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Abstract

In [15], using methods from ergodic theory, a longstanding conjecture of Erdds (see [5, Page 305]) about sumsets
in large subsets of the natural numbers was resolved. In this paper, we extend this result to several important classes
of amenable groups, including all finitely generated virtually nilpotent groups and all abelian groups (G, +) with
the property that the subgroup 2G := {g+g : g € G} has finite index. We prove that in any group G from the above
classes, any A C G with positive upper Banach density contains a shifted product set of the form {tb;b;: i < j},
for some infinite sequence (b;),en and some ¢t € G. In fact, we show this result for all amenable groups that
posses a property which we call square absolute continuity. Our results provide answers to several questions and
conjectures posed in [13].
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2 D. Charamaras and A. Mountakis

1. Introduction

In [15], Bryna Kra, Joel Moreira, Florian K. Richter and Donald Robertson, using methods from ergodic
theory, proved that every subset A of the positive integers with positive upper Banach density contains
{b1+by+t:b| # by € B} for some infinite set B C A and some ¢ € N. This resolved a longstanding
conjecture of Erdds (see [5, Page 305]).

A natural question to ask is whether this result generalizes to other countable groups, such as Z¢ for
d > 2 or the discrete Heisenberg group, for example. The purpose of this paper is to extend the result in
[15] to several important classes of amenable groups, including all finitely generated virtually nilpotent
groups and all abelian groups (G, +) with the property that the subgroup consisting of the elements
2g := g +g, where g € G, has finite index. To this end, we first extend the result to all amenable groups
satisfying a property that we call square absolute continuity (see Definition 1.4). Then we show that
our result applies to the aforementioned classes of groups by showing that they are (virtually) square
absolutely continuous. Our main results provide partial answers to some questions and conjectures
posed in [13] regarding product sets in large subsets of amenable groups.

Throughout, let G denote a countable group. Let us start with some basic definitions.

Definition 1.1. Let (G, -) be a group. A sequence @ = (®y )y e of finite subsets of G is

o aleft Folner sequence if it satisfies

. 1gPN N Dy . . |gPn2Dy|

lim =——— =1 orequivalently, Ilim —— =0
N —o0 |q)N | N—eo |(I)N |

forany g € G, and
o aright Fglner sequence if it satisfies
OnygNO Dngrd

lim M =1 orequivalently, lim M =0

Now Dy Now O]

forany g € G.
If both conditions are satisfied, then @ is a two-sided Fglner sequence.

We remark that if a group admits a left (or right) Fglner sequence, then it admits a two-sided Fglner
sequence. Amenable groups, which are the central object of our study, are defined as follows:

Definition 1.2. A group (G, -) is called amenable if it admits a left Fglner sequence.

The most common example of an amenable group is Z¢, for any d € N. Other examples of amenable
groups are finite groups, abelian groups, solvable groups and finitely generated groups of subexponential
growth. In addition, products of amenable groups and virtually amenable groups are amenable. Fglner
sequences are useful to define notions of density in amenable groups.

Definition 1.3. Let (G, -) be an amenable group, ® a left (right) Fglner sequence, and let A ¢ G. Then
the left (right) upper density of A with respect to @ is defined as

- ANO
de(A) :=limsup M
N —oo |(I)N|

We say that A has positive left (right) upper Banach density if it has positive left (right) upper density
with respect to some left (right) Fglner sequence. We also say that A has positive upper Banach density
if it has positive upper density with respect to some two-sided Fglner sequence.

Note that if G is an amenable group, and A C G has positive left upper Banach density, then this
does not necessarily mean that A has positive right upper Banach density.
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Given a group (G, -) and a sequence B = (by,),en C G, we define
B4B:={bjb;:i<j},
Bw» B :={bibj:i>j},
and
BOB:={bb;:i#+j}.

If G is abelian, then B« B = B» B = B ® B, which we also denote by B & B if the group operation
in G is written using additive notation. We refer to the map sg : G — G, sg(g) = g as the squaring
map on G. The image of this map is the subset of G consisting of all the elements of the form g2, where
g € G. We denote this by G2 (i.e., sg(G) = G?), and we often refer to it as the subset of squares.

Definition 1.4. Let G be an amenable group and ¢ : G — G be a map. We say that G is ¢-absolutely
continuous if G admits two left Fglner sequences ® = (On)yen and ¥ = (Py )y en satisfying the
following: for any & > 0, there exists some & > 0 such that for any u : G — [0, 1] satisfying

1
limsupq)— Z u(g) <46,
N —oo | Nl g2edn

we have that

D u(e(e) <.

gE\PN

li !
1m Ssu
N~>oop |IPN |

If, in particular, ¢ = s, then we say that G is square absolutely continuous.

Remark 1.5. For aset C ¢ G, we denote by C~! the set C™! := {g~! : g € C}. Note that when ¢ is the
squaring map ¢ = s¢, the existence of two left Fglner sequences in Definition 1.4 is equivalent to the exis-
tence of two right Fglner sequences: for any pair @, ¥ of left Fglner sequences, the pair ®~! = ((I)]_\,1 )N eNs
p-l = (‘P]_VI)N N is a pair of right Fglner sequences, and if ®@, ¥ satisfy the conditions of Definition 1.4,
then so do ®~!, W~!. More precisely, given & > 0, there is some § > 0 so that the conditions of Definition
1.4 are satisfied for ®,¥. Let u : G — [0, 1] satisfy lim supy _,, ﬁ de(bl—vl u(g) < 6 and consider
N

the map w : G — [0, 1], w(g) := u(g™"). Then limsupy _,, @ 2gewy W(g) < 0, and therefore,
lim supy _, oo W Ygewy W(g%) < &, which in turn implies that limsupy ., I‘P#,‘V‘I Yoewy u(g?) < e.

1.1. Main results

Throughout, we say that a sequence (b,)nen in G is infinite if the set {b,,: n € N} is infinite. The first
main theorem of this paper is the following:

Theorem 1.6. Let G be a square absolutely continuous group and A C G with positive left upper
Banach density. Then there exist an infinite sequence B = (by)nen C A and some t € G such that

B4BcCt A

Theorem 1.6 provides a positive answer to [13, Question 5.16], with the extra assumption that G is
square absolutely continuous, and under the weaker assumption that the set A has positive left upper
Banach density, instead of positive upper Banach density.

Remark 1.7. Note that Theorem 1.6 immediately implies an analogous result for right upper Banach
density instead of left upper Banach density. Indeed, since by Remark 1.5, square absolute continuity
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is preserved through the map g +— g~!, Theorem 1.6 is equivalent to the assertion that for any A ¢ G
with positive right upper Banach density, there exists an infinite sequence C = (¢p)nen C A and some
r € G such that

C»CcAr.

Before continuing, let us recall the following definitions for a group G:

o G is nilpotent if its lower central series is finite, that is to say there is n € N such that
G=Go>G> - >»G,={ec},

where G4 := [G;, G] is the commutator group of G; and G, that is, the subgroup of G generated by
the elements of the form hgh~'g~!, where h € G;,g € G.

o G is finitely generated if there exist g1,...,8, € G such that any element of G can be written as
product of g1, ..., gn-

o G is torsion-free if it does not have any nontrivial element of finite order, that is to say, forany g € G
with ¢ # e and any n € N, we have g" # eg.

o If Pis a property of groups, then we say that a group G is virtually P if it has a finite-index subgroup
that has the property P.

In any finitely generated nilpotent group G, there exist some s € N (depending on the degree of
nilpotency and the number of generators of G), some a; € G and some functions #; : G — Z, for
1 < i < s, such that any x € G can be written as x = atl' 2 -~a§’(x). The s-tuple (ai,...,as) is a
Mal’cev basis, and the s-tuple (¢1,...,1ts) is a Mal’cev coordinate system with respect to this Mal’cev
basis. If G is also torsion-free, then the coordinate maps are injective, and hence, we can identify G
with Z° and it is convenient to also identify any x € G with its coordinates (1 (x),...,ts(x)) € Z°. The
above facts about Mal’cev bases can be found in [ 1, Chapter 17.2].

Theorem 1.8. Every torsion-free finitely generated nilpotent group is square absolutely continuous.

Combining Theorems 1.6 and 1.8, we have that every torsion-free finitely generated nilpotent group
satisfies the conclusion of Theorem 1.6. In fact, we prove the following slight strengthening:

Corollary 1.9. Let G be a torsion-free finitely generated nilpotent group and A C G with positive left
upper Banach density. Then there exist an infinite sequence B = (by),en C A and some t € G such that

B4BcC A

Moreover, given a Mal’cev coordinate system (t,...,ts) on G, we can choose B so that the following
holds: for any finite set C C Z and any 1 < i < s, the set {b € B: t;(b) € C} is finite.

Furthermore, we are able to extend the first statement of Corollary 1.9 to all finitely generated
virtually nilpotent groups.

Corollary 1.10. Let G be a finitely generated virtually nilpotent group and A C G with positive left
upper Banach density. Then there exist g € G, an infinite sequence B = (b,),en C g7 A, and some
t € G such that

B4BcCt A,

In particular, this holds for the group UT(n,F),” where n € N and F = (F,+,-) is any infinite
commutative unital ring with the property that the additive group (F,+) is finitely generated.

1UT (n, F) is the unitriangular n X n matrix group with entries from F. Note that U (3, Z) is the well-known 3 x 3 Heisenberg
group.
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Remark 1.11. Note that the class of finitely generated virtually nilpotent groups coincides, in view of
Gromov’s theorem [8], with the class of finitely generated groups of polynomial growth.

The final part of this subsection is concerned with sumsets in abelian groups. Let G = (G, +) be an
abelian group. We write 2g to denote the element g + g for any g € G. Moreover, we refer to the map
sG : G — G as the doubling map, and its image is now the subgroup of G consisting of all elements of
the form 2g, where g € G. We denote this subgroup by 2G (i.e., sg(G) = 2G), and we often refer to it
as the doubling subgroup.

