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We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The
measurement model for observed items is estimated in its first step, and in the second step covariates are
added in the model, keeping the measurement model parameters fixed. We discuss model identification,
and derive an ExpectationMaximization algorithm for efficient implementation of the estimator. By means
of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise
estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately
unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The
proposal is illustrated with a cross-national analysis of predictors of citizenship norms.
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Latent class analysis (LCA) is used to create a clustering of units based on a set of observed
variables, expressed in terms of an underlying unobserved classification. When it is applied to
hierarchical (multilevel) data where lower-level units are nested in higher-level ones, the basic
latent class model can be extended to account for this data structure. This can be seen as a
random coefficients multinomial logistic model (see, for instance (Agresti et al., 2000) ) for an
unobserved categorical variable that is measured by several observed indicators, with a higher-
level latent class variable in the role of a categorical random effect (Vermunt, 2003) . Multilevel
LCA has become more popular in the social sciences in recent years, for example in educational
sciences (Fagginger Auer et al., 2016; Grilli et al., 2022, 2016; Grilli & Rampichini, 2011; Mutz
& Daniel, 2013) , economics (Paccagnella & Varriale, 2013) , epidemiology (Tomczyk et al.,
2015; Rindskopf, 2006; Zhang et al., 2012; Horn et al., 2008) , sociology (Da Costa & Dias,
2015; Morselli & Glaeser, 2018) , and political science (Ruelens & Nicaise, 2020) . In most of
these examples, the multilevel LCA model includes also covariates that are used as predictors of
the clustering, and substantive research questions often focus on the coefficients of the covariates.

In estimation of models with covariates, for single-level LCA the current mainstream recom-
mendation is to use stepwise methods that separate the estimation of the measurement model for
the observed indicators from the estimation of the structural model for the latent variables given
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the covariates (see, e.g., (Bakk & Kuha, 2018; Di Mari et al., 2020; Di Mari & Maruotti, 2022;
Vermunt, 2010) ). This is practically convenient because when changes of covariates are made,
only the structural model rather than the full model needs to be re-estimated. Different structural
models can be considered even by different researchers at different times. Stepwise estimation
can also avoid biases which can arise when all the parameters are instead estimated together in
a simultaneous (one-step) approach to estimation. In such cases, misspecifications in one part of
the model can cause bias also in the parameter estimates in other parts (Bakk & Kuha, 2018) .

In multilevel LCA, the one-step approach is particularly cumbersome because of increased
estimation time, especially with multiple covariates possibly defined at different levels. In that
context, there is still need for further research on bias-adjusted efficient stepwise estimators.
Recently Bakk et al. (2022) and Di Mari et al. (2022) proposed a “two-stage” estimator for this
purpose. The parameters of the measurement model are estimated in its first stage, without includ-
ing the covariates. This is further broken down into three steps. In the first of them, initial estimates
of the measurement model are obtained from a single-level LC model, ignoring the multilevel
structure. The latent class probabilities of the multilevel LCmodel are then estimated, keeping the
measurement parameters from the first step fixed. Third, to stabilize the estimated measurement
model and to account for possible interaction effects, the multilevel model is estimated again,
now keeping the latent class parameters fixed. The estimated measurement parameters from this
last step of the first stage are then held fixed in the second stage, where the model for the latent
classes given covariates is estimated.

This method has been shown to greatly simplify model construction and interpretation com-
pared to the one-step estimator, with almost identical results if model assumptions are not violated,
and with enhanced algorithmic stability and improved speed of convergence. In addition, the two-
stage estimator exhibits an increased degree of robustness compared to the simultaneous approach
in the presence of measurement noninvariance (Bakk et al., 2022) .

A difficulty in this two-stage technique is deriving an asymptotic covariance matrix that takes
into account the multi-step procedure. Conditioning on the first-stage estimates as if they were
known, even though they are estimates with a sampling distribution, introduces a downward bias
in the standard errors, a phenomenon that is well known also in the context of stepwise structural
equation models (Skrondal & Kuha, 2012; Oberski and Satorra, 2013) . For two-step single level
LCA, the standard errors can be corrected in a straightforward way (Bakk & Kuha, 2018) , but
this is more difficult for two-stage LCA due to conditioning on multiple steps.

The two-stage approach is still in some ways more involved than it needs to be. In this paper
we show that it is possible to simplify it into a more straightforward two-step estimator, still
retaining its good performance but with a further reduced computation time. This approach is
closely motivated by two-step estimation as it is used for single-level LCA. In the first step, the
full multilevel measurement model is estimated in one go, but without covariates. In the second
step, covariates are included in the model, keeping the measurement model parameters fixed at
their estimates from the first step.

With such a two-step estimator, we contribute to the existing literature in several ways: (1)
we establish model identification for the multilevel LC model under standard assumptions, as
foundation for correct measurement model estimation; (2) we derive a step-by-step EM algorithm
with closed-form formulas to handle the computation of the two-step estimator; and (3) we derive
the correct asymptotic variance-covariance matrix of the second step estimator of the structural
model, drawing on the theory of pseudo maximum likelihood estimation (Gong and Samaniego,
1981) .

We evaluate the finite sample properties of our proposal by means of an extensive simulation
study. Cross-national data on citizenship norms from the International Association for the Eval-
uation of Educational Achievement survey are analyzed to illustrate the proposal, and possible
extensions are discussed in the conclusions.
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1. The Multilevel Latent Class Model with Covariates

Let Yi j = (Yi j1, . . . , Yi j H )′ be a vector of observed responses, where Yi jh denotes the
response of individual i = 1, . . . , n j in group j = 1, . . . , J on the h-th categorical indicator
variable (“item”), with h = 1, . . . , H . The data have a hierarchical (multilevel) structure where
the individuals are nested within the groups. In the following, we will also refer to individuals as
the “low-level units”, and groups as the “high-level units”. LetY j = (Y1 j , . . . ,Yn j j )

′ denote the
set of responses for all the low-level units belonging to high-level unit j , with Y j for different j
taken to be independent of each other. For simplicity of exposition, we focus below on the case
where the items Yi jh are dichotomous, but the idea and methods of two-step estimation proposed
here apply in a straightforward way also for polytomous items.

Let Wj be a categorical latent variable (i.e. a latent class (LC) variable) defined at the high
level, with possible values m = 1, . . . , M and probabilities P(Wj = m) = ωm > 0, and let
ω = (ω1, . . . , ωM )′. Given a realization of Wj , let Xi j be a categorical latent variable defined at
the low level, with possible values t = 1, . . . , T , and conditional probabilities P(Xi j = t |Wj =
m) = πt |m > 0. We collect all the πt |m in the M × T matrix �. The Xi j for the same j are taken
to be conditionally independent given Wj , so that

P(X1 j , . . . , Xn j j ) =
M∑

m=1

P(Wj = m)

n j∏

i=1

P(Xi j |Wj = m).

This shows that the high-level latent classWj serves as a categorical random effect which accounts
for associations between the low-level latent classes Xi j for different low-level units i within the
same high-level unit j .

