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1. Introduction
In (1) I obtained f an asymptotic formula for the number of zeros of an

arbitrary canonical product Il(z) of integral order but not of mean type, all
of whose zeros lie on a single radius, from a knowledge of the asymptotic
behaviour of (i) log | II(z)| as | z | = r->oo along another radius /, with certain
side conditions. After proving the analogous theorem in which log | n(z)|
in (i) is replaced by ./{log FI(z)}, I show in this note that, at a cost of replacing
/ by two radii lx and l2, both of these theorems may be generalised to include
a class of canonical products of integral order whose zeros lie along a whole
line. In one of the resulting theorems J (Theorem II) I find the asymptotic
number of zeros on each half of the line of zeros; another theorem (Theorem
III) includes a previous result of mine.§

2. Notation, Reference Formulae and Lemmas
In this paper (qn), (bn) denote non-decreasing sequences of positive numbers;

j(r)^.O, k(r)^0 (y(0) = 0 = k(0)) denote the numbers of an, bn respectively in
| z | g r, and «(r) s j(r)+k(r); J,K are non-negative constants; 5(z, a,y,q) is the
canonical product of genus q denned by

s ,w , , , . ft (i+^')P{
and

P(z, a, b, v, q) = S(z, a, y, q)S(z, b, - y, q),
where y is real.

The following formulae may be found useful for reference:

®{logS(re»,a,y,q)} = (-iy[°
Jo

J{log S{re^, a, y, q)} = (-1)«
Jo

. + y + rcos

tq+1(t2+r2+2trcosa+y)

t (1), p. 299, Theorem 2, part (ii).
t For statements and proofs of the theorems, see sections 4, 5, 6.
§ (1), p. 313, Theorem 3, part (ii).
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I suppose also that V(t) is any function of the form

n o = (log oSi(iog2 o S j . . . Gogm os~,
where the Su(u = 1, 2, ..., m) are real and not all zero, and t0 is chosen large
enough to ensure that V(f) is positive and monotonic.

Let p be a non-negative integer and let

h(z) = {-\y-lzpV{z) if V(r)lO as r\co, (1)

h(z) = (-l)VF(z) if F(r)|oo as rtoo (2)

3. We shall need the following results.

Lemma 1. Let ip(z) be an analytic function of z = re'6, regular for | arg z | <n
and on the negative real axis with the possible exception of logarithmic
singularities. % Suppose also that i//(z) is real on the positive real axis and that

(i) |^(z) |=o(r s -1) f l5 |z , | = r^0,

(ii) j " | ip(reie)\ dd = oif) as r->oo,

where s is an integer.
Then for | arg z\<n we have

<m «» - <=^1 j ; 2J%?ydt
 + on. I--),

where A is any positive constant.

Lemma 2. If the indices (s— 1), s in (i), (ii) of Lemma 1 are replaced by
(s~ i), (s + i ) respectively, then the analogue o/(iii) is

)A

Proofs of Lemmas 1 and 2. Lemma 1 is obtained by considering the contour
integral

where F is the contour formed by the radii arg z = +n joined by the circum-
ferences of the circles |£ | = A, |C | = R, and z lies within this contour. Lemma
2 is obtained in the same way,f the indices s in the contour integral being
replaced by (s+^).

Lemma §3. Case I. Let V(r)lO as r^ao. Then from

log S(reia, a, 0, q)~Jh(reia) (a constant, 0^a<7t) (3)
t By " logarithmic singularities," which do not arise in this paper but arose in (2) from

which the analogous Lemma 2 below is taken, I mean the singularities of <p{z) at the zeroes of
p(z), say, where <fi(z) = log/?(z) and p{z) is an arbitrary canonical product.

% For details see (2), p. 116.
§ (1), p. 299, Theorem 2, part (i).
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with the h{z) of (I) follows the relation

q=p-\.

Case II. Let F(r)|oo as rtoo. Then from (3) with the h{z) of (2) follows the
relation

q= p.

In both cases the asymptotic formula

dV{r)
j{r)~Jr"

d(log r)
follows.