In [13, Conjecture 5.14], it is conjectured that in any countable abelian group G, every set of positive
upper Banach density contains a set of the form B@® B+t = {b; + by +t : by # by, € B} for an
infinite set B C G and some ¢t € G. It follows from Corollary 1.10 that this conjecture holds under
the additional assumption that G is finitely generated, and moreover, it extends [15, Theorem 1.2] from
(N, +) to all finitely generated abelian groups. In fact, we extend [15, Theorem 1.2] to an even larger
collection of abelian groups that contains all the finitely generated abelian groups along with some
infinitely generated ones. The following theorem allows us to do so:

Theorem 1.12. Every abelian group whose doubling subgroup has finite index is square absolutely
continuous.

The following corollary is an obvious consequence of Theorems 1.6 and 1.12:

Corollary 1.13. Let (G,+) be an abelian group such that 2G is a finite-index subgroup of G, and let
A C G with positive upper Banach density. Then there exist an infinite set B C A and some t € G such
that

B®BCA-t.

In particular, this holds for

o all finitely generated abelian groups,” and
o (F%,+),° where p is any odd prime.

Corollary .13 is in fact optimal, in the sense that 2G being a finite-index subgroup of G is a necessary
assumption. As shown in a recent paper of Ethan Ackelsberg [1], if 2G has infinite index in G, then
one can always find a set A with upper Banach density arbitrarily close to 1 which does not contain any
shifted sumset # + B @ B of some infinite set B. Therefore, Corollary 1.13 along with the work in [1]
fully resolve [13, Conjecture 5.14].

We remark that Corollary 1.13 can also be proved independently of Theorem 1.6, meaning that by
slightly modifying the proof of Theorem 1.6, one can directly obtain the result for abelian groups with
finite-index doubling subgroup without showing that such groups are square absolutely continuous.

1.2. More product sets and open questions

The following remark shows that in the formulation of Theorem 1.6 one can replace left shifts with right
shifts and the statement remains true.

Remark 1.14. Let G and A be as in Theorem 1.6. Then there exist some ¢ € G and some B = (b,,),en C
tAt~" such that

B4BcC Ar !,

To see why, let B ¢ A and t € G such that B’ « B’ C 1A, as guaranteed by Theorem 1.6, and then let
B =1tB't\.

2It is not hard to check that in finitely generated abelian groups, the doubling subgroup has finite-index.
3F( is the direct product of infinitely many copies of Fj, = Z/pZ, and it is clearly infinitely generated abelian.
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Aside from replacing left shifts with right shifts, it is also natural to ask whether one can replace
product sets of the form B « B with those of the form B » B, and additionally when the restriction B ¢ A
can be imposed. The following table addresses this question in the case when G is a square absolutely
continuous group.

B<«Bct'AforBcA True (Theorem 1.6; for g(p(A) > 0 for some left Fglner @)
B<«BcAt ! forBcG True (Remark 1.14; for do (A) > 0 for some left Fglner @)
B<«BcCcAt !, forBcA False (Example 6.1; with de (A) > 0 for some left Fglner @)
B»Bct'A forBcG False (Example 6.2; with de (A) = 1 for some left Fglner @)
B»Bc At forBcG False (Example 6.3; with de(A) = 1 for some left Fglner @)

The above table shows that Theorem 1.6 is optimal for sets of positive left upper Banach density in
noncommutative groups, in the sense that it is not necessarily true that one can find a product set of
the form B © B (or even B » B) inside shifts of such sets. In addition, we remark that the table above
provides a partial answer to [13, Question 5.19].

It remains interesting to ask whether product sets of the form B ® B can be found in sets with positive
upper Banach density. Unfortunately, our methods here are insufficient to handle this case. In this spirit,
we conclude this section with the two questions below. We remark that the second one is a special case
of [13, Question 5.17].

Question 1.15. Let G be a square absolutely continuous group and A C G be a set of positive upper
Banach density. Is it true that there exists some infinite set B C G such that

BoBctr'AuAr!

for some t,r € G?

Question 1.16. Let G and A be as in Question 1.15. Is it true that there exists some infinite set B ¢ G
such that

BoBcit'Ar!

for some t,r € G?

1.3. Proof'ideas

To prove Theorem 1.6, we follow an ergodic-theoretic approach, and we employ ideas similar to the
ones used in [15] in the setting of (N, +). This approach is based on methods that were introduced in
[14] to generalize another sumset conjecture of Erdds, which was initially proved in [18] by Moreira,
Richter and Robertson. However, the generality of the setting of amenable groups compared to (N, +)
causes several issues and complications that we need to handle differently. These issues, along with the
new ideas we develop to deal with them, are briefly discussed below.

After translating Theorem 1.6 into a dynamical statement (see Theorem 3.8), we reduce the problem
to finding certain dynamical configurations given by limit points of orbits of ergodic measure-preserving
G-actions, called Erdds progressions (see Definition 3.2). The natural environment in which one can
study such progressions is the Kronecker factor of a system, as Erdds progressions are simply 3-term
arithmetic progressions there.

One of the main obstructions we had to overcome in our proof is the lack of commutativity of G. The
most notable among the issues that this leads to is that the Kronecker factor does not have the structure
of an abelian group, but instead, it is a homogeneous space Z = K/H for some compact group K. This
makes the study of Erdds progressions more technically challenging. To be more precise, the abelian
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nature of the Kronecker factor in the setting of (N, +)-actions is heavily used in [15]. Consequently, due
to the absence of commutativity in our case, many of the techniques in [15] do not generalize easily
to our setting. Another difficulty that arises in noncommutative groups is the erratic behavior of the
set of squares G2. In particular, orbits of points along G> may be trapped in zero-measure regions,
which causes serious trouble in finding Erdds progressions. The assumption that G is square absolutely
continuous is critical in avoiding this scenario. In addition, we need an extension of a result of Host and
Kra ([9, Proposition 6.1]) concerning actions of (N, +), to the more general setting of amenable group
actions (see Lemma 3.5, proof in Appendix A).

2. Preliminaries

In this section, we state all the preliminaries that will be useful in the rest of the paper regarding classic
notions and theorems of ergodic theory of actions of amenable groups. So, for the rest of the section, G
denotes an arbitrary countable and discrete amenable group.

Basics on G-systems: Given a compact metric space X = (X, dx), a continuous actionT = (Tg)geG
of G on X is a collection of continuous functions T, : X — X such that for any g1, g2 € G, Ty, 0 Ty, =
Ty, 4, Given such an action, we call the pair (X, T) a topological G-system.

Given a topological G-system (X, T) and apointx € X, we defineits orbitas Or (x) = {Tgx : g € G},
and we say that the point is transitive if Or (x) is dense in X.

Fix a topological G-system (X, T). Let M (X) denote the space of Borel probability measures on X,
equipped with the weak™ topology, which is compact and metrizable. A measure y € M (X) is said to be
T-invariant if it is invariant under T, for all g € G. Amenability of G implies that there are T-invariant
measures in M (X). The subset of M(X) consisting of T-invariant measures is denoted by M” (X), and
it is a nonempty closed and convex subset of M (X). The Borel o-algebra on X is denoted by Bx or
just & if no confusion may arise.

For u € MT (X), the action T on the Borel probability space (X, u) is called a measure-preserving
G-action, and (X, u, T) is called a measure-preserving G-system. Note that we omit writing the symbol
for the o-algebra, and from now on, whenever this happens, the implied o-algebra will be the Borel
o -algebra. For simplicity, we refer to the above as G-actions, and G-systems, respectively. Recall that
all G-actions considered throughout are continuous.

Given a G-system (X, u,T), one can define an action, which by abuse of notation will again be
denoted by T = (Tg)geG, of G on L*(X) by Ty : L*(X) — L*(X), Ty f = f o Tg. It is not hard see that
for all g € G, T, is an isometry of L?(X). Note also that since G acts from the left on X, then G acts
from the right on L?(X).

We remark that we are only considering G-systems where G acts on the prescribed space from the
left, and then any associated Fglner sequence will be considered left, without mentioning it, unless it is
necessary.

Note that we could define G-systems more generally as follows: a G-system is a quadruple
(X, A, u,T), where X is any set, A is a o-algebra on X, u is a probability measure on (X,.4) and
T is a left action of G on X which is measurable and preserves u. We chose to not define systems in that
generality, as for our purposes, we will always work with the more specific G-systems defined above.
The only occasion where we need this more general definition of G-systems is when we define the
Kronecker factor right after Theorem 2.10, in which case A is a sub-o--algebra of the Borel o--algebra.

Product G-system: Given two G-systems (X, u,T) and (Y, v, S), we define the product G-system
(X xY,uxv,TxS), where the underlying o-algebra is the product of the Borel o--algebras on X and
Y, which coincides with the Borel o-algebra on X X Y, and the actionis 7 X S = (T X Sg)gec-

Factors of G-systems: Given two G-systems (X, u, T) and (Y, v, S), we say that (Y, v, S) is a factor
of (X, u,T) if there exists a measurable map 7 : X — Y, which we call a factor map, satistying
u(7~'E) = v(E) for any measurable E c Y and forany g € G, w o T, = Sg o mu-almost everywhere on
X. When the former is true, we say that v is the push-forward of x4 under &, and we write 7u = v. When
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additionally, the factor map r is continuous and 7 o T, = S, o 7 holds everywhere on X for any g € G,
we say that 7 is a continuous factor map and (Y, v, S) is a continuous factor of (X, u,T).

Ergodicity and ergodic theorems for G-systems: A G-system (X, u, T) is called ergodic if for any
measurable set A the following holds:

T,'A=Aforallge G = u(A) =0orpu(A) =1.

Given a G-system (X, u,T), let &/ be a sub-o-algebra of %. For f € L*(X, ), the conditional
expectation of f on o, denoted by E,(f | &), is defined as the orthogonal projection of f on the
closed subspace L>(X, o, u) of L*>(X, u). We also denote the sub-c-algebra of the T-invariant sets by
T =1(T); that is,

I=1(T) :={E € B : T;'E = E forall g € G}.