The itemsY j are treated as observed indicators of the latent classes. A multilevel latent class
model specifies the probability of observing a particular response configuration for a high-level
unit j as

P(Y j ) =
M∑

m=1

P(Wj = m)

n j∏

i=1

T∑

t=1

P(Xi j = t |Wj = m) P(Yi j |Xi j = t,Wj = m)

=
M∑

m=1

ωm

n j∏

i=1

T∑

t=1

πt |m
H∏

h=1

P(Yi jh |Xi j = t,Wj = m), (1)

where P(Yi jh |Xi j = t,Wj = m) denotes the conditional probability mass function of the h-th
item, given the latent class variables Xi j and Wj . The second line in this further assumes that the
responses for Yi jh for different items h are conditionally independent given (Xi j ,Wj ), a standard
assumption which we make throughout.

Model (1) is a general formulation which is equal to an unrestricted multi-group latent class
model. Most applications, however, use a more restricted version which assumes that the item
response probabilities do not depend directly on the high-level latent classWj ( (Vermunt, 2003;
Lukociene et al., 2010) ; this model is represented in Fig. 1, if we omit the covariates Zi j which
will be introduced below). We will also make this assumption throughout this paper. Model (1)
is also similar to the multilevel item response model of Gnaldi et al. (2016), but with categorical
latent variables at both levels. The response probabilities are then given by

P(Y j ) =
M∑

m=1

ωm

n j∏

i=1

T∑

t=1

πt |m
H∏

h=1

P(Yi jh |Xi j = t). (2)
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Figure 1.
Graphical representation of a multilevel latent class model which includes a low-level latent class variable Xi j nested in
a high-level latent class variable Wj , and covariates Zi j for Xi j . Here the response probabilities for items Yi jh depend
directly only on Xi j .

Therefore, within each high-level latent class Wj , the model for the items has the form of a
standard (single-level) LC model with Xi j as the latent class (McCutcheon, 1987; Goodman,
1974; Hagenaars, 1990) .When the items Yi jh are binary with values 0 and 1, we denote P(Yi jh =
1|Xi j = t) = φh|t , so that P(Yi jh = yi jh |Xi j = t) = φ

yi jh
h|t (1 − φh|t )1−yi jh , and denote by � the

H × T matrix of all the φh|t .
It can be shown that the model is identified (in a generic sense, see Allman et al. 2009), under

a standard set of assumptions:

Proposition 1.1. (Identification) Suppose that the following conditions hold: (A.1) φh|t �= φh|s
for all h = 1, . . . , H and for t �= s; and (A.2) the M × T matrix � has rank M. Then the
multilevel LC model (2) is identified when M ≤ T and n j ≥ 3, for all j = 1, . . . , J .

The proof of Proposition 1.1 follows the same lines as in Gassiat et al. (2016), who proved
identification of finite state space nonparametric hidden Markov models, and applies the results
of Theorem 9 of Allman et al. (2009). The fact that all φh|t are distinct is sufficient for linear
independence of the Bernoulli random variables. For n j = 3, using the assumption of conditional
independence of low-level units given high-level classWj , the distribution of (Y1 j ,Y2 j ,Y3 j ) fac-
torizes as the product of three termsμi j |m = ∑

t πt |m P(Yi j |Xi j = t) for i = 1, 2, 3. Assumption
(A.2) ensures that μ1 j |m , μ2 j |m and μ3 j |m are linearly independent. Thus Theorem 9 of Allman
et al. (2009) applies.

We make three ancillary comments on Proposition 1.1. First, for the unrestricted multilevel
LC model (1), if an assumption analogous to (A.1) holds—i.e. if all success probabilities of the
Bernoulli random variables are distinct—we can relax (A.2) and prove identification using All-
man et al. (2009)’s Theorem 9 (in the related context of mixture of finite mixtures with Gaussian
components, a similar argument is used by (Di Zio et al., 2007) ). Second, for longitudinal and
multilevel data, generic identification of the measurement model does not require any condition
on the number of items, provided that conditions (A.1) and (A.2) are satisfied. Third, although
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we have discussed identification specifically for binary items and Bernoulli conditional distribu-
tions, the identification result extends also to polytomous items if we can assume, analogously
to (A.1), that all conditional category-class response probabilities are distinct. This guarantees
linear independence of the corresponding multinomial random variables.

Covariates can be included in the multilevel LC model to predict latent class membership
in both the low and high-level classes. Let Zi j = (1,Z′

1 j ,Z
′
2i j )

′ be a vector of K covariates,
which can include high-level (Z1 j ) and low-level (Z2i j ) variables. For Xi j we can consider the
multinomial logistic model

P(Xi j = t |Wj = m,Zi j ) = exp(γ ′
tmZi j )

1 + ∑T
s=2 exp(γ

′
tmZi j )

, (3)

where γ tm is a K -vector of regression coefficients for each t = 2, . . . , T and m = 1, . . . , M .
When only the intercept term is included, so that Zi j = 1, then γ tm = log(πt |m/π1|m) in the
notation of the model without covariates above. We denote by � the (T − 1)M × K matrix of all
the parameters in the γ tm vectors.

A model for Wj can be specified similarly, now using only high-level covariates Z∗
j =

(1,Z′
1 j )

′, as

P(Wj = m|,Z∗
j ) = exp(α′

mZ
∗
j )

1 + ∑M
l=2 exp(α

′
mZ

∗
j )

, (4)

where αm form = 2, . . . , M , are regression coefficients. Although this too is straightforward, for
ease of exposition and simplicity of notationwewill below not considermodels with covariates for
Wj , but present the two-step estimator only for the casewhereZ∗

j = 1 and thusαm = log(ωm/ω1).
The focus of interest is then on the model for the low-level (individual-level) latent class Xi j , and
the high-level (group-level) latent class Wj serves primarily as a random effect which accounts
for intra-group associations between Xi j . We further assume that the observed items Y j are
conditionally independent of the covariates Zi j given the latent class variables Xi j . This means
that the measurement of Xi j by Yi j is taken to be invariant with respect to the covariates. With
these assumptions, and denotingZ j = (Z′

1 j , . . . ,Z
′
n j j

)′, the model that we will consider is finally
of the form

P(Y j |Z j ) =
M∑

m=1

ωm

n j∏

i=1

T∑

t=1

P(Xi j = t |Wj = m,Zi j )

H∏

h=1

P(Yi jh |Xi j = t); (5)

see also a graphical representation of the model in Fig. 1. This model is identified when the
corresponding model without covariates is identified, as long as the design matrix of all the Zi j s
has full column rank (for an analogous condition for identifiability in the context of single-level
latent class models with covariates, see Huang and Bandeen-Roche 2004 and Ouyang and Xu
2022).

2. Previous Methods of Estimation

We denote the parameters of the model in (5) as θ = (θ ′
1, θ

′
2)

′ where θ1 = vec(�) are the
parameters of the measurement model for the items Y j and θ2 = (vec(�)′,ω′)′ the parameters
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of the structural model the latent class variables (Xi j ,Wj ) given the covariates Zi j . Maximum
likelihood estimates of these parameters can be obtained bymaximizing the log likelihood �(θ) =∑J

j=1 log P(Y j |Z j ) with respect to all the parameters together. This is the simultaneous or one-
step method of estimation for the model. It has serious disadvantages, however. The full model
needs to be re-estimated whenever the covariates in the structural model are changed, which can
be computationally demanding because of the complexity of such multilevel models. Further,
because all the parameters are estimated together, misspecification in one part of the model may
destabilize also parameters in other parts of the model (Vermunt, 2010; Asparouhov andMuthén,
2014) .