Lemma 4.
(a) lim | V{reie)\lV{r) = 1.

r-*co

{b) ®{V{reiB)}~V{r).

(c) S{V{re«>)}~9 d{lo% r)

4. Theorem I. Let
| a \<n

and let the canonical product S{z, a, 0, q) of at most order (q+1), convergent
type, satisfy

S{log S(re'*)}~Jjr{h(re")} (a constant) (4)

with the h(z) of (1) if F(r)|0 as rfoo {Case I), with the h{z) of (2) if F(r)foo
as rtoo {Case II).

Suppose also that

snip < | a | < (s + \)njp (s ̂ 0 integral)

and
;(r) = o(r<s+WI").

Then
q = p-l {Case I), q = p {Case II);

and, in both cases,

j{r)~Jr' dV{r)
r)

(5)

Proof of Theorem I. It is not necessary to give details as the proof follows
the same lines as that of Theorem 2, part (ii), in (1), p. 299; we use here
Lemma 1 to obtain (3) for a = 0, and the result follows from Lemma 3.

Note on Theorem I. If, in Theorem I, the possibility sin pet = 0 were
permitted, the corresponding right-hand side of (4) would be o{r"V{r), and
consequently no precise information like (5) could be expected, since canonical
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products of the form S(z, a, 0, q) with Jrp dV(r)
d(log r)

zeros would

(6)

satisfy f ^{log S(re'a)} = o(r"V(r)).

5. Theorem II. Let
0 < y < n (y constant)

| a | < n — y (a constant)

and let the canonical product % P(z, a, b, y, q) of at most order (q+1), convergent
type, satisfy

-y))} (7)

i(-"-y))} (8)
and

where §
sin/7(a+y) * 0, sinp(a-y) # 0, (9)

and the h{z) of (1) is used if V{r)[0 as r^oa (Case 1), the h(z) of (2) is used if
K(r)too as r|oo (Case II).

Suppose also that

sn/p<\ a |<(j+l)7i/p (s^O integral) )

with n(r) = o(r(s+1)*"al), J

and either
0<y<7t/2/>

with n(r) = o(rn/2y)

(10)

or

with

Then

(2k-l)nl2p<y<(2k+l)nl2p (k>0 integral)

n(r) = o(r(2k+ 1)lt/2y)

and, in both cases

If, in addition,

q = p— 1 (Case I), q = p (Case II);

dV(r)

.(lib)

...(12)

n(r)~(J + K)r"
r)

=(= sin/?(a— y)

and, with I a I and y interchanged, (10) with either (lla) or (116) holds, then

j(r)~Jr> dV(r)

d(\og r)
k(r)~Krp dV(r)

d(log r)

(13)

(14)

(15)

t For the estimate for >{log S(re")} we should use (1), p. 298, Theorem 1, part (iv).
t Denned in section 2.
§ The note at the end of section 4 explains the necessity of the assumption (9).
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Proof of Theorem n , Case I. Setting

Q(z) s P(z, a, b, y, q)P(z, b, a, y, q),

we observe that Q(z) is regular in | argz \<n—y, real on the real axis, and,
by (7), (8), the definition (1) of h(z), and the properties of V(z) as listed in
Lemma 4 of section 3, Q(z) satisfies

f{Q(rei*)}~2(- \)p-l{J+K)rp{V(r) cos py sin pa
. , dV \ ,.,.

— (a cos py cos pa — y sin py sin pa) V (16)
d(\og r)J

Now if
pet = sn, ox py = (2k-l)n\2, or both, (17)

the right-hand side of (16) is o(rpV(r)) and we can expect the method to give
no precise information about n(r).

If (17) does not hold, then (16) is equivalent to

S{Q(reia)}~2(- \y-\J + K)r'V{r) cospy sin pa,

from which, on putting iKz) s log Q(za/lt), assuming (as we obviously may
at this stage, since Q(r) is real) that a>0, and using Lemma 1 of section 3,
we find that

\ogQ(r)~2{-\y-l(J+K)r'>V(r)cospy (18)

by the argument used in (1), pp. 309-310, the " order " requirements of the
lemma following simply from (10).