Theorem 2.1 (Mean Ergodic Theorem for G-systems, see [7, Theorem 3.33]). Let (X, u,T) be a G-
system, and let ® be a Fglner sequence. Then, for any f € L*>(X),

L S - E(1D

on]| S

as N — oo in L*(X). In addition, if the system is ergodic, the ergodic averages above converge to
[ f dp.
X

Measure disintegration and ergodic decomposition: When X is a compact metric space, the space
M (X) of Borel probability measures on X can be endowed with a o-algebra M such that the space
(M(X), M) is a standard Borel space. The following theorem about disintegrations of measures is very
useful.

Theorem 2.2 (Disintegration of measures, see [10, Chapter 2, Section 2.5]). Let X be a compact
metric space, % the Borel o-algebra on X and u a probability measure on (X, 3B). Let also D
be a sub-o-algebra of RB. Then there is a (D, u)-almost everywhere defined and measurable map
(X,9) - (M(X), M), x — uy with the following properties:

o For every f € L' (X, p), the function x fX fduy is in LY(X, D, ), and for all D € D, we

have fD fdu= fD (/X f dpx) du(x). In particular, this implies that /X fdux =Eu(f | 2)(x) for
(D, w)-almost every x € X.
o For (D, u)-almost every x € X, ux([xlg) =1, where [x]g = NxepeaD.

The map satisfying the above properties is unique modulo (D, u)-null sets and is called the disintegration
of the measure y over the sub-o-algebra D. In that case, we write u = fX oy du(x).

In this paper, we will extensively make use of disintegrations over (continuous) factor maps. Let
n:(X,u,T) = (Y,v,S) be a factor map between two G-systems. Given a function f € L' (X, u), the
conditional expectation E, (f | Y) of f with respect to the factor Y is the function in L'(Y,v) defined by

/ B, (f 1)) dv(y) = / F() dulx)
B 7~1(B)

for every Borel measurable set B C Y. Then Theorem 2.2 gives a disintegration y + u, defined on Y,
which is unique up to v-null measure sets, and satisfies the following:

o forevery f € L'(X, u), for v-almost every y € Y,

B, (f 1 7)(y) = /X £ duy, @1

https://doi.org/10.1017/fms.2024.155 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.155

Forum of Mathematics, Sigma 9

o for v-almost every y € ¥, u, (1 ({y})) = 1, and finally,
o forany g € G and for v-almost every y € Y, (Tg)py = pis,y-

Let (X, u,T) be a G-system. Consider the (unique) disintegration of u with respect to Z = Z(T)
given by Theorem 2.2. This disintegration is called the ergodic decomposition of . Equivalently, we
say that the disintegration x — w, is the ergodic decomposition of y if for any f : X — C measurable
and bounded,

/X £ dity = EBu(f 1 D) () (22)

holds for (Z, u)-almost every x € X.

Theorem 2.3 (Ergodic decomposition of G-systems, see [7, Theorem 3.22]). If (X, u, T) is a G-system
as above, then for (I, u)-almost every x € X, the measure iy is T-invariant and the system (X, py,T)
is ergodic.

Generic points and the support of a measure: In addition, we will need the notion of generic points:

Definition 2.4. Let (X, u,T) be a G-system and let @ be a Fglner sequence. A point a € X is called
generic for y along @ if for all f € C(X), we have

. 1
Jim = 3 fta) = [ 1 d

gECDN X

or equivalently if

1
lim —— OT,a = M,
LTI

where J, is the Dirac mass at x € X and the limit is in the weak™ topology. If a is generic for u along
@, then we denote this by a € gen(u, ®).

Moreover, we will need the notion of the support of a measure. The support of a Borel probability
measure (£ on a compact metric space X is the smallest closed full-measure subset of X and is denoted
by supp(u). We will need the following lemma, which says that generic points for a measure have dense
orbit in the support of the measure. Its proof is quite standard, and we only include it for completeness.

Lemma 2.5. Let (Y, v, S) be a G-system and let y,w € Y. If y € gen(v, ®) for some Fglner sequence
®, and w € supp(v), then Sg,y — w, for some infinite sequence (gn)nen in G.

Proof. Fix a compatible metric on X and let B(w, &) be the open ball centered at w with radius € > 0
with respect to this metric. By Urysohn’s lemma, for every € > 0, there exists a continuous function
f:X —[0,1] with f =1 on B(w, &/2) and f = 0 outside B(w, £). Since w € supp(v), it follows that
fy f dv > 0. Now, using that y € gen(v, ®), we have that

1
lim —— :y) = dv > 0,
Jim o D f(Sey) /Xf v>

gEdN

which implies that S,y € B(w, £) for infinitely many g € G. The result then follows. O
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We will also make use of the following result of Lindenstrauss:

Proposition 2.6 (see [16, Theorem 1.2 and Proposition 1.4]). Let (X, u, T) be a G-system and ® be a
Folner sequence in G. Then there is a subsequence Y of ® such that for all f € L'(u),

1
Jim D Tef(x) =Bu(f I D)

ge¥n

for u-almost every x € X.
The next two lemmas follow easily from Proposition 2.6 and (2.2).

Lemma 2.7. Let (X, u, T) be an ergodic G-system. Then for any Fglner sequence ®, there exists some
subsequence ¥ such that pu-almost every x € X is in gen(u, P).

Lemma 2.8. Let (X, u,T) be a G-system, let ® be a Fglner sequence, and let x — u, be the ergodic
decomposition of u. Then there exists some subsequence ¥ of © such that u-almost every x € X is in
g en(/lx > ‘P)

Finally, it will be useful to have the following generalization of [6, Proposition 3.9], whose proof is
again the same as for actions of (N, +), but we include it for the convenience of the reader.

Lemma 2.9. Let G be an amenable group, let (X, u, T) be an ergodic G-system, and let a € X be a point
such that u is supported on Ot (a). Then there exists some Fglner sequence ¥ such that a € gen(u, V).

Proof. By Lemma 2.7, there exists some xog € Or (a) that is generic for 4 along some Fglner sequence
®. Let F = (fi)ren be a dense subset of (C(X), || - |l«) and let (Dp, )y erv be a subsequence of @ such

that for every n € N and for every j = 1,2,...,n,
1 1
o | Z [i(Tgxo) = | fidu| < e
n gECI)Nn X

Since xg € Or (a), there exists some (g,)nen C G such that T, a — xo, so that we may assume that
the equation above holds if we substitute xo with Ty, a. Consider the Fglner sequence ¥ = ('¥,,) given
by ¥, = ®n,g,. Note that this is still a left Fglner sequence. It follows that for every n € N and any

j=1L2,...,n,
1 1
'l‘l’nl g;n fi(Tqa) —/ij du < —.
Since F is dense in C(X), the conclusion follows as before. |

Kronecker factor and the Jacobs-de Leeuw-Glicksberg decomposition: Let (X, u,T) be a G-
system. A function f € L?(X) is called

o compact it {Tg f : g € G} is compact with respect to the strong topology on L*(X).
o weak-mixing if for any Fglner sequence @, and any f’ € L?(X),

. 1 o
Jim o D T f. =0

gG(DN

We define the compact component of L>(X) as Hc(T) = span{f € L2(X) : f is compact}, and the
weak-mixing component of L*>(X) as Hwm(T) = {f € L*>(X) : f is weak-mixing}. When no confusion
may arise, we simply write H. and Hn, respectively.

In case that G is an amenable group, the Jacobs-de Leeuw-Glicksberg decomposition theorem applies,
stating that these two components give a decomposition of L*(X).
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Theorem 2.10 (Jacobs-de Leeuw-Glicksberg decomposition, see [12, Theorem 2.24]). If (X, u,T) is a
G-system, then

L*(X) = He ® Hypm.

Now we will give a description of the factor of (X, u, T) corresponding to the subspace #. of L*(X).
Note that if f € H,, then forall g € G, T, f € H, so H, is invariant under the action of T on L*(X).
Let A be the smallest o--algebra with respect to which all functions in . are measurable. Then A is
a T-invariant o-algebra contained in the Borel o-algebra of X. Therefore, the system (X, A, u,T) is a
factor of the original system, with the factor map being the identity id : X — X. This factor is called
the Kronecker factor of (X, u,T).

Our goal now is to give a nice algebraic description of the Kronecker factor when the G-system
(X, u, T) is ergodic, but first we need the following definition.

Definition 2.11. Let K be a compact group, H be a closed subgroup of K, and @: G — K be a
group homomorphism. Consider the homogeneous space Z = K/H. Let also m be the normalized Haar
measure on Z, and R = (Rg)geg, Where for each g € G, Ry: Z — Z is given by Rg(z) = @(g)z. Then
the G-system (Z, m, R) is called a rotation on the homogeneous space Z by «.

Proposition 2.12. [ /7, Theorem 1] Let (X, u,T) be an ergodic G-system. Then its Kronecker factor is
measurably isomorphic to a rotation on some homogeneous space Z by some a with dense image.

From Proposition 2.12, we get that if C is the Borel o-algebra on Z, then 7~ (C) is equivalent to A
(i.e., they are equal modulo sets that have zero y measure). Proposition 2.12 allows us to identify the
Kronecker factor with a rotation on a homogeneous space whenever (X, i, T) is ergodic.

Characteristic factors for G-systems: The notion of characteristic factors will play a fundamental
role later in one of our proofs. Here, we have the following theorem for the characteristic factors with
respect to some double averages that will concern us.

Theorem 2.13. Let (X, u, T) be an ergodic G-system, let (Z, m, R) be its Kronecker factor and let © be
a Foplner sequence. Then for any fi, f» € L*(X), we have

o o

Jim s D LfeTf= Jim > LEu(fi12) @ TEu(f212)  (23)
gedy gedn

in L>(X X X, pu X p).

Theorem 2.13 says that the Kronecker factor is the characteristic factor for the averages in the left-
hand side of (2.3). The proof of Theorem 2.13 will follow easily from the next lemma.

Lemma 2.14. Let (X, u, T) be a G-system. Then
Hym(T) ® L*(X) C Hym (T X T) and L*(X) & Hym(T) € Hypm(T X T).