Because of the complexity of the one-step approach, in practice the classical three-step
method of estimation is more often used. In its step 1, model (2) without covariates is first
estimated. In step 2, this model is used to assign respondents to the latent classes Xi j and Wj ,
conditional on their observed responses Y j ; how this is done for the multilevel LC model is
described in detail in Vermunt (2003). In step 3 the assigned latent classes are modelled given
covariates, treating the classes now as observed variables. This is straightforward to do. However,
it, yields biased estimates of the parameters of the structural model, because the assigned classes
are potentially misclassified versions of the true latent classes.

Because of this bias in the classical three-step approach, bias-adjusted stepwise methods are
needed. One such method for multilevel LC models with covariates is the two-stage estimator
proposed by Di Mari et al. (2022) - see also Bakk et al. (2022). It involves the following two
stages:

(A) First stage: Unconditional multilevel LCmodel building (measurement model construc-
tion).

Step 1: A single-level latent class model is fitted for Yi j given the low-level latent class
Xi j , ignoring the multilevel structure of the data. This gives an initial estimate of
�.

Step 2.a: The multilevel model without covariates (equation 2) is estimated, keeping �

fixed at its estimated value from Step 1. This gives estimates of ω and �.
Step 2.b: The two-level model is estimated again, now keeping ω and � fixed at their

estimates from Step 2.a. This gives the estimate of � which is taken forward to
the second stage.

(B) Second stage: Inclusion of covariates in the model (structural model construction).

Step 3: The multilevel model (5) with covariates is estimated, keeping the measurement
parameters � fixed at their estimates from the first stage. This gives the two-stage
estimates of the structural parameters θ2.

While effective, the two-stage approach has some shortcomings. Although Steps 2.a and 2.b
both estimate only part of the measurement model parameters, computationally they do not save
much effort because the most challenging part of the estimation (the E-step of the EM algorithm;
see below) is required by both steps. Fixing the response probabilities is also not enough to
prevent label switching of the classes from one step to the next in the first stage, since this can
simultaneously occur at both the low and high levels. Finally, estimating the correct form of the
second-stage information matrix, which should take variability of the previous steps into account,
is difficult due to the sequential re-updating of themeasurementmodel. These complicationsmake
it desirable to look for more straightforward bias-adjusted stepwise approaches for the multilevel
LC model. Such a method, the two-step estimator, is described next.
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3. Two-step Estimator for the Model with Covariates

We propose to amend the two-stage estimator by concentrating all of the measurement mod-
eling into a single step 1, where we estimate the multilevel LC model but without covariates. The
estimated parameters of the measurement model for the items Yi j from this step are then taken
forward as fixed to step 2, where the structural model for the latent classes given covariates is
estimated. Step 2 is thus the same as the second stage of two-stage estimation, but the three steps
of its first stage are here collapsed into the single step 1.

The two-step estimation procedure for multilevel LC models that is described in this section
has been implemented in the R package multilevLCA (Lyrvall et al., 2023) , which can be
downloaded from CRAN. The package’s routines have been used for the simulations and data
analysis in Sects. 4, and 5 of the paper.

3.1. Step 1 — Measurement Model

In the first step, a simple multilevel LC model without covariates is fitted to the data. Given
the data defined above, the log likelihood for this step is

�1 = �(�,�,ω) =
J∑

j=1

log P(Y j ), (6)

where P(Y j ) is given by (2). This is maximized to find the ML estimate of the parameters of
this model. Direct (numerical) maximization is possible, either with suitable constraints or by
adopting well-known logistic re-parametrizations, but it quickly becomes infeasible even for a
moderate number of low- and/or high-level classes. A more practical alternative to maximize (6)
is by means of the expectation-maximization (EM) algorithm (Dempster et al., 1977) , which is
what we propose here.

A standard implementation of EMwould involve computingM×T n j joint posterior probabil-
ities, which is infeasible already with a few low-level units per high-level unit. Instead, our imple-
mentation of the EM algorithm follows closely Vermunt (2003)’s upward–downward method of
computing the joint posteriors of the low- and high-level classes (see also (Vermunt, 2008) ),
where the number of joint posterior probabilities to be computed is only a linear function of the
number of low-level units per high-level unit. Here we describe in detail the E and M steps of the
algorithm, with the step-by-step implementation, that we use to obtain the estimates in Step 1.

Using standard EM terminology, let us introduce the following augmenting variables:

u j,m =
{
1, if Wj = m

0, otherwise.
, vi, j,t,m =

{
1, if Xi j = t, Wj = m,

0, otherwise.
(7)

Defining the complete-data sample as {Y1, . . . ,YJ , v1,1, . . . , u j,m, . . . , uJ,M , v1,1,1,1, . . . ,

vi, j,t,m, . . . , vnJ ,J,T,M }, the complete–data log–likelihood (CDLL) for the first step can be spec-
ified as

�c1 =
J∑

j=1

M∑

m=1

u j,m log(ωm) +
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

vi, j,t,m log(πt |m)

+
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

vi, j,t,m

H∑

h=1

{Yi jh log(φh|t ) + [1 − Yi jh] log(1 − φh|t )}, (8)
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where we have dropped the argument (�,�,ω) from �c1 for simplicity of notation.
In the E step, the missing data are imputed by conditional expectations given the observed

data and current values for the unknown model parameters. More specifically, this involves the
computation of the following expected CDLL

E
[
�c1

] =
J∑

j=1

M∑

m=1

û j,m log(ωm) +
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

v̂i, j,t,m log(πt |m)

+
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

v̂i, j,t,m

H∑

h=1

{Yi jh log(φh|t ) + [1 − Yi jh] log(1 − φh|t )} ≡ Q, (9)

where

û j,m = ωm
∏n j

i=1

∑T
t=1 πt |m

∏H
h=1 P(Yi jh |Xi j = t)

∑M
l=1 ωl

∏n j
i=1

∑T
t=1 πt |l

∏H
h=1 P(Yi jh |Xi j = t)

. (10)

To compute the conditional expectation of vi, j,t,m , we use the fact that the joint probability
P(Xi j = t,Wj = m|Y j ) can be written as P(Wj = m|Y j )P(Xi j = t |Wj ,Y j ), where P(Wj =
m|Y j ) is already available from (10). Note that, given the model assumptions,

P(Xi j = t |Wj ,Y j ) = P(Xi j = t |Wj ,Yi j ), (11)

which we use to compute the following desired quantity

v̂i, j,t,m = P(Xi j = t,Wj = m|Y j )

= P(Wj = m|Y j )P(Xi j = t |Wj ,Yi j )

= û j,m
P(Xi j = t |Wj = m)P(Yi j |Xi j = t)

P(Yi j )

= û j,m
πt |m

∏H
h=1 P(Yi jh |Xi j = t)

∑T
s=1 πs|m

∏H
h=1 P(Yi jh |Xi j = s)

, (12)

where in the third rowweare using the assumption that the joint probability functionof the response
variables depend on high–level class membership only through low-level class membership. For
the unrestricted multi–group LC model, the expression (12) would be adapted straightforwardly.

In the M step of the algorithm, the expected CDLL (9) is maximized with respect to the
model parameters (�,�,ω) subject to the usual sum–to–one constraints on probabilities. This
yields the following closed–form updates

ωm =
∑J

j=1 û j,m
∑J

j=1
∑M

m=1 û j,m
, (13)

πt |m =
∑J

j=1
∑n j

i=1 v̂i, j,t,m
∑J

j=1
∑n j

i=1

∑T
t=1 v̂i, j,t,m

, (14)
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φh|t =
∑J

j=1
∑n j

i=1

∑M
m=1 v̂i, j,t,mYi jh

∑J
j=1

∑n j
i=1

∑M
m=1 v̂i, j,t,m

. (15)

Starting from initial values for the model parameters, the algorithm iterates between the E-
and the M-steps until some convergence criterion is met, e.g. until the difference between the
log-likelihood values of two subsequent iterations falls below some threshold value.