Now
^+' {t cosj+l y+ r cos qy}{j(

where Pt(z) is any canonical product of genus q, having only negative zeros,
«(r) = j(r)+k(r) in number. To Pi(z) we now apply f Lemma 2 of section 3
with il/(z) = log PiW1*), using (lla) or (lib), and (18).
We get

and hence, by Lemma 3 (Case I) of section 3,

q = p - l
and

dV{r)
n(r)~(J+K)rp (13)

d(log r)
as required.

For the other part of Theorem II (Case I), we also have $

sinp(a+v) — sinp(a— y) #= 0,

t For details, see proof of Theorem 2, part (ii), in (1), p. 299.
j We notice that, if sinp(a+y) were equal to sinp(a—y), the result (15) with specific/, K

could not be expected, since the right-hand sides of (7) and (8) would involve (J+K) and
so be unaltered for an infinite choice of non-negative / , K having a constant sum.
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that is,
sin/>y =)= 0, cos pa * 0 (19)

Let

r m „ , , , 1VJ f°° r*+l{tsinq + lct+y + rsinqa+y}h(t)dt
7(0, oo, a, y, ft) denote ( — 1)* * 2 1 * v

Joo
Then, on substituting from (13) into (7) we get f

7(0, oo, a, y,;)-7(0, oo, a, -y,j)~JJ{h(r

that is,

7(0, oo, y, a,j)+I(O, oo, y, -a,j)~JJ{h(r^7+'y) + h(r^-% ...(20)

and

7(0, oo, -y,a,j)+l{0, oo, -y, -a,))~J^{hirei(-'+')) + h{rei^-')} ...(21)
follows similarly from (13) and (8).

Since (20) with (21) is a particular case of (7) with (8), with | a | and y inter-
changed, % the argument used to prove the first part of the theorem here yields

and hence, by (13),

j(r)>

k(r)~

~Jrp

<Krp

dV(r) \

d(\og r)

dV(r)

d(\o% r) ,

.(15)

Proof of Theorem II, Case II. The same method applies.

6. Theorem III. Let
0<y<7t (y constant)

| a | < % — y (a constant)

and let canonical product.% P{z, a, b, y, q) of at most order (q+1), convergent
type, satisfy

^{log P(reix)} ~J@{h(reHx+y>)} + K@{h(rei(<I-r))} (22)
and

<%{logP(re-'*)}~j!%{h(rei(-°+rt)} + K!%{h(rei(-'-rt)}

where ||
cosp(<x + y) # 0, cos/?(a-y) =f= 0, (23)

and the h(z) of (1) is used if F(r)|0 as rjoo (Case I), the h(z) of (2) is used if
F(r)|oo as rjoo (Case II).

Suppose also that
either

0<y<7r/2/>
t Using (1), p. 298, Theorem 1, part (iv).
t The radii which now have to be excepted are those given by (19).
§ Defined in section 2.
|| The note at the end of section 4 explains the necessity of the assumption (23).
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with
n(r) = o{r<"*y);

or
(2k- \)n\2p < 7 < (2k + \)njlp (k > 0 integral)

with
( ) (

and either
a = 0;

or
0 < | a | < 7t/

with

or
(2s - I)nj2p < | a | < (2s + l)7i/2/> (s > 0 integral)

with
n(r) = o(r<2s+1>"/2l<'l).

Then
q = p-\ {Case I), q = p (Case II);

and, in both cases,

Proof of Theorem III. This follows the same lines as the proof of the first
part of Theorem II, except that here Lemma 1 of section 2 is not required,
Lemma 2 being used for both of the main steps in the argument. In the special
case f in which a = 0, however, only one application of Lemma 2 is needed.
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t If a = 0 and y = in, thenp = Ik and hence (1), p. 313, Theorem 3, part (ii) is included
in Theorem III above. Part (i) however is not given, since, by the properties of V(z), the

right-hand side of (22) here, for a = 0, y = in and odd p, is of magnitude O\r" ^ r-. \J

and not O(rp V(r)) as in the theorem quoted.
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