\log r)}\right| \quad k(r) \sim K r^{p}\left|\frac{d V(r)}{d(\log r)}\right| \tag{15}
\end{equation*}
$$

[^2]Proof of Theorem II, Case I. Setting

$$
Q(z) \equiv P(z, a, b, \gamma, q) P(z, b, a, \gamma, q)
$$

we observe that $Q(z)$ is regular in $|\arg z|<\pi-\gamma$, real on the real axis, and, by (7), (8), the definition (1) of $h(z)$, and the properties of $V(z)$ as listed in Lemma 4 of section 3, $Q(z)$ satisfies

$$
\left.\begin{array}{l}
\mathscr{I}\left\{Q\left(r e^{i \alpha}\right)\right\} \sim 2(-1)^{p-1}(J+K) r^{p}\{V(r) \cos p \gamma \sin p \alpha \\
 \tag{16}\\
\left.\quad-(\alpha \cos p \gamma \cos p \alpha-\gamma \sin p \gamma \sin p \alpha) \frac{d V}{d(\log r)}\right\}
\end{array}\right\} .
$$

$$
\begin{equation*}
p \alpha=s \pi, \text { or } p \gamma=(2 k-1) \pi / 2, \text { or both } \tag{17}
\end{equation*}
$$

the right-hand side of (16) is $o\left(r^{p} V(r)\right.$) and we can expect the method to give no precise information about $n(r)$.

If (17) does not hold, then (16) is equivalent to

$$
\mathscr{I}\left\{Q\left(r e^{i \alpha}\right)\right\} \sim 2(-1)^{p-1}(J+K) r^{p} V(r) \cos p \gamma \sin p \alpha
$$

from which, on putting $\psi(z) \equiv \log Q\left(z^{a / \pi}\right)$, assuming (as we obviously may at this stage, since $Q(r)$ is real) that $\alpha>0$, and using Lemma 1 of section 3, we find that

$$
\begin{equation*}
\log Q(r) \sim 2(-1)^{p-1}(J+K) r^{p} V(r) \cos p \gamma \tag{18}
\end{equation*}
$$

by the argument used in (1), pp. 309-310, the " order" requirements of the lemma following simply from (10).

Now

$$
\begin{aligned}
\log Q(r) & \equiv 2(-1)^{q} \int_{0}^{\infty} \frac{r^{q+1}\{t \cos \overline{q+1} \gamma+r \cos q \gamma\}\{j(t)+k(t)\} d t}{t^{q+1}\left|t+r e^{i \gamma}\right|^{2}} \\
& =2 \log \left|P_{1}\left(r e^{i \gamma}\right)\right|
\end{aligned}
$$

where $P_{1}(z)$ is any canonical product of genus q, having only negative zeros, $n(r)=j(r)+k(r)$ in number. To $P_{1}(z)$ we now apply \dagger Lemma 2 of section 3 with $\psi(z) \equiv \log P_{1}\left(z^{\gamma / \pi}\right)$, using (11a) or (11b), and (18).
We get

$$
\log P_{1}(r) \sim(-1)^{p-1}(J+K) r^{p} V(r)
$$

and hence, by Lemma 3 (Case I) of section 3,

$$
q=p-1
$$

and

$$
\begin{equation*}
n(r) \sim(J+K) r^{p}\left|\frac{d V(r)}{d(\log r)}\right| \tag{13}
\end{equation*}
$$

as required.
For the other part of Theorem II (Case I), we also have \ddagger

$$
\sin p(\alpha+\gamma)-\sin p(\alpha-\gamma) \neq 0
$$

\dagger For details, see proof of Theorem 2, part (ii), in (1), p. 299.
\ddagger We notice that, if $\sin p(\alpha+\gamma)$ were equal to $\sin p(\alpha-\gamma)$, the result (15) with specific J, K could not be expected, since the right-hand sides of (7) and (8) would involve ($J+K$) and so be unaltered for an infinite choice of non-negative J, K having a constant sum.
that is,

$$
\begin{equation*}
\sin p \gamma \neq 0, \quad \cos p \alpha \neq 0 \tag{19}
\end{equation*}
$$

Let

$$
I(0, \infty, \alpha, \gamma, h) \text { denote }(-1)^{q} \int_{0}^{\infty} \frac{r^{q+1}\{t \sin \overline{q+1} \overline{\alpha+\gamma}+r \sin q \overline{\alpha+\gamma}\} h(t) d t}{t^{q+1}\left(t^{2}+r^{2}+2 t r \cos \overline{\alpha+\gamma}\right)}
$$

Then, on substituting from (13) into (7) we get \dagger

$$
I(0, \infty, \alpha, \gamma, j)-I(0, \infty, \alpha,-\gamma, j) \sim J \mathscr{I}\left\{h\left(r e^{i(\alpha+\gamma)}\right)-h\left(r e^{i(\alpha-\gamma)}\right)\right\},
$$

that is,

$$
\begin{equation*}
I(0, \infty, \gamma, \alpha, j)+I(0, \infty, \gamma,-\alpha, j) \sim J \mathscr{I}\left\{h\left(r e^{i(\gamma+\alpha)}\right)+h\left(r e^{i(\gamma-\alpha)}\right)\right\}, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
I(0, \infty,-\gamma, \alpha, j)+I(0, \infty,-\gamma,-\alpha, j) \sim J \mathscr{I}\left\{h\left(r e^{i(-\gamma+\alpha)}\right)+h\left(r e^{i(-\gamma-\alpha)}\right\}\right. \tag{21}
\end{equation*}
$$

follows similarly from (13) and (8).
Since (20) with (21) is a particular case of (7) with (8), with $|\alpha|$ and γ interchanged, \ddagger the argument used to prove the first part of the theorem here yields
and hence, by (13),

$$
\left.\begin{array}{l}
j(r) \sim J r^{p}\left|\frac{d V(r)}{d(\log r)}\right| \tag{15}\\
k(r) \sim K r^{p}\left|\frac{d V(r)}{d(\log r)}\right|
\end{array}\right\}
$$