As for all mixture models, the log-likelihood function can have several local optima and
there is no guarantee that the solution found by the EM algorithm is the global optimum (Wu,
1983) . To better explore the likelihood surface, multiple starting value strategies are typically
implemented (among others, see (Biernacki et al., 2003; Maruotti & Punzo, 2021) ). Beyond
doubt, the easiest, and most common approach is to initialize the EM algorithm randomly from
several different starting points. However, even for relatively simpler models, the multiple starting
value strategy is often outperformed by more refined techniques (Biernacki et al., 2003) .

For any stepwise estimators, the initialization strategy of earlier steps is particularly relevant
because subsequent steps will be conditional on estimates from previous steps. In our step 1, we
suggest implementing the following hierarchical initialization strategy (for a similar approach in
a related context, see for instance (Catania & Di Mari, 2021; Catania et al., 2022) ):

(1) Perform a single–level K–modes clustering (Huang, 1997; MacQueen, 1967) , with
K = M . For each j = 1, . . . , J

– let Ẇi j be the outcome class assignment for unit i in group j ;
– specify W̃ j as the most frequent assigned class among the n j observations belonging

to group j , and let W̃i j = W̃ j for all i = 1, . . . , n j .

The relative sizes of the resulting high–level classes are used to initialize ω. The entries
of ω, before being carried over to the actual estimation step, can be sorted in increasing
or decreasing order.

(2) Fit a single–level T –class LCmodel on the pooled data, ignoring themultilevel structure.
Note that the K–modes algorithm can be employed herein aswell to initialize the single–
level LCA. The estimated output is organized as follows

– the response probabilities are passed on the EM algorithm as a start for �;
– let X̃i j be the maximum a posteriori class assignment for unit i in group j . Cross–

tabulate X̃ and W̃, where X̃ = (X̃11, . . . , X̃nJ J )
′, and W̃ = (W̃11, . . . , W̃nJ J )

′. From
the T × M table of joint counts, compute the conditional (relative) counts of X̃|W̃
to initialize �.

The low-level classes can be re-ordered by letting low-level cluster 1 be the one with
the highest average probability to score a “1” on all items, cluster 2 the one with the
second highest average probability to score a “1” on all items, and so on.

Note that the suggested rule to re-order low-level classes is only an example of a rule that
is often (but not always) useful. This is because, if there are many items or some are for rare
characteristics, the joint probability of scoring “1” on all of them together might be a number so
small as to be overwhelmed by sampling error or even by machine imprecision. That would effec-
tively bring label switching back again. In cases like these, we suggest implementing alternative
re-ordering principles.

Running the EM algorithm to convergence from the above starting values, the solution with
the highest log-likelihood (6) provides us with estimates ω̂, �̂, �̂. Of these, ω̂ and �̂ are discarded
and vec(�̂) = θ̂1 are retained as the estimates of the measurement parameters θ1 from this step
1.
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3.2. Step 2 — Model for Class Membership

In the second step of estimation, the parameters θ2 of the model for the latent classes in Eq.
(5) are estimated, keeping the measurement parameters θ1 fixed at their step-1 estimates θ̂1 (see
Fig. 2). These step-2 estimates are obtained by maximizing the pseudo log-likelihood function

�2(θ2|θ1 = θ̂1) =
J∑

j=1

log P(Y j |Z j ) (16)

with respect to θ2. Here log P(Y j |Z j ) is given by Eq. (5), except that θ̂1 are regarded as fixed
and known values rather than unknown parameters. The EM algorithm that we propose for this
step works similarly to the one that we used for the first step. In particular, under the definition of
the augmenting variables given in Sect. 3.1, the CDLL is given by

�c2 =
J∑

j=1

M∑

m=1

u j,m log(ωm) +
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

vi, j,t,m log

(
exp(γ ′

tmZi j )

1 + ∑T
s=2 exp(γ

′
tmZi j )

)

+
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

vi, j,t,m

H∑

h=1

{Yi jh log(φ̂h|t ) + [1 − Yi jh] log(1 − φ̂h|t )}, (17)

where we have dropped the argument (θ2|θ1 = θ̂1) from �c2 for ease of notation. Note that the E
step is analogous as that described in Sect. 3.1, except that now the low-level class probabilities
conditional on high-level membership depend on covariates. In the M step the expected CDLL,
obtained by substituting themissing values with expectations computed using analogous formulas
as (10) and (12), is maximized with respect to θ2 only. Whereas the update for ω is given by (13),
to derive the update for the regression coefficients note that vi, j,t,m = P(Xi j = t,Wj = m|Y j )

can be written as the product of u j,m = P(Wj = m|Y j ) and qi, j,t |m = P(Xi j = t |Wj ,Y j ).
Thus, estimates of � can be found solving the equations

J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

û j,mq̂i, j,t |m
∂ log

(
P(Xi j = t |Wj = m,Zi j )

)

∂vec(�)
= 0, (18)

which are weighted sums of M equations, each with weights q̂i, j,t |m .
Stepwise estimation is well known to enhance algorithm stability and speed of convergence

(Bakk &Kuha, 2018; Bartolucci et al., 2015; Di Mari &Maruotti, 2022; Skrondal & Kuha, 2012)
. However, class labels in multiple hidden layer models can still be switched, and keeping the
response probabilities fixed cannot prevent it as there are still M ! possible permutations of the
high-level class labels. We handle this issue by initializing ω at its estimate from the first step, and
by taking log

(
πt |m/π1|m

)
to initialize the intercepts γ0tm , for allm = 1, . . . , M and t = 2, . . . , T .

The other elements of � are initialized at zero.

3.3. Selecting the Number Latent Classes

The description of the two-step estimation procedure above takes the numbers of latent classes
at both the lower and higher levels as given. The selection of these numbers is a separate exercise.
It is normally carried out without covariates, and the selected numbers of classes are then held
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Figure 2.
Step 2 of the two-step estimation: Estimating the structural model for low-level latent classes Xi j given covariates Zi j
and high-level latent classesWj , keeping measurement model parameters for items Yi jh fixed at their estimates from Step
1.

fixed when covariates are added. This is also in line with general recommendations for LCA with
covariates (Masyn, 2017) .

The selection of the numbers of classes could be considered as a joint exercise of both the
high and low levels together, but a generally used recommendation is to use instead a hierarchical
procedure which selects them one at a time (Lukociene et al., 2010) . First, simple LC models
are fitted at the lower level and the number of classes for it (T ) is selected. Second, this number
is held fixed, and multilevel LC models are fitted and compared to select the number of classes at
the higher level (M). Third, the selected M is fixed, and model selection for the multilevel model
is done again at the lower level, to obtain the final value of T . A still simpler approach would skip
the third step (Vermunt, 2003) , but including it allows us to check if the selected number of
lower-level classes changes once the within-group associations induced by the high-level classes
are allowed for.