Proof. We will only prove the first inclusion, as the second follows in an analogous way. Let @ be any
Fglner sequence, and let fi € Hym(T) and f> € L?(X). We may assume that || fi|2, || /2]l < 1. We
want to show that

lim ——
Nooo |Dy |

2
> (@ x T ). )z =0 2.4)

gedn

forany F € L>(X x X, u X p).
Let F € L>(X x X, u x p) and € > 0. We may assume that 1F 122 (uxp) = 1. Now, since finite
linear combinations of functions of the form f/ ® fJ, where f, f] € L*(X), form a dense subset of
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L*(XxX, uxu), wecan find F’ = Z{.‘zl ci(f) ;®f) ) With | F' || 2 (uxpy < 1suchthat ||F=F'{[12 () <
£/2. Then by the Cauchy-Schwarz inequality, we have

(T X T) (f1 ® £2), F) 2| = (T X T) (fi ® 2, Fp2 gy (Fs (Te X T (Fi ® )12 o
= (Ty X T) (fi ® £2)s F') 12 ey (F's (Tg X T (Fi ® f2)) 12 g
+((Tg X Tg) (f1 ® 12), F') 12 () SF = F/ (Tg X Tg) (f1 ® 2)) 12 (o)
+((Tg X Tg) (f1 ® f2), F = F") 12 () (F s (Tg X Tg) (1 ® f2)) 12 (uscpe)

< Z C_iCj<(Tg X Tg)(fl ® fZ),f{,i ® fz,,i>L2(y><y) <f1,,j ® le,j» (Tg X Tg)(fl ® f2)>L2(,u><y) t+é&
1<i,j<k

< O GeIE I RS KT Al £ ) + .

1<i,j<k

Therefore, using that f; is a weak-mixing function, we have that

3 (T X T (i © £2). Fiz g

gedby

lim sup
N—>o |q>N|

- ’ ’ ’ . 1 ’
= Z Cicj“fz,i||2||f1,j||2||f2,]'“2hllvnsup_ Z |<Tgfl’f1,i>|+5:8~

1<i,j<k [P gedn
Since € > 0 was arbitrary, then (2.4) follows. The proof is complete. O

Proof of Theorem 2.13. Let ® be Fglner sequence, and let fi, f € L>(X). Then we write

1 1
T g oI T = ] 2 U0 0T B 1 2)
1
t1om1 2 Tl ~Bui 12) 8 TBu(f2 1 2)
gedn
1
+1om1 2 TeBuUi |2 @ Ty (o~ Bu(f2 1 2)
N gedy
1
o 2 TEAID) O T (£ 2) 25)
N gedy

Note that the limits of all the terms above exist by the mean ergodic theorem (Theorem 2.1) applied to
T xT. By Theorem 2.10, the functions f1 —E,(fi|Z), f> —E.(f> | Z) are both weak-mixing. Then, by
Lemma 2.14, the functions (fi —=E,(fi | Z2)) ® (L - Eu.(f212)),(fi —Eu(fi1Z)) ® Eu(f21Z) and
E.(filZ)® (f2—E.(f2|Z)) are weak-mixing with respect to T x T'. Hence, the limits of the first three
terms in the right-hand side of (2.5) are 0 in L>(X x X, u X u). Then the theorem follows. O

A correspondence principle: Finally, we need the following instance of Furstenberg’s correspon-
dence principle.

Theorem 2.15 (Cf. [4, Theorem 2.8]). Let G be an amenable group, let A C G and assume that there
exists a left Fplner sequence @ such that dp(A) = limpy 0 ‘/Tgfﬁ’ | exists. Then there exist an ergodic
G-system (X, u,T), a clopen set E C X, a Fglner sequence ¥ and a point a € gen(u, W) such that

U(E) =2 dp(A)and A={h e G :Tya € E}.

Proof. Consider the compact metric space X = {0,1}° = {x = (xg)gec : xg € {0,1} V g € G},
equipped with the Borel o-algebra. We define the continuous action 7 on X by T, (xg)geG = (Xgh)geG-
for any & € G and (xg)gec € X. Now, consider the point a = (14(g))gec € X and the clopen set
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E = {x = (xg)gec € X : x¢; = 1}. By the choice of g, for & € G, we have that 2 € A if and only if
Tha € E, and therefore, A = {h € G : Tra € E}. Consider the sequence of Borel probability measures
on X defined by

1
N'_)/JN:_ Z 6Tha’
| D | nomn:

and let ¢’ be a weak™ limit point of that sequence. Then u’(E) = dp(A), and u’ is T-invariant, but not
necessarily ergodic. Let x — p’, be the ergodic decomposition of u’. Then u’ = fx e du’(x), so there
exists xo € X such that for the measure p = u/ , we have that (X, u, T) is ergodic and u(E) > do(A).
Forall N € N, un gives full measure to the orbit closure of a, and hence, u’ also gives full measure to
the orbit closure of a. Therefore, we may assume that u is also supported on the orbit closure of a (as
this is the case with /. for u’-almost every x € X). Then it follows by Lemma 2.9, that a € gen(yu, )
for some Fglner sequence . O

3. Reduction of Theorem 1.6 to dynamical statements

In this section, we translate our first main theorem — namely, Theorem 1.6 — in a dynamical language.
This will allow us to approach the problem through ergodic theoretic techniques.

3.1. Dynamical reformulation via correspondence principle

Usually in ergodic theory, correspondence principles serve as bridges between combinatorial and
dynamical statements. In our situation, we can use the correspondence principle (Theorem 2.15) to
show that Theorem 1.6 follows from Theorem 3.1 below, which is more dynamical in nature.

Theorem 3.1 (First dynamical reformulation of Theorem 1.6). Let G be a square absolutely continuous
group and (X, u, T) be an ergodic G-system. Let a € gen(u, @) for some Fglner sequence ® and E C G
be clopen with u(E) > 0. Then there exist an infinite sequence B = (by)nen C {h € G : Tpa € E} and
some t € G such that

t-B4BC{heG:TyackE}.

Proof that Theorem 3.1 implies Theorem 1.6. Let A ¢ G have positive left upper Banach density, so
that there exists some Fglner sequence @ such that de(A) = limy e % > 0, (where we have
passed to a subsequence). Then consider (X, u, T), E, ¥ and a, as ensured by Theorem 2.15, satisfying
U(E) = dp(A) > 0and {h € G : Thya € E} = A. It follows then by Theorem 3.1 that there exist an

infinite sequence B = (b)) en C A and some ¢t € G such thatt- B<4 B C A. ]

3.2. Erdds progressions

The conclusion of Theorem 3.1 is still a rather combinatorial statement, so we need to reformulate it
again into a dynamical statement. For this to be achieved, we will use the notion of Erdds progressions,
as defined in [15], which in Z is a dynamical variant of 3-term arithmetic progressions. In our case,
Erdds progressions are a dynamical variant of progressions of the form (z, kz, kz), k € K, z € Z,
which are the natural generalization of 3-term arithmetic progressions in our setting.

Definition 3.2. Given a topological G-system (X,T), a point (xg,x1,X2) € X° is a 3-term Erdds
progression if there exists an infinite sequence (g, )en in G such that

(Tg,, x Tg, ) (x0,x1) = (x1,x2). 3.1
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We refer to 3-term Erdds progressions simply as ErdGs progressions. Through the notion of Erdds
progressions, we are able to reformulate Theorem 3.1 as follows:

Theorem 3.3 (Second dynamical reformulation). Let G be a square absolutely continuous group, and
let (X, u,T) be an ergodic G-system and a € gen(u, @) for some Fglner sequence ®. If E C X is a
clopen set with u(E) > 0, then there existt € G, x| € E and x, € T,"'E such that (a,x1,x7) € X3
forms an Erdds progression.

For the reduction of Theorem 3.1 to Theorem 3.3, we provide the following lemma.

Lemma 3.4. Let G be a group. Let (X, T) be a topological G-system, and let E,F C X be open sets.
Assume that there exists an Erdds progression (a,x1,x,) € X with x; € E and x» € F. Then there
exists an infinite sequence B = (b, )nen C {8 € G : Tya € E} such that B4« B C {g € G : Tga € F}.

To see how Theorem 3.1 follows from Theorem 3.3, just take F = 7, E in the above lemma.

Proof of Lemma 3.4. By assumption, there exists an infinite sequence (g,)nen in G such that (T, X
Tg,)(a,x1) — (x1,x2). Since Ty, a — x| € E and E is open, we get that T, a € E for n sufficiently
large, so we may assume without loss of generality that (g, )sen C {8 € G : Tga € E}. Therefore, we
will construct the sequence B to be a subset of (g, )nen-

We construct the sequence B = (b,,),cn inductively.

o Since Tg,x; — x2 € F and F is open, we can pick b; € (gn)nen such that 7, x; € F. Then
(x1,x2) € (Tb‘]lF) X F which is open.

o Since (Ty, X Ty, )(a,x1) — (x1,x2), we pick by € (gn)nen such that (Tp, X Tp,)(a,x1) € (Tb_llF) xF
and by # b (this is possible since there are infinitely many choices). Then

-1 -1
aeTb]sz and xleszF.

o Induction step: Assume we have found by, by, ..., b, € (g,)nen all distinct to each other such that
ae ﬂ T,5 F and x e T, F. (3.2)
1<i<j<n I<m<n

Since (T,, X Tg,)(a,x1) — (x1,x2) € (ﬂlsmsn Tb‘lF) X F and this set is open, we can pick

bp+1 € (gn)nen such that
(Tbn+l X Tbn+1)(a’xl) € ( ﬂ Tb_WI,F) X F
l<m<n

and b,y € {bm : 1 < m < n} (since there are infinitely many choices). Combining this with the
inductive hypothesis, we obtain that

ae () TyhF ad xie [ T,lF.

1<i<j<n+l 1<m<n+l

Taking B = (by,)nen, We clearly have an infinite subset of (g,,),en, and since (3.2) holds for any n € N
by construction, we get that B« B C {g € G : Tga € F}, as desired. O

3.3. Continuous factor maps to the Kronecker factor

On our way to show Theorem 3.3, it will be useful to have the extra assumption of the G-system having
a continuous factor map to its Kronecker factor. The reason for that will become clear towards the proof
of our main theorem. As we will see below, it is possible to make such an assumption.
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We begin by generalizing a result of Host and Kra in [9] from actions of (N, +) to actions of amenable
groups.