Proof of Theorem II, Case II. The same method applies.
6. Theorem III. Let

$$
\begin{array}{ll}
0<\gamma<\pi & (\gamma \text { constant }) \\
|\alpha|<\pi-\gamma & (\alpha \text { constant })
\end{array}
$$

and let canonical product. $\S P(z, a, b, \gamma, q)$ of at most order $(q+1)$, convergent type, satisfy

$$
\begin{equation*}
\mathscr{R}\left\{\log P\left(r e^{i a}\right)\right\} \sim J \mathscr{R}\left\{h\left(r e^{i(\alpha+\gamma)}\right)\right\}+K \mathscr{R}\left\{h\left(r e^{i(\alpha-\gamma)}\right)\right\} \tag{22}
\end{equation*}
$$

and

$$
\mathscr{R}\left\{\log P\left(r e^{-i a}\right)\right\} \sim J \mathscr{R}\left\{h\left(r e^{i(-a+\gamma)}\right)\right\}+K \mathscr{R}\left\{h\left(r e^{i(-a-\gamma)}\right)\right\}
$$

where ||

$$
\begin{equation*}
\cos p(\alpha+\gamma) \neq 0, \quad \cos p(\alpha-\gamma) \neq 0 \tag{23}
\end{equation*}
$$

and the $h(z)$ of (1) is used if $V(r) \downarrow 0$ as $r \uparrow \infty$ (Case I), the $h(z)$ of (2) is used if $V(r) \uparrow \infty$ as $r \uparrow \infty$ (Case II).

Suppose also that
either

$$
0<\gamma<\pi / 2 p
$$

[^3]with
$$
n(r)=o\left(r^{\pi / 2 y}\right)
$$
or
$$
(2 k-1) \pi / 2 p<\gamma<(2 k+1) \pi / 2 p \quad(k>0 \text { integral })
$$
with
$$
n(r)=o\left(r^{(2 k+1) \pi / 2 \gamma}\right)
$$
and either
$$
\alpha=0
$$
or
with
$$
0<|\alpha|<\pi / 2 p
$$
$$
n(r)=o\left(r^{\pi / 2|\alpha|}\right)
$$
or
$$
(2 s-1) \pi / 2 p<|\alpha|<(2 s+1) \pi / 2 p \quad(s>0 \text { integral })
$$
with
$$
n(r)=o\left(r^{(2 s+1) \pi / 2|\alpha|}\right)
$$

Then

$$
q=p-1(\text { Case } I), \quad q=p(\text { Case II) }
$$

and, in both cases,

$$
n(r) \sim(J+K) r^{p}\left|\frac{d V(r)}{d(\log r)}\right|
$$

Proof of Theorem III. This follows the same lines as the proof of the first part of Theorem II, except that here Lemma 1 of section 2 is not required, Lemma 2 being used for both of the main steps in the argument. In the special case \dagger in which $\alpha=0$, however, only one application of Lemma 2 is needed.

REFERENCES

(1) N. A. Bowen, Proc. London Math. Soc. (3), 12 (1962), 297-314.
(2) N. A. Bowen and A. J. Macintyre, Trans. Amer. Math. Soc., 70 (1951), 114-126.

The University

Leicester

\dagger If $\alpha=0$ and $\gamma=\frac{1}{2} \pi$, then $p=2 k$ and hence (1), p. 313, Theorem 3, part (ii) is included in Theorem III above. Part (i) however is not given, since, by the properties of $V(z)$, the right-hand side of (22) here, for $\alpha=0, \gamma=\frac{1}{2} \pi$ and odd p, is of magnitude $O\left(r^{p}\left|\frac{d V(r)}{d(\log r)}\right|\right)$ and not $O\left(r^{p} V(r)\right)$ as in the theorem quoted.

[^0]: \dagger (1), p. 299, Theorem 2, part (ii).
 \ddagger For statements and proofs of the theorems, see sections $\mathbf{4 , 5 , 6}$.
 § (1), p. 313, Theorem 3, part (ii).

[^1]: \dagger By " logarithmic singularities," which do not arise in this paper but arose in (2) from which the analogous Lemma 2 below is taken, I mean the singularities of $\psi(z)$ at the zeroes of $p(z)$, say, where $\psi(z) \equiv \log p(z)$ and $p(z)$ is an arbitrary canonical product.
 \ddagger For details see (2), p. 116.
 § (i), p. 299, Theorem 2, part (i).

[^2]: \dagger For the estimate for $s\left\{\log S\left(r e^{i \alpha}\right)\right\}$ we should use (1), p. 298, Theorem 1, part (iv).
 \ddagger Defined in section 2.
 § The note at the end of section 4 explains the necessity of the assumption (9).

[^3]: \dagger Using (1), p. 298, Theorem 1, part (iv).
 \ddagger The radii which now have to be excepted are those given by (19).
 § Defined in section 2.
 || The note at the end of section 4 explains the necessity of the assumption (23).