This hierarchical approach can be used with any method of estimating the models. However,
when combinedwith our two-step estimator, simultaneously selecting the number of classes of the
measurement at both levels is also feasible. Practically, this is possible by leveraging an efficient
integration of the above initialization strategy with parallel (multi-core) estimation of all plausible
values of T and M .

The best candidate values of M and T can be selected with standard information criteria,
like AIC or BIC. For the final choice, we suggest balancing the use information criteria with the
evaluation of low- and high-level class separation, and, perhaps most importantly, the substantive
inspection of the candidate model configurations. For a wider discussion on this issue, see, among
others, Di Mari et al. (2022); Magidson and Vermunt (2004). In the social sciences, one of the
most commonly used measures of class separation is the entropy-based R2 of Magidson (1981).
The latter can be defined at both lower and higher levels to judge class separation (see (Di Mari
et al., 2022; Lukociene et al., 2010) ).
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3.4. Statistical properties of the two-step estimator

Our two-step estimator is an instance of pseudo maximum likelihood estimation (Gong and
Samaniego, 1981) . Such estimators are consistent and asymptotically normally distributed under
very general regularity conditions. The conditions and a proof of consistency can be found in
(Gourieroux and Monfort (1995), Sec. 24.2.4). Let the true parameter vector be θ	 = (θ	′

1 , θ	′
2 )′.

If the one-step ML estimator of θ is itself consistent for θ	, in order to prove consistency of our
two-step estimator θ̂ it suffices to show that (1) θ1 and θ2 can vary independently of each other,
and (2) θ̂1 is consistent for θ	

1. These conditions are satisfied in our case: (1) is true by construction
of the model, and (2) is satisfied since θ̂1 from step 1 is a ML estimate of the measurement model
parameters of the multilevel LC model without covariates, and these parameters are taken to be
the same as in the model with covariates.

Let �(θ1, θ2) denote the joint log-likelihood function for the model, let sθ2(θ
	
1, θ

	
2) denote the

mean score N−1∂�(θ1, θ2)/∂θ2 evaluated at (θ	
1, θ

	
2), where N denote the overall sample size,

and let

I(θ∗) =
[I11
I21 I22

]
,

be the Fisher information matrix. In addition, let us suppose that

N 1/2
[

θ̂1 − θ	
1

sθ2(θ
	
1, θ

	
2)

]
d−→ N

(
0,

[
	11
	21 I22

])
.

Then, using the results of Theorem 2.2 of Gong and Samaniego (1981) (see also (Parke,
1986) ),

N 1/2(θ̂2 − θ	
2)

d−→ N(0, V ), (19)

where θ̂2 is the proposed two-step estimator and

V = I−1
22︸︷︷︸

≡V 2

+I−1
22 I21 	11 I ′

21 I−1
22︸ ︷︷ ︸

≡V 1

. (20)

Intuitively, V 2 describes the variability in θ̂2 given the step one estimates θ̂1, and V 1 the
additional variability arising from the fact that θ1 are not known but rather estimated by θ̂1 with
their own sampling variability.

Let si j,θ2(θ̂1, θ̂2) be the individual contribution to the score of low-level unit i belonging to
high-level group j evaluated at the parameter estimates of the first and second step respectively.
To compute such score we use the well-known fact that ∂�(θ)/∂θ = ∂Q/∂θ (Oakes, 1999) ,
where Q = E

[
�c(θ)

]
. All such quantities are available from the above EM algorithm without

any extra effort. Therefore, I22 and I21 can be estimated respectively as

Î22 = N−1
J∑

j=1

n j∑

i=1

si j,θ2(θ̂2) si j,θ2(θ̂2)
′ (21)
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and

Î21 = N−1
J∑

j=1

n j∑

i=1

si j,θ2(θ̂1, θ̂2) si j,θ1(θ̂1, θ̂2)
′. (22)

An estimate 
̂11 can be obtained analogously by fitting model (2). We give details on the
derivations of the desired quantities in the appendix.

Note that Equation (20) shows that there is a loss of efficiency of the two-step estimator with
respect to the simultaneous ML estimator. This important theoretical and practical aspect with be
investigated in the simulation study—although we expect this loss to be rather small as very little
information about θ2 should be contained in Y.

4. Simulation Study

4.1. Settings

We conduct a simulation study to investigate the finite sample properties of the proposed
two-step estimator. It is compared with the simultaneous (one-step) estimator and the two-stage
estimator of Bakk et al. (2022); Di Mari et al. (2022). One-step estimation is the statistical
benchmark, and the two-step estimator’s performance is evaluated in terms of its statistical and
computational performance relative to this benchmark. The target measures that we use for the
comparison are the bias, standard deviations, confidence interval coverage rates, and computation
time of the stepwise estimators compared with those of the simultaneous estimator. We compute
both absolute standard deviations, to assess the efficiency of our estimator, as well as relative
standard deviations with respect to the one-step method, to investigate potential loss of efficiency
with respect to the benchmark. Class separation and sample size are well-known determinants
of the finite-sample behavior of stepwise estimators for LCA (Bakk & Kuha, 2018; Vermunt,
2010) . We considered all combinations of larger and smaller sample sizes, at higher level (30, 50,
or 100 higher-level units) and lower level (100 or 500), with a total of 6 sample size conditions.
Data were generated from a multilevel LCmodel with 2 high-level classes and 3 low-level classes
and with 10 binary indicators and one continuous covariate generated from a standard normal
distribution. The random slopes γ2|1, and γ3|1 were set to −0.25 and −0.25, whereas γ2|2, and
γ3|2 to 0.25 and 0.25, corresponding to a moderate magnitude on the logistic scale.

In multilevel LC models, separation plays a role at both low and high levels (Lukociene et
al., 2010) .Wemanipulate low-level class separation by allowing the the response probabilities for
the most likely responses to be either 0.7, 0.8 or 0.9, corresponding respectively to low, moderate,
and large class separation. We remark that the low class separation condition can be considered
as an extreme scenario, in which LCA is hardly carried out in practice. Nevertheless, we decide
to include it as a benchmarking condition. Class profiles are such that the first class has high
probability to score 1 on all items, the second class to score 1 on the last five items and 0 on the
first 5 items, and the third class is likely to score 0 on all items. At the high level, in the model for
W , we manipulate class separation by altering the random intercept magnitudes, which are both
relatively close to zero in the moderate separation case (−0.85,−1.38 and 0.85, 1.38), and further
away from zero in the large separation case (−1.38, −2.07 and 1.38, 2.07). These simulation
conditions are in line with previous studies on multilevel LCA (Lukociene et al., 2010; Park &
Yu, 2018) .

We generated 500 samples for each of the 36 crossed simulation factors of low-level and high-
level sample size and low-level and high-level class separation (see Table 1). Data generation and
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Table 1.
24 simulation conditions.

Condition LL sample size HL sample size LL separation HL separation

1 100 30 Small Moderate
2 500 30 Small Moderate
3 100 50 Small Moderate
4 500 50 Small Moderate
5 100 100 Small Moderate
6 500 100 Small Moderate
7 100 30 Moderate Moderate
8 500 30 Moderate Moderate
9 100 50 Moderate Moderate
10 500 50 Moderate Moderate
11 100 100 Moderate Moderate
12 500 100 Moderate Moderate
13 100 30 Large Moderate
14 500 30 Large Moderate
15 100 50 Large Moderate
16 500 50 Large Moderate
17 100 100 Large Moderate
18 500 100 Large Moderate
19 100 30 Small Large
20 500 30 Small Large
21 100 50 Small Large
22 500 50 Small Large
23 100 100 Small Large
24 500 100 Small Large
25 100 30 Moderate Large
26 500 30 Moderate Large
27 100 50 Moderate Large
28 500 50 Moderate Large
29 100 100 Moderate Large
30 500 100 Moderate Large
31 100 30 Large Large
32 500 30 Large Large
33 100 50 Large Large
34 500 50 Large Large
35 100 100 Large Large
36 500 100 Large Large

LL stands for Low-Level, HL stands for High-Level.

model estimation were carried out in R (Venables et al., 2013) , with the integration of C++ code
for computation efficiency (Eddelbuettel & François, 2011) .