Lemma 3.5. [9, Proposition 6.1 for group actions] Let G be an amenable group, let (X, u,T) be an
ergodic G-system, (Z,m, R) be its Kronecker factor and let p : (X, u,T) — (Z, m, R) be a factor map.
If a € X is a transitive point, then there exists a point 7 € Z and a Fglner sequence ¥ such that

lim 1 | Z fl(Tga) . fZ(RgZ) = L fl . (f2 Op) dﬂ (33)

N —o0 |\P =

holds for any fi € C(X) and f, € C(Z).
We remark that the result still holds if we replace (Z,m, R) by any factor of (X, u,T) that is distal
as a topological system.

Proof. The proof of this lemma is given in the Appendix A. O

Remark 3.6. Let (X, u, T) be an ergodic G-system, and let a € gen(u, ®) for some Fglner sequence .
From Lemma 2.5, we have that every point in supp(u) belongs to the orbit closure of a, and therefore,
#(Or (a)) = 1. This implies that we can replace X with O (a) without affecting the ergodic theoretic
properties of the system, and then the generic point a is also transitive. Therefore, whenever we have a
generic point in a system, we may assume without loss of generality that it is also transitive.

Proposition 3.7. Let (X, u, T) be an ergodic G-system, let a € gen(u, ®) for some Folner sequence @,
and let E C X be a set with ,u(E) > 0. Then there exists an ergodic extension (X, I, T) of (X, u,T), a
Fglner sequence ®and a point a € gen([, @) such that

(i) There exists a continuous factor map 7 : X — X with n(a) = a.
(i) (X i, T) has continuous factor map to its Kronecker factor.
(iii) The set E = 7' (E), has f(E) = u(E) > 0.
(iv) If (@,%1,%) € X° is an Erdds progression, then (a,x1,x2) € X° is an Erdds progression, where
x; =n(x;), fori=1,2.

Proof. The proofs of (i) and (ii) are identical to those in the case G is the semigroup (N, +), and they
can be found in [14, Proposition 3.20]. Therefore, here we only provide a sketch of the proof.

Let (Z,m, R) be the Kronecker factor of (X, u,T), and let 7 : X — Z be a factor map. Define
X=XxZand T =T X R, consider the mapp : X — X, given by p(x) = (x,m(x)), and then define
I = pu. Then the map p : X — X is an isomorphism of the G-systems (X, @, T) and (X, u,T), and
therefore, since (X, u, T) is ergodic, we get that (X, &, T) is also ergodic. In addition, the projection on
the first coordinate 7 : X — X is a continuous factor map of the systems.

By Remark 3.6, we may assume that the point a is transitive. Then we can use Lemma 3.5 to find a
point z € Z and Fglner sequence ® such that (3.3) holds for all fi € C(X) and f> € C(Z). Using the
definition of the measure g, it is not too difficult to see that for any continuous function F € C(X ),

1 —
lim —— F(Tg X Rg)(a,z) = [F d,U,
N —> |q)N| gea)N X

which means that the point @ = (g, z) is in gen(f, ®). In addition, 7(a) = a.

Now, as the systems (X, u, T) and (X, /1, T) are isomorphic, their Kronecker factors are also isomor-
phic, so we may assume that (Z, m, R) is the Kronecker factor of (X T8 T). Then the projection on the
second coordinate p : X — Z is a continuous factor map from (X u, T) to its Kronecker factor.
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Note that (iii) is immediate from the definition of factors and factor maps. Hence, it remains to prove
(iv). By assumption, (Tg, X Ty, )(a,X1) — (X1,X2) for some (g, )nen in G. We now notice that

Ty, (@) = T, (7(@) = 7(T,,) — 7(x1) = x1,

since 7 is a continuous factor map. Similarly, we get T, (x1) — x2, and the result follows. O

This proposition allows us to reduce Theorem 3.3 to the case of ergodic G-systems with con-
tinuous factor maps to their Kronecker factor, as desired. Evidently, Theorem 3.3 follows from the
following:

Theorem 3.8 (Reduction to G-systems with continuous factor maps to the Kronecker factor). Let G
be a square absolutely continuous group, let (X, u, T) be an ergodic G-system admitting a continuous
Jactor map to its Kronecker factor and let a € gen(u, ®) for some Folner sequence ®©. If E C X is
clopen and u(E) > 0, then there existt € G, x| € E and x; € T,_lE such that (a,xy,x2) € X> forms an
Erdds progression.

The proof of Theorem 3.8 will be given in the next section.

4. Measures on Erdés progressions and the proof of Theorem 3.8

In this section, we prove Theorem 3.8 and, consequently, Theorem 1.6.

4.1. Measures on Erdds progressions

In what follows, we fix a square absolutely continuous group G. We also fix an ergodic G-system
(X,u,T). In addition, as per the assumptions of Theorem 3.8, we assume that (X, u,7T) admits a
continuous factor map to its Kronecker factor. The Kronecker factor of (X, u, T') is denoted by (Z, m, R),
and 7 : X — Z stands for the continuous factor map. According to Proposition 2.12, Z = K/H,
where K is a compact group and H is a closed subgroup of K. We denote by p the natural projection
p:K — K/H, p(k) = kH. We also fix a bi-invariant metric dx on K, that is, a metric on K compatible
with the topology on K such that for all u,v,w € K, dg (uv,uw) = dg (v,w) = dg (vu, wu).

Moreover, m is the (left) Haar measure on Z, which is given as the push forward of the (left) Haar
measure mg in K by the natural projection K — Z = K/H. We remark that since K is compact, it is
unimodular, so m is two-sided invariant. Finally, the action R = (Rg)gec is given by Rg(z) = a(g)z,
where @ : G — K is a group homomorphism with dense image. Also, m; : X X X — X denotes the
projection to the i-th coordinate, for i = 1,2. Moreover, z +— 7, is a fixed disintegration of u over the
continuous factor map 7.

Definition 4.1. Consider the squaring map sx : K — K,sx (k) = k?, on K. We define the Borel
probability measure mg> on K as the push-forward of the Haar measure mg under the map sk, that is,
the measure on K, given by mg2(A) = mg (s%1 (A)), for each Borel A C K.

We will prove the following lemma, which is a key ingredient that will allow us to define the measures
in order to study Erd&s progressions.

Lemma 4.2. The measure m:> is absolutely continuous with respect to mg.

Before we prove Lemma 4.2, let us state and prove an auxiliary lemma that will be used throughout
this section:
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Lemma4.3. Let ¥ = (YN )N e be any Fglner sequence in G. Then the sequence of measures (VN )N eN
defined as

1
VN = —— Oalg
N |1PN| Z (g)

ge¥n
converges in the weak™ topology to the Haar measure mg on K.

Proof. The space of Borel probability measures on K is weak® compact and metrizable, so in order to
prove the result, it suffices to prove that if (VNJ. ) jen s a convergent subsequence of (vN )N en, then it
converges to the Haar measure m .

Let (vn;)jen be a subsequence of (vy)n en which converges in the weak™ topology to a measure v
on K. To prove that v is the Haar measure on K, it suffices to prove that for all continuous functions &
on K and all £ € K, we have that fK h(ky) dv(y) = fK h(y) dv(y).

Let dg be a translation invariant metric on K. Let also & : K — C be continuous, k € K and £ > 0.
Since K is compact, we have that 4 is uniformly continuous, so there is § > 0 such that if dg (y1, y2) < 6,
then |A(y1) —h(y2)| < €. Recall that (@(g))¢ec is dense in K, so there is go such that dk (k, a(go)) < 6.
We then have that for all y € K, dg (ky, a(go)y) < 6, so |h(ky) — h(a(go)y)| < &, and we obtain that

'/ h(y) dv(y)—/ h(ky) dV()’)'
K K

IA

/Mwww—/mamwwm
K K

+Aﬁm@wmww1£mmmww

IA

/'Mynww>—/‘Ma@wynww>+a
K K

From the continuity of 4 and the definition of v, we have that

1 I
témwmwmww=pgWM%;%MMmmw»—pgWM%;%mmm@>
1 1
= lim h(a(g) = lim —— > h(a(g)
j=o W | ge;i’wj j= Wy ggNj
- [ 1) avi.
K

so combining with the previous, we get that \/K h(y) dv(y) — fK h(ky) dv(y)| < &, and since € was

arbitrary, we obtain that /K h(y) dv(y) = fK h(ky) dv(y), which proves that v = mg and concludes the
proof. O

Proof of Lemma 4.2. As K is compact and metrizable, the measures mg , mg> are regular. In particular,
for each Borel A, we have

mg(A) = sup mg(C)= inf mg(O) and mg2(A) = sup mg2(C) = inf mg2(0).
CcA ODA CcA ODA
C compact O open C compact O open

Therefore, to prove that mg- is absolutely continuous with respect to mg, it suffices to prove that for
each compact set C C K, if mg (C) =0, then mg2(C) = 0.
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Let C c K be anonempty (for otherwise the result is trivial) compact with mg (C) = 0 and let £ > 0.
As G is square absolutely continuous, we know that there are two Fglner sequences ® and ¥ in G and
a § > 0 such that for any u : G — [0, 1] satisfying lim sup_,, m 2gewy U(g) < 6, we have that

. 1 2 .
limsupy ., ] 2gewy U(g”) < &. Since

O = = i
mg (C) olgfc mg (0),
O open

we can pick an open set O O C with mg(0O) < §. By Urysohn’s lemma, we know that there is a
continuous function f : K — [0, 1] such that f = 1 on C and f = 0 outside O. By Lemma 4.3, we then
have that

5> mx(0)> [ £ dm() = fim == 3 flate)),

©|On| S

and by the choice of d, we get that

D flag)) <e.

gE‘YN

lim su
N P |

From the definition of m > and the continuity of k — f(k?), we then obtain

[ 1w ameo = [ 102 anx = lim s Y flat?)

ge¥nN
1
= lim —— fla(g?) <,
NI ] g;;N

where for the third equality, we use that « is a group homomorphism. So after all, we have mg2(C) <
/K f(k) dmg2(k) < &, and as & was arbitrary, we have that m g2 (C) = 0. This concludes the proof. O

Now, we define a measure o on X X X, and we want o to be defined as a natural measure to study
Erdés progressions. It is not hard to see that Erdds progressions on K /H are exactly the triplets of the
form (z, kz, k*z) for some k € K and z € K/H. Therefore, following the definition given in [15], we
will define these measures as the natural measures on points (x, x2) € X X X to find Erd@s progressions
on K /H starting at 7(a), namely, (7(a), kn(a), k>n(a)), for k € K.