4.2. Results

All estimators show very similar values for bias (see Figs. 3a, b), and both two-stage and
two-step estimators have nearly identical results compared to the simultaneous estimator. Rel-
ative efficiency with respect to the simultaneous estimator (Table 8, in the appendix) is, in all
conditions, approximately one for both stepwise estimators, with the two-stage estimator doing
very slightly worse only in one condition. Confidence interval coverages (Fig. 4) are mostly very
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similar between the three estimators. We observe some undercoverage for all methods in the low-
separation and small high-level sample size conditions. This may be due to the fact that expected
information matrices are used to estimate the asymptotic variance covariance matrix, rather than
the observed ones, and the contributions to the score are computed on high level units, and to the
overlap between classes.

The different estimators thus perform essentially identically. Where they differ from each
other is in their computational demands. Considering the computation time relative to the simul-
taneous estimator (Fig. 5), we find that both stepwise estimators are always (and up to four times)
faster than the simultaneous estimator, and the two-step estimator achieves this with one fewer
step compared to the existing two-stage competitor.

5. Analysis of Cross-National Citizenship Norms with Multilevel LCA

In this empirical example, we analyze citizenship norms in a diverse set of countries. The data
are taken from the International Civic and Citizenship Education Study (ICCS) conducted by the
International Association for the Evaluation of Educational Achievement (IEA). Prior research
has used LCA to analyze the first two waves of this survey, which were conducted in 1999 and
2009, to investigate distinctive types of citizenship norms (Hooghe & Oser, 2015; Hooghe et
al., 2016; Oser & Hooghe, 2013) . We focus on the most recent round of the survey, from 2016
(Köhler et al., 2018) . The data are from a survey of students in their eighth year of schooling. We
have data from between 1300 and 7000 respondents in each of 24 countries, as shown in Table 2.

The respondents answered 12 questions (items) on how important they think different
behaviours are for ”being a good adult citizen”. These behaviours were always obeying the
law (labelled obey below), taking part in activities promoting human rights (rights), participating
in activities to benefit people in the local community (local), working hard (work), taking part
in activities to protect the environment (envir), voting in every national election (vote), learning
about the country’s history (history), showing respect for government representatives (respect),
following political issues in the newspaper, on the radio, on TV or on the Internet (news), par-
ticipating in peaceful protests against laws believed to be unjust (protest), engaging in political
discussions (discuss), and joining a political party (party).

We treat these twelve items as indicators of the individuals’ perceptions of the duties of a
citizen (citizenship norms). The data have a multilevel structure, with individuals as the low-level
units and countries as the high-level units. As predictors of low-level latent class membership, we
include the respondent’s gender, socio-economic status operationalised by the proxy measure of
the number of books in their home, and measures of the respondent’s educational expectations,
parental education, and if she/he is a non-native language speaker. For details on data cleaning
and recoding, see Oser et al. (2023).

To compare with previous work on the same data, we fit a multilevel LC model with T = 4
low-level classes (of individuals within countries) and M = 3 high-level classes (of countries).
The same data set was analyzed in Di Mari et al. (2022) with a multilevel LC model with random
intercepts, estimated with a two-stage estimator. We extend Di Mari et al. (2022)’s model speci-
fication by allowing for both random intercepts and random slopes, and we fit the model with the
proposed two-step estimator. As the two-step estimator has been shown to be computationally
more efficient than the two-stage estimator though with equal performances, for the comparison
we include the benchmark simultaneous estimator only.

The measurement model, at both levels, presents very well separated classes (Table 3). At
the lower level, the four latent classes are characterised by their the conditional response prob-
ability patterns, as shown in Fig. 6. Two classes present response configurations relating to two
relevant and well-known notions of citizenship norms. First, a “Duty” group, which places high
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Figure 3.
Line graphs of estimated bias for the one-step, two-step, and two-stage estimators, for the 36 simulation conditions,
averaged over the 500 replicates. Error bars are based on mean bias ± Monte Carlo standard deviations.
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Figure 4.
Observed coverage rates of 95% confidence intervals, averaged over covariate effects, for the one-step, two-stage and
two-step estimators for the 36 simulation condition, averaged over the 500 replicates. Lower and higher confidence values
reported in the confidence bars, based on the minimum and maximum coverages of the confidence intervals for each
covariate effect.

importance on the act of voting, discussing politics, and party activity, while manifesting rela-
tively low interest in protecting human rights and activities to assist the local community. Second,
an “Engaged” group, which displays higher emphasis on engaged attitudes such as protecting
the environment, and lower importance on more traditional citizenship activity items such as
membership of political parties. In addition, we observe two classes with consistently high and
consistently low probabilities of assigning importance to all of the behaviours, here labelled the
“Maximal” and the “Subject” classes respectively.

At the higher level, the estimatedmodel includes three latent classes for the countries, labelled
belowasHL1,HL2 andHL3.Considering first the conditional probabilities for the four individual-
level classes given these country-level classes (see Table 4), we can see that HL1 has clearly the
highest conditional probability for the individual “Duty” class, HL2 for the “Maximal” class and
HL3 for the “Engaged”. The country classes do not differ in probabilities of the passive “Subject”
class of individuals, which are in any case consistently low. Table 5 shows the assignment of
countries to the classes, when the assignment is done based on highest posterior probabilities
given the survey responses in the countries. Here there are no very clear patterns. Only two
countries (Denmark and Netherlands) are assigned to HL1, while the other two classes each
include a fairly heterogeneous subset of the rest of the countries.

Table 6 presents estimates of the parameters of main interest in the analysis, the coefficients
of the structural model for the lower-level classes given individual-level covariates, separately
within each of the higher-level classes. We note first that the one-step and two-step estimates and
their standard errors are very similar, as would be expected given the previous simulation results.
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Figure 5.
Relative computation time for the one-step, two-stage and two-step estimators for the 24 simulation condition, averaged
over the 500 replicates. The one-step estimator’s estimation time is taken as reference. Confidence bands based on average
values ± their Monte Carlo standard deviation.

Figure 6.
Measurement model at the lower (individual) level: line graph of the class-conditional response probabilities.
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Table 2.
Number of respondents per country of the third wave (2016) of the IEA survey used for the analysis.

Country Sample size

Belgium 2750
Bulgaria 2682
Chile 4753
Colombia 4992
Denmark 5692
Germany 1313
Dominican Republic 2779
Estonia 2770
Finland 3037
Hong Kong 2553
Croatia 3655
Italy 3274
Republic of Korea 2557
Lithuania 3422
Latvia 3000
Mexico 4987
Malta 3317
Netherlands 2692
Norway 5740
Peru 4713
Russia 7049
Slovenia 2664
Sweden 2828
Taiwan 3904

Table 3.
Summary statistics for the measurement model.

Value

log-likelihood − 459295.5
BIC 919262.1
BIC (J ) 918778.5
entrR2

low 0.999
entrR2

high 0.999

npar 59

Considering the coefficients themselves, note that they compare each of the other classes to the
“Maximal” class for whom all of the behaviours are to a greater or less extent considered important
to good citizenship. Compared to this class, the relative probability of the (overall quite small)
“Subject” class for whom none of the behaviours are important, is higher for individuals who are
boys, speak the native language at home, have fewer books at home, and have low educational
aspirations. The probabilities of the “Engaged” class, who are partly similar to “Maximal” but
place less importance on many of the traditional political activities, are relatively higher for
girls, those who have larger number of books at home, and for native speakers. For the “Duty”
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Table 4.
Estimated proportions of low-level (individual-level) classes conditional on high-level (country-level) class membership.

HL 1 HL 2 HL 3

Maximal 0.207 0.576 0.317
Engaged 0.290 0.277 0.478
Subject 0.031 0.029 0.044
Duty 0.471 0.118 0.161

Table 5.
Assignment of countries to the high-level classes, based on the maximum a posteriori (MAP) classification rule. M = 3.

Country HL 1 HL 2 HL 3

Belgium 0 0 1
Bulgaria 0 0 1
Chile 0 0 1
Colombia 0 0 1
Denmark 1 0 0
Germany 0 0 1
Dominican Republic 0 1 0
Estonia 0 0 1
Finland 0 0 1
Hong Kong 0 1 0
Croatia 0 1 0
Italy 0 1 0
Republic of Korea 0 1 0
Lithuania 0 0 1
Latvia 0 0 1
Mexico 0 1 0
Malta 0 0 1
Netherlands 1 0 0
Norway 0 0 1
Peru 0 1 0
Russia 0 1 0
Slovenia 0 0 1
Sweden 0 0 1
Taiwan 0 1 0

class, which differs from the “Engaged” in placing much less importance on direct activism, the
probabilities relative to “Maximal” are higher for boys and those with low educational aspirations.
For the comparisons of other pairs of classes, these estimates also imply, for example, that the
probabilities of “Engaged” relative to “Duty” are generally higher for girls than for boys. These
patterns of the coefficients are broadly similar in each of the country classes, with some variation
in detail.

Finally, we report CPU time of estimation and the number of iterations until convergence for
the two approaches (Table 7). In this real-data example, the two-step estimator takes only about
22 s to reach convergence, with 26 EM iterations. The one-step estimator requires 261 iterations
and a running time of around 4.5min to reach convergence. Each iteration requires about 0.93 s
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Table 6.
Estimated coefficients of structural models, i.e. multinomial logistic models for membership of the four individual-level
latent classes conditional on covariates, separately within each of the three country-level latent classes (HL1, HL2 and
HL3).

Engaged Subject Duty
One-step Two-step One-step Two-step One-step Two-step

HL 1
Intercept 0.875*** 0.944*** 0.923*** 0.757*** 0.945*** 0.934***

(0.009) (0.009) (0.010) (0.010) (0.159) (0.156)
Female 0.359*** 0.338*** −0.983*** −1.072*** 0.140 0.106

(0.092) (0.090) (0.053) (0.052) (0.082) (0.080)
Number of books −0.016 −0.014 −0.36*** −0.345*** −0.166 −0.173

(0.080) (0.079) (0.080) (0.079) (0.175) (0.171)
Education goal 0.018 0.013 −0.819*** −0.865*** 0.232** 0.207

(0.212) (0.228) (0.181) (0.202) (0.088) (0.095)
Mother education −0.308** −0.311 −0.314 −0.327 −0.007 −0.002

(0.116) (0.124) (0.135) (0.148) (0.133) (0.143)
Father education −0.108 −0.117 −0.143 −0.131 −0.164 −0.164

(0.256) (0.294) (0.134) (0.134) (0.073) (0.072)
Non-native language level −0.437*** −0.428*** −0.03 −0.155 −0.446*** −0.408***

(0.042) (0.042) (0.068) (0.067) (0.065) (0.065)
HL 2
Intercept −0.760*** −0.749*** −1.404*** −1.503*** −1.076*** −1.099***

(0.064) (0.064) (0.140) (0.139) (0.072) (0.073)
Female 0.199*** 0.180*** −0.651*** −0.672*** −0.255*** −0.278***

(0.036) (0.036) (0.023) (0.023) (0.036) (0.036)
Number of books −0.133*** −0.130*** −0.247*** −0.265*** −0.090 −0.087

(0.029) (0.029) (0.029) (0.029) (0.072) (0.071)
Education goal 0.025 0.014 −0.536*** −0.555*** −0.306*** −0.313***

(0.105) (0.111) (0.079) (0.084) (0.042) (0.045)
Mother education 0.030 0.035 0.090 0.088 0.191** 0.188**

(0.056) (0.059) (0.060) (0.064) (0.060) (0.064)
Father education 0.018 0.016 −0.160 −0.166 0.022 0.018

(0.157) (0.166) (0.078) (0.079) (0.045) (0.045)
Non-native language level −0.127*** −0.114*** −0.306*** −0.338*** 0.299*** 0.290***

(0.027) (0.027) (0.040) (0.040) (0.037) (0.037)
HL 3
Intercept 0.218*** 0.260*** −0.044 −0.217** −0.040 −0.019

(0.037) (0.037) (0.076) (0.077) (0.071) (0.072)
Female 0.301*** 0.282*** −0.587*** −0.616*** −0.230*** −0.261***

(0.032) (0.032) (0.019) (0.019) (0.035) (0.034)
Number of books −0.083** −0.081** −0.358*** −0.374*** −0.083 −0.094

(0.027) (0.027) (0.027) (0.026) (0.059) (0.058)
Education goal 0.148 0.124 −0.547*** −0.544*** −0.411*** −0.434***

(0.099) (0.106) (0.063) (0.067) (0.035) (0.037)
Mother education 0.040 0.044 −0.033 −0.033 0.183*** 0.176***

(0.050) (0.053) (0.048) (0.051) (0.048) (0.051)
Father education −0.097 −0.097 −0.125 −0.125 0.037 0.038

(0.099) (0.106) (0.078) (0.079) (0.040) (0.041)
Non-native language level −0.426*** −0.414*** −0.107** −0.095 −0.006 0.004

(0.023) (0.023) (0.039) (0.039) (0.036) (0.036)

The “Maximal” class is taken as the reference level for the response class. The number of books available in
the respondent’s home is treated as a proxy for the respondent’s socio–economic status. Both simultaneous
(one-step) and the proposed two-step estimators of the same parameters are shown, with standard errors in
parentheses.
***p-value<0.01, **p-value<0.05, *p-value<0.1.
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Table 7.
CPU time to estimation in seconds, and number of iterations until convergence for the twomethods - one-step and two-step
estimators.

CPU time (in seconds) Number of iterations until convergence

One-step 242.89 261
Two-step 22.01 26

to run for the one-step estimator, while the two-step estimator uses 0.85 s and much fewer EM
iterations overall.

6. Discussion

In this paper we proposed a two-step estimator for the multilevel latent class model with
covariates. It concentrates the estimation of the measurement model in a single first step. In the
second step, covariates are added to the model, keeping the measurement model parameters fixed.
The approach represents a simplification over the recently proposed two-stage estimator (Bakk
et al., 2022) by having only two steps instead of multiple sub-steps in estimating the measurement
model.