Definition 4.4. We define the measure o on X X X, given by

a IZ/ Nkn(a) Xnkzn(a) dm]((k). “.1)
K

Let us comment on why the measure o is well-defined. Let ko € K be such that 7(a) = koH. Since
n is m-almost everywhere defined on Z and Borel measurable, we can consider a Borel measurable
set Z' ¢ Z with m(Z") = 1 such that n, is defined for all z € Z’. Since p is a Borel measurable
map and pmg = m, the set K’ = p~'(Z’) is Borel measurable and has mg (K’) = 1. Then also
mg (K'kal) = 1, and then it is not difficult to check that the map K — M (X), k > N (q) is defined on
K ’k6 I However, from Lemma 4.2, we have that m k2 is absolutely continuous with respect to mg, so
1 =mg2(K'ky') = mg (s (K’k‘l)) and again, it is not too difficult to check that the map K — M (X),
k — 1327(a) is defined on s (K'ky"). So, after all, the map K — M(X X X), k' Ticx(a) X k2 n(a) 19
defined on K'ky' N s (K’ k h and mg (K'ky' 0 s (K'kg")) =1 (e, k 5 Niray X M2 n(ay 1S Mk
almost everywhere defined). Also, since all the maps involved in the definition of k + 7k z(a) X 7y2

n(a)
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are Borel measurable, we have that k /> 7y (a) X Tg2,(4) 1S also Borel measurable. Therefore, o is
indeed well-defined.
Using the invariance of mg we can express o as

o= / MickoH X Mi2korr A (k) = / M X Mgt g dmg (k). (4.2)
K K

Proposition 4.5. The measure o has the following properties:

() mo =p.
(ii) moo is absolutely continuous with respect to p.

Proof of Proposition 4.5. (i) Using (4.2), we have that
mo = / Nicrr dmg (k) = / nz dm(z) = p.
K z

(ii) From the definition of o, we have that my0 = /K Nk2n(a) 9MK (k). Fix ko such that n(a) = koH.
Let A ¢ X with u(A) = 0. Then u(A) = /Z n.(A) dm(z), so we get that there

is a set ZZ c Z with m(Z’) = 1 such that for all z € Z’, n,(A) = 0. As
pmg = m, we have mg(p~'(Z’)) = 1 and then also mg((p~'Z’)k;') = 1. Finally, us-
ing Lemma 4.2, we get that sz((p_IZ’)kal) = mK(s;(l((p_lZ’)kal)) = 1. For each
k € s%l((p_IZ’)kal), we have that k’m(a) € Z', so Ni2n(a)(A) = 0, and therefore,
mo(A) =0. O

Theorem 4.6. For any set E C X with u(E) > 0, we have that

O'(E x| T,‘IE) > 0.

teG

Proof. Let E C X with u(E) > 0 and recall that we want to show that the set E X |J,c T, 'E has
positive measure with respect to o-. We begin by expressing this set as

Ex| T E=(Exx)n (X x| T;IE).
teG teG
By Proposition 4.5 (i), we have that o (E X X) = u(E) > 0. Therefore, it is enough to show that
o-(Xx UT;lE) =1. 4.3)
teG

Notice that the set | J;eq T,_IE is clearly T-invariant, and since u is ergodic and u(E) > 0, it follows
that (U, e T,‘IE) = 1. By Proposition 4.5 (ii), my0 is absolutely continuous with respect to u, so

1= 7r20'( U T,lE) = (r(x x| T,IE),

teG teG

which concludes the proof. O

4.2. A continuous ergodic decomposition

In this subsection, we will define measures Ay, x,), for (x1,x2) € X x X ina way that (x1,x2) = A(x, x,)
will be a continuous ergodic decomposition of u X u (i.e., (x1,x2) = A(x, x,) Will be both a continuous
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map and an ergodic decomposition of u x ). We follow the definition given in [14, Eq. (3.10)] and [15
Eq. 3.1)].

Definition 4.7. For (x;,x;) € X x X, we define the measures A(x1,x) On X X X by

Alxr ) = ‘/K. Mkr(x)) X Nk (xy) dmy (k). 4.4

Given x1,xp € X, we let ki, k, € K be such that n(x;) = k;H, fori = 1, 2. Then, using the invariance
of mg, we can write

Axi ) = /K NkkyH X Nicky 1 dmg (k) = /K MeH X Mik-"ky H dmg (k). 4.5)

Theorem 4.8. The map (x1,x2) = A(x,,x,) IS a continuous ergodic decomposition of u X u in the
following sense:

(i) It is a continuous map.

(ii) It satisfies /XxX Alxyx) Al X ) (x1,x2) = p X .
(iii) The G-system (X X X, A(x,,x,)» T X T) is ergodic for u X u-almost every (x1,x2) € X x X.

In addition, for any x1,x2 € X, we have that

Ax) = AT Tyxo) 4.6)
forany g € G.

Proof. For the proof of (i) and (ii), we refer to [14, Proposition 3.11], as the proof there can be directly
adapted to our case. We will now prove (iii). It is not too difficult to see that for all (xj,x;) € X X X
and for all g € G, (Tg X Tg)A(x,,x,) = A(x),x2) (A-€., A(x;.x,) 18 T X T-invariant). Therefore, to prove
(iii), it suffices to prove that there is some Fglner sequence ¥ in G such that for (u x p)-almost every
(x1,x2) € X X X and all bounded and measurable functions F on X X X,

. 1
lim o > (Tngg)sz Fda(y v
Noo ¥y | & XxX

8E€YN

in L2(X X X, A(x;.x0))-

Now, since X is a compact metric space, there is a countable family of continuous functions ( fx)xen
which is dense in LP (v) for all p € [1, +c0) and all Borel probability measures v on X. Then, it is not too
difficult to see that the set consisting of finite linear combinations of functions the form ( fj, ® fj,);,, jen
is dense in L?(p) for all Borel probability measures p on X x X. Hence, using an approximation
argument, it suffices to prove that there is a Fglner ¥ in G and a set W c X X X with (u x u)(W) =1
such that for all (x,x;) € W and for all jj, j, € N,

Z (Tg xTo) (fi © fi) =/X . Jir ® fir dA(x).x0),

lim ——
N TN L

in L2(X X X, A(x;.x0))-
Step 1. Let ®@ be any Fglner sequence in G. Then, using Theorem 2.13, we get that for each ji, j, € N,

lim — D, TexT)(f; @ fr) = lim —— Z (T X Tg) (Bu (1 | Z) ® By, | 2))

N=eo |q) | gE(DN g€CI>N
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in L?(u x ). Combining this with (ii) yields

lim /
N—oo Jxwx
2

| D Ty XT) (Bl £, 1 Z2) @ Bu(f, 1 2)) (31, 32)| Ay ) (1, 2) d( X 1) (31, %2) =
gG‘DN

1
B Z (Te X Te) (£ ® f) (31 52)

| Dy

Then for each ji, j» € N, we can find a sub-Fglner sequence @ of @, depending on ji, j», such that for
(u X p)-almost every (x1,x2) € X X X, we have

1
lim =
N—ooo Jxux | |On|

> T XT) (£, @ fi)
GE)N

2
dA(x,,x,) =0,

Z (Tg X To) (B (f51 1 2) @ By (£, 1 2)
|‘1>N|

and since the limits of both averages above exist by Theorem 2.1, we have that, for (u x u)-almost every
(x1,%2) € X X X,

ngnmé 2, TexT(f, ® f) = lim |?-1'>_| 2 TexT)Eulf; | 2) @ Ey(fi, 1 2))
gECD

gedy

in L2(X X X, A(x, .xy))- Since the family (f}, ® f},)},.j»en is countable, then using a diagonal argument,
one can find a Fglner sequence ¥ and a set Wi ¢ X X X with (u X g)(W;) = 1 such that for all
(x1,x2) € Wy and ji, j» € N, we have that

i |\p | D, Te X T (f5 ® f1) = i m, | D T X T) (Bu(f5, 1 Z) ® B (f1, | 2)) (A7)

ge¥nN ge¥yN

in L2(X X X, A(x,.x0))-

Step 2. Consider the sequence of probability measures on K defined by vy := w 2igewy Oal(g)-
From Lemma 4.3, we know that vy — mg as N — oo in the weak* topology.

Let ¢1, ¢2 : Z — Cbe continuous. For each z;, zo € Z, consider the function ¢, ., : K — C defined
by ¢;,.2, (k) = ¢1(kz1)¢2(kz2). Then, ¢, ., is continuous, so we have that

[ ortkenathes) anx o) = [ 00 dmich) = fim S 61 alale)

~ PNl &

lim o S dia(g)z)da((s)2)

N—oo [Py | oy

lim W D (R X Ry) (91 ® ¢2) (21, 22)-

N —o0
ge¥n

Since the previous holds for all z1, zo € Z, using the dominated convergence theorem, we get that

1

2
et Z (Rg X Rg) (1 ® ¢2)(21,22) — /K ¢1(kz1)pa(kz2) dmg (k)| d(m X m)(z1,22) =0

lim
[Pn|

N—eo Jzyz
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(i.e., the sequence ﬁ 2ecwy (Rg X Rg)(¢1 ® ¢2) converges in L*(ZxZ,mxm) as N — oo to the

function (z1,z2) — fK o1(kz1)p2(kzo) dmg (k)).
Step 3. Given two bounded measurable maps hp, h, : Z — C, approximating them in L?>(Z, m) by
two continuous functions ¢, ¢, and using Step 2, one can prove that ﬁ 2gewy (Rg X Rg)(hy ® hy)

converges in L>(Z x Z,m X m) as N — oo to the function (z,z2) fK hi(kz1)ho(kzo) dmg (k).
Since 7 : (X, u,T) — (Z,m, R) is a factor map, it is not too difficult then to see that

D Tx T on@hom = [ o [ ekt dng (0] @8)

|lP ge¥nN

as N — coin L2(X x X, u X ).

For each j € N, E,(fj | Z) can be viewed either as a function on Z or as a function on X measurable
with respect to 771 (Z). In this proof, we always view E,(fj | Z) as a function on X measurable with
respect to 771 (Z). For each j € N, let i be B, (f; | Z) when viewed as a function on Z, so we have that
for pu-almost every x € X, ;o m(x) = E,(fj | Z)(x). Then for each ji, j» € Nand (x1,x2) € X X X,
we have

/ £ G0 Fn(32) Ay (71 32) = / / Fa O 2 (72) ATn o X M eny) (315 v2) diig (6)
XxX K JXxX
- / / 1) e (1) / Fi (52) dionany (v2) dimg (K)
K JX X

- /K 0, (ko) , (k) dm (K) 49)

where the last equality follows using (2.1). After all, combining (4.8) and (4.9), we get that for each
Ji,Jj2 €N,

T O X T B 1208 Buf12) = 1w o [ £y dhsn

ge¥n

as N — oo in L?(X X X, uu X ). Now, since the family fi, ® fj, is countable, using (ii) and a diagonal
argument as in Step 1, one can find a sub-Fglner sequence of ¥, which by abuse of notation we again
denote by ¥, and a set Wy C X X X with (u X u)(W;) = 1 such that for all (x;,x;) € W, and ji, j» € N,

lim —— §:U>UU®AQID®E(ﬁAZ»_/ Fin ® Fin A, ) (4.10)

N—e0 |‘PN| =

in L2(X X X, A(x, x))-
Let W = Wy N W,. Then (u X p)(W) = 1, and combining (4.7) and (4.10), we get that for all
(x1,x2) € Wand all j, j» €N,

fin e Y T X T 950 = [ £ fi 4l

N PPN ge¥n

in L2(X x X, A(x,,x,))» Which was to be proved.
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To conclude the proof, we are left with showing (4.6). To this end, using the invariance of mg, for
any g € G, we have that

/l(Tgxl,Tgxz) = -/Z Nka(g)n(x)) X Nka(g)n(x2) dmg (k) = Lnkﬂ(xl) X Nkr(x) dmg (ka’(g)_l)
= / Nkr(x)) X Nkn(x) dmg (k) = /l(xl,xz)'
zZ

The proof of the theorem is now complete. O

Theorem 4.9. We have that

o ({(x1,32) € X X X : (x1,32) € Supp(A sy ) }) = 1.
Theorem 4.10. There exists some Fglner sequence ¥ such that

o({(x1,x2) € X x X : (a,x1) € gen(A(x, x,), ¥)}) = 1.

We first deal with Theorem 4.9. Let us first state and prove some results that will be useful in order
to prove Theorem 4.9.

Let F(X) be the family of the closed, nonempty subsets of the compact metric space (X, dx). We
endow this family with the Hausdorff metric D, defined by

D(A, B) = max { sup dx (x, B), sup dx (y, A)},
X€EA yeB

for any A, B € F(X).
We will need the following two lemmas, the proofs of which are omitted, as they can be found in [15]:

Lemma 4.11. [15, Lemma 3.8] Let W be a compact metric space, M(W) the space of Borel probability
measures on W endowed with the weak* topology, and F (W) the space of closed, nonempty subsets of
W with the Hausdor{f metric. Then

o The map v — supp(v) from M (W) to F (W) is Borel measurable.
o Ifx — py is a measurable map from W to M(W), then {x € X : x € supp(px)} is a Borel set.

Lemma 4.12. [15, Lemma 3.9] The disintegration z +— n, satisfies that the subset {x € X : x €
supp(nx)} of X is Borel measurable and

u({x € X :x € supp(ny)}) = 1.

Using those, we can now prove the following proposition, which is a variant of [ 15, Proposition 3.10].

Proposition 4.13. There exists a sequence 6; — 0 such that for u-almost every x € X, there exists
w € K with n(x) = wH such that for any open neighborhood U of x, we have

. mg({k € K: neu(U) > 0} NBg (w,6;))
llm =

1, 4.11
jo mg (Bx (w,6;)) 1D

where Bx (w, 0 ;) denotes the ball centered at w € K and with radius ¢ ; in K with respect to the fixed
metric dg.

Proof. Let F : K — JF(X) given by F(k) = supp(nxg). The natural projection p : K — Z is
continuous, hence Borel measurable, the map z +— 7, is Borel measurable, as (17, ), <z is a disintegration,
and by Lemma 4.11, the map v +— supp(v) is also Borel measurable; thus, we obtain that their
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composition F is also Borel measurable. By Lusin’s theorem [2, Theorem 12.8], for any j € N, there
exists a closed K; C K with

mi(Kj) >1-277 (4.12)

such that F| k; 1s continuous. For j € N, using the fact that K, and so K, is compact, we obtain that
Flk; is uniformly continuous. Therefore, for any j € N, there exists some 6; > 0 such that for any
k1, k, € K; we have

dg (ki,ky) < 6 = D(F(k1), F(ky)) < %

Fix j € N. Then by the invariance of mg, thereis ¢; > Osuchthatforall k € K, mg (B (k,6;)) = c;.
The regularity of the measure mg implies that there is a compact set C; C Bk (e, d;) such that
mg(Cj) > c¢j— ;—; Now, by Urysohn’s lemma, there is a continuous function f; : K — [0, 1] such that
fi=1onCjand f; = 0 outside B (ex, ;).

Consider the set

1
W;= {k €EK;: ‘/K fj(Wk_l) dmg (w) > (1 - ;) '/K‘fj(w) de(w)}
Note that
/ fiw) dmg (w) 2 mg (Cj) 2 ¢j - g—; > 0.
K

Then we can consider the function

/Kj fi(wk™") dmg (w)
[ fi(w) dmg (w)

Xj+ K — [O’ l]’ X](k) =
and moreover, we let
1
Aj= keK:)(j(k)Zl—; )
Then we see that

W, =K;NA;. (4.13)

We will show that the set W; is closed. Using the dominated convergence theorem and the fact that f; is

continuous, one can show that if (ks)sen is a sequence in K and k; — k, then fK_ fi (wk;l) dmg(w) —
J :

/K,« fj(wk‘]) dmg (w), and this proves the continuity of x;. As aresult, the set A; is a closed subset of

K, and since K is also closed, it follows that W} is closed.
Now, using Fubini’s theorem and the invariance of mg , we deduce that

/ (k) dmi (k) = / vk ™YLk, (w) dmg (k) dmg (w)
K K

1
fK fi(w) dmg (w) /K

1
" T £ dmg () J 10 f 1106 a4 a0

1
=mK(Kj) > 1 —5,
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and then we have that

1 1 . 1 mg(Aj)
=< [ xj(k)ydmg(k)+ [ xj(k)dmg (k) <mg(Aj)+|1- = |mg(A}) =1- -+ —",
28 Ja A ‘ J J J

which gives that
mg(Aj) > 1 - = (4.14)

2]

Combining (4.12), (4.13) and (4.14), we obtain that

S k(K \W)) = Y mic(K\ (K; N A, ))<22Lj<oo

JjeN JjeN JjeN

Let W = Ujen (jss Wj. It follows by the Borel-Cantelli lemma, using the last equation above,
that mg (W) = 1. Now let L := {x € X:x € supp(iz(x)} N a ' (p(W)). Observe that p(W) =
Usenp( Njss W;). For each J € N, (j>s W; is a closed subset of K and thus is compact, and since
p is continuous, we get that p( iz W; ) is also compact; thus it is Borel measurable. As a result, we
get that p(W) is indeed a Borel subset of Z. In addition, p~!(p(W)) > W, and since mg (W) = 1, we
have that mg (p~' (p(W)) = 1. Therefore, m(p(W)) = 1 and hence, u(7~'(p(W))) = 1. Then, in view
of Lemma 4.12, it follows that L is a Borel subset of X and u(L) = 1.

We now show that elements of L satisfy (4.11), and this will conclude the proof. Letx € L = {x €
X: x € supp(n(x))} N7 (p(W)). Then x € =1 (p(W)) so there is w € W such that 7r(x) = p(w) =
wH. Let U be an open neighborhood of x. Then we have that there exists J € N such that for any j > J,
w € W; and B(x, )CU

We now claim that

Bxk(w,0;) NK; c {k € K: g (U) > 0}.

To prove this, we let w’ € Bg (w, ;) N K;. Then dg (w’,w) < d;, and so, D(F(w’), F(w)) < % Notice
now that F'(w) = supp(nwn) = supp(nx(x)), and so, x € F(w), as x € L. Then, by the definition of
the Hausdorff metric, there exists x’ € F(w’) with dx(x,x’) < %, and so, x’ € U, which, combined
with the fact that x” € F(w’), yields U N F(w”) # 0. It follows that 17,,- 5y (U) > O.

It follows from the above claim that

mK({k ek: T]kH(U) > 0} N BK(W,(Sj)) mK(BK(w,(Sj) N Kj) _ /K 11BK(w,dj)(’/‘)]lKj(u) dmg (u)

mg (Bx (w,6;)) = mg(Bg(w,6;) mg (Bk (ex,9;))
(4.15)

The denominator in the right-most term in (4.15) is smaller or equal to 57—mg (C;), which then is

2/ 1
smaller or equal to ﬁ / « Ji(u) dmg (u), and therefore, the expression in (4.15) is greater or equal to

(4.16)

/K ﬂBK(w,éj)(u)lK.f(u) dm (u) (l — i)
S () dmic () 7]
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Observe that for all u € K, 1y (w,s,)(UW) = Lpg (ex.5;) (1), 50 we have that
I a0 1, 0) i ) = [ g . 00 L ) e )
= [ a0 ) ) > [y L ) e )
K K
= [yt L ) e = [ o7 dnc .
K K

Combining the last equation with (4.15) and (4.16), we get that

mi ({k € K: e (U) > 0} N Bk (w,6) S, £ w™) dm () (1 . i)
mx (B (w,6;)) T S Fitw) dmg (w) 2

- 0-2)

where the least inequality is due to the fact that w € W;. Then, taking the limit as j — oo, we obtain that

im mg ({k € K: g (U) > 0} NBg (w,5;)) _

1’
joe mg (Bx (w,d;))

and this concludes the proof. O
We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Let S = {(x1,x2) € X X X: (x1,Xx2) € supp(A(x,,x,))}.- By Lemma 4.11, § is
a Borel subset of X x X. Consider a sequence ¢; — 0 such that Proposition 4.13 is satisfied, and let
L C X be the set of x € X that satisfy (4.11). By Proposition 4.13, (L) = 1. Following the argument
in [15, Proposition 3.11], we will show that o (L X L) = 1 and L X L C S. Consequently, we will have
that o-(S) = 1, concluding the proof.

We start by showing that o-(L x L) = 1. We write L X L = (L X X) N (X x L), and so it is enough
to show that both sets in this intersection have full measure o-. By Proposition 4.5 (i), we have that
o(Lx X) =mo(L) =u(L) = 1. By Proposition 4.5 (ii), the measure w0 is absolutely continuous
with respect to u, and since u(L) = 1, it follows that o-(X X L) = mpo (L) = 1.

To conclude the proof, we show that L X L  S. Let (x,x2) € L X L. To show that (x,x;) € S, itis
enough to show that for all open neighborhoods Uy, U, of x1,x2, we have Ay, x,) (U1 X Uz) > 0.

Let U;,U; be open neighborhoods of xi,x2, respectively. By writing A(y, x,) = fK NkH X
Mk kol dmg (k), where ki, k, € K are such that n(x|) = k1 H, n(x;) = koH, we see that it suf-
fices to show that the set W = W (ky, ky) := {k € K : g (U;) > 0 and nkkl_lsz(Uz) > 0} has positive
measure mg, for some choice of the ki, k, as above. By Proposition 4.13, we can choose the elements
k1, ko> € K such that

mg ({k € K : ngg (Uy) > 0} N Bk (k1,6)) §
mx (Bk (ki,6)) = 4.17)
and
mg ({k € K : neu (Ua) > 0} N Bk (k2,6)) g § s
mg (Bk (k2,6)) 4
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for some 6 > (0. Now using (4.18) along with the bi-invariance of both dx and mg, we have that

mg ({k € K : Ukkl—lsz(Uz) > 0} N Bk (k1,9))
mg (Bk (k1,0))
mg ({k € K : qu (Uz) > 0} - ky'ky N Bk (ka,6) - ky' k1)
mx (Bk (k2,6) - k3 k1)

mg ({k € K : g (Uz) > 0} N Bk (k,6)) S 3
mg (B (k2,9)) T4

(4.19)

Combining (4.17) and (4.19) yields % > % This implies that mg (W) > 0 and concludes the

proof. m}

It remains to show Theorem 4.10. To this end, we need the following lemma, which is the analog of
[15, Lemma 3.7] in our setting.

Lemma 4.14. For o-almost every (x1,x2) € X X X, we have A(q4,x) = A(x,x2)-

Proof. By the definition of o~ and the fact that z +— 7, is a disintegration, it follows that for o--almost
every (x1,x2), we have m(x;) = wn(a) and w(x;) = wr(x;), for some w € K. For any such (xy,x),
using the right invariance of mg, we have

A(xl,xz) =‘/); X Nk (x)) X Nkr(x) de(k) = /
X

Nkw ne(a) X MNkw n(x1) de(k)
XxX

= / Nkn(a) X Nkn(x)) de(kw_l) = / Nkn(a) X Nk (xy) de(k) = /l(a,xl)-
XxX XxX

This concludes the proof. O
We are now ready to prove Theorem 4.10.
Proof of Theorem 4.10. Consider the measure v, := 0, X u, where 6, denotes the Dirac mass ata. O

Claim. There exists some Fglner sequence ¥ such that
Va({(x0,x1) € X X X : (x0,x1) € gen(d(xy.x)» ¥)}) = 1.

From the definition of v,, it is clear that for v,-almost every (xg,x;) € X X X, xo = a. Therefore,
assuming the claim, we have that

va({(a,x)) € X X X : (a,x1) € gen(A(a., B)}) = 1,
which, by the definition of v, implies that
pu({x1 € X : (a,x1) € gen(d(a,x), ¥)}) = 1.
Then, by Proposition 4.5 (i), we have that 70~ = u, and therefore,
oc({(x1,x2) € XXX : (a,x1) € gen(A(q x, ¥)}) = 1.
From Lemma 4.14, we know that A (4 x,) = A(x,,x,) for o-almost every (x1,x2), and consequently,
oc({(x1,x2) € XX X : (a,x1) € gen(A(x, x,), ¥)}) =1,

which was to be proved. Now, to finish the proof of Theorem 4.10, it only remains to prove the claim.
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Proof of Claim. In this proof, we follow the argument used in the proof of [14, Theorem 7.6]. Apply
Lemma 2.8 for the ergodic decomposition (xg,x1) > A(x,,x,) to obtain a Fglner sequence @ such that

(X 1) ({(x0.x1) € X X X : (x0,x1) € gen(dxy ). ®)}) = 1. (4.20)

Consider the map X — M(X), s — vy = 8¢ X u, where &, denotes the Dirac mass at s. It is quite
straightforward to see that s — v, is a continuous disintegration of u X u and, moreover, satisfies

(Tg X Tg)vs = vr,s 4.21)

for any s € X. By (4.20) and the fact that s +— v is a disintegration of y X y, it follows that for g-almost
every s € X, vg-almost every (xo,x1) € X X X is in gen(Ax,,x,), ®). Fix b € supp(u). Then

vp-almost every (xo, x1) is in gen(A(y,, x,), P). (4.22)

By Lemma 2.5, there exists some sequence (g, )new in G such that T, a — b, and now by continuity of
the disintegration s — v, combined with (4.21), it follows that

(Tg, X Tgn)Va = V- (4.23)

1
< -t
3

Using (4.22) and the monotone convergence theorem, it follows that for any k& € N, there exists some
N (k) € N, such that

Now, let F = (Fi)ren be a dense subset of C(X X X) and for k, N € N, consider the sets

1
| Z Fi((T, XTg)(xo,m))—/XXX Fj dA(xp.x)

Ar.N = §(x0,x1) € X X X : max
1<j<k
gECI)N

Vb(Ak,N(k)) >1-27k 4.24)

For k, N € N, we define

1
Bin = {(xo,xl) € X x X :dxxx((x0,x1), Ar,n) < %},

where dxxx is the metric on X X X. Then for k sufficiently large, we have

< (4.25)

=~ N

>, AT x TG0 = [ F g
XxX

max
1<) <k
8PN (k)

|Pw ()]

for any (xg,x;1) € Bi v (k) The sets Ay n are open, while the sets By n are closed subsets of X X X,
and also Ag n (k) C B, n(k)» 80 by Urysohn’s lemma, we can find, for all k£ € N, continuous functions
fr : X X X — [0, 1] such that

fklAk,N(k) =1 and fk|(X><X)\Bk,N(k) =0.

By (4.22), for each k € N, there exists n(k) € N such that

/ (Tgn(k) X Tgn(k))fk dvg - / Sk dvp
XxX XxX
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Let (h)ren be the subsequence of (g,)nen defined by hg = gn (k). for k& € N. Then, by the equation
above, we have

Va((The X Tiy) ™' Bronv i) = / (Thy X Tiy) fr dva > / fiedvp —27F
XxX XxX
> vp(Apn) =275 2 1-27%1 (by (4.24)),

for any k € N. Therefore, it holds that

Z Va ((Tn, X Tiy) ™ Bien (1)) = o0,
k>1

and then, by the Borel-Cantelli lemma, it follows that v,-almost every (xg,x;) € supp(v,) belong to
all, but finitely many, sets (7, X Thk)‘lBk, N (k)- Then by (4.25), it follows that for v,-almost every
(x0,x1) € X X X and k sufficiently large, we have

2
< -,
k

Z Fi((Ty x Ty) (x0,x1)) — / Fj dA(5,, <1, ) (x0.3)

1<j<k |\Pk|

where ¥ is the Fglner sequence defined by W = @y (k) hx, for k € N. Using (4.6), the above equation
becomes

2
< -
k

1
—_ Fi((Ty x T, , - F;da
A Z 7 ((Tg x Tg) (x0,x1)) /Xxx 7 A (xg,x1)

max
1<j<k
J f=A

Sending kK — co, we have shown that

lim — Z F((Ty x Tg)(x0,x1)) :/ XFd/l(xo,Xl)

Xx
holds for v,-almost every (xg,x;) € X X X and for any F € F. An approximation argument concludes
the proof of the Claim. O

The proof of the theorem is complete.

4.3. The proof of Theorem 3.8

We are now ready to prove Theorem 3.8.

Let G be a square absolutely continuous group, let (X, u, T) be an ergodic G-system admitting a
continuous factor map to its Kronecker factor, and let a € gen(u, ®) for some Fglner sequence .
Let also E be a clopen subset of X with u(E) > 0. Consider the measure o given in (4.1). By Theorems
4.9 and 4.10, we have that there is a Fglner sequence ¥ such that

O—({(.X] ’ Xz) : (a,X]) € gen(ﬂ(XI,XZ) H lP) and (.X] ’ -xz) € SuPp(/l(xl,xz))}) = 1 (426)
However, by Theorem 4.6, we have that

O'(E X U T,lE) > 0. (4.27)

teG

Combining (