We discussed model identification of the unconditional model, derived an Expectation Max-
imization algorithm for efficient estimation of both steps and presented second-step asymptotic
standard errors that account for the variability in the first step. The simplified two-step proce-
dure makes it possible to apply the standard theory of Gong and Samaniego (1981) for obtaining
unbiased standard errors, a further improvement over the two-stage estimator. An effective ini-
tialization strategy, using (dissimilarity–based) cluster analysis, was also proposed.

In the simulation study, we observed that the performance of the proposed estimator in terms
of bias is very similar to the benchmark simultaneous (full-information ML) estimator—and
similar to that of the two-stage estimator—with nearly no efficiency loss. The two-step estimator
was up to 4 times faster than the simultaneous estimator. It should bementioned that, in conditions
where the entropy of the LC model is low, all estimators show relatively higher variability and
bias, a finding in line with previous research on stepwise estimators for single-level LC models
(Vermunt, 2010) .

In the real data example, we found interesting lower and higher level class configurations,
consistent with existing literature on the topic of citizenship norms (see, e.g., (Oser et al., 2022)
). In the structural model, the model allows us to investigate the associations between covariates
and the latent classes, including the possibility of group-level heterogeneous effects of covariates
on lower class membership. In addition, we found a considerable CPU running time difference
between the one-step and the two-step estimators, which was even larger than what we observed
in the more controlled simulation environment. More specifically, whereas the former required
4.5min to reach convergence, the latter only needed 22s. From an applied user’s perspective,
such a CPU time gain can be substantial on a larger scale. As an example, consider a data set
with larger low- and high- level sample sizes: if simultaneous estimation took 2h, our two-step
estimator would produce final estimates in only roughly 12min. We expect, based on existing
literature on two-step estimators (see, e.g., (Di Mari & Maruotti, 2022) ), such a gap to increase
in model complexity - i.e. number of lower/higher level classes and/or available predictors. The
difference in time is also multiplied if the models are estimated repeatedly, for example when
different sets of covariates or different numbers of latent classes are explored.
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There are some issues that deserve future research. First, while we describe two possible
approaches for class selection in Sect. 3.3, this is not the main focus of the current work. Further
research should investigate class selection using the different estimators. Second, we have pro-
posed estimates for the asymptotic variance–covariance matrix based on the outer product of the
score. Deriving Hessian– and/or sandwich–based (White, 1982) standard errors, e.g. for small
high-level sample size and complex sampling scenarios, can be interesting topics for future work.
Third, we have discussed multimodality of the likelihood surface as a long-standing well-known
characteristic feature related, in general, to mixture models. The EM algorithm’s properties have
been largely studied over the years - i.e., monotonicity, and global convergence (see, e.g., (Red-
ner & Walker, 1984) ). The EM has several advantages, e.g., low cost per iteration, economy of
storage and ease of programming. However, in practice, due to multimodality, convergence to
global or local optima depends on the choice of the starting point (Wu, 1983) . As such, there
is no systematic, neither theoretical nor simulation based, study of the behavior of the EM with
two-step estimators. We speculate that, given that the second step operates in a lower dimensional
space compared to simultaneous estimation, two-step estimators should somewhat restrain the
initialization problem. This point, being not the focus of the current work, certainly deserves
specialized attention. For this, and related matters, we defer to future research.

Acknowledgments

The Authors thank Johan Lyrvall for his valuable comments on the manuscript. Di Mari
acknowledges financial support fromaUniversity ofCatania grant (StartingGrant FIRE, PIACERI
2020/2022), and Oser by a European Union grant (ERC, PRD, project number 101077659).

Funding Open access funding provided byUniversità degli Studi di Catania within the CRUI-CAREAgree-
ment.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

A. Appendix A: Computation of the Score Vector for the Multilevel Latent Class Model

A.1. The unconditional multilevel LC (first step)

Let us reparametrize the unconditional multilevel LC model of Equation (2) according to the
following log-linear equations
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

log

[
φh|t

1 − φh|t

]
= βh|t

log

[
ωm

ω1

]
= αm

log

[
πt |m
π1|m

]
= γt |m,

(23)

In addition, let us conveniently rewrite (9) as follows

Q(α,�, B) = Q(α) + Q(�) + Q(B), (24)

where α = (α2, . . . , αM )′, � is a T − 1 × M matrix with elements γt |m , for m = 1, . . . , M and
t = 2, . . . , T , B is an H × T matrix with elements βh|t for t = 1, . . . , T and h = 1, . . . , H , and

Q(α) =
J∑

j=1

M∑

m=1

û j,m log(ωm) (25)

Q(�) =
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

v̂i, j,t,m log(πt |m) (26)

Q(B) =
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

v̂i, j,t,m{Yi jh log(φh|t ) + [1 − Yi jh] log(1 − φh|t )}. (27)

Recalling that ∂�(θ)/∂θ ′ = ∂Q/∂θ ′, the i j-th contribution to the score has the following three
blocks, with generic elements

si j,θ1(α̂m) = û j,m − ωm (28)

si j,θ1(γ̂t |m) = (q̂i, j,t |m − πt |m)û j,m (29)

si j,θ1(β̂h|t ) =
M∑

m=1

v̂i, j,t,m(Yi jh − φh|t ). (30)

Thus, an estimate of 	11 can be obtained as follows

	̂11 = N−1
J∑

j=1

n j∑

i=1

si j (α̂, �̂, B̂) si j (α̂, �̂, B̂)′ (31)

A.2. The multilevel LC model with covariates (second step)

Let us define π
i j
t |m = exp(γ ′

tmZi j )

1+∑T
s=2 exp(γ

′
tmZi j )

. The Q function of Equation (17) can be rewritten under

the log-linear parametrizations introduced above, except for the second block which is as follows

Q(�) =
J∑

j=1

n j∑

i=1

M∑

m=1

T∑

t=1

v̂i, j,t,m log(π i j
t |m) (32)

https://doi.org/10.1007/s11336-023-09929-2 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-023-09929-2


1168 PSYCHOMETRIKA

The second block of the i j-th contribution to the score as generic K + 1 contributions

si j,θ2(γ̂ tm) = û j,m(q̂i, j,t |m − π
i j
t |m)zi j . (33)

B. Extra Tables and Figures

Table 8.
Average relative efficiency for the two-step and two-stage estimator relative to the one-step estimator (SD over benchmark
one-step SD), averaged over covariate effects.

Condition Two-stage Two-step

1 0.985 0.985
2 1.000 1.000
3 0.99 0.99
4 0.995 0.995
5 0.989 0.989
6 0.998 0.998
7 0.997 0.997
8 1.000 1.000
9 0.997 0.997
10 0.999 0.999
11 0.999 0.999
12 1.000 1.000
13 1.000 1.000
14 1.000 1.000
15 1.000 1.000
16 1.000 1.000
17 1.000 1.000
18 1.000 1.000
19 0.983 0.983
20 0.998 0.998
21 0.993 0.993
22 1.005 1.005
23 0.996 0.996
24 1.004 1.004
25 1.001 1.001
26 0.999 0.999
27 0.997 0.997
28 1.000 1.000
29 1.001 1.001
30 0.999 0.999
31 0.999 0.999
32 1.000 1.000
33 1.000 1.000
34 1.000 1.000
35 1.000 1.000
36 1.000 1.000
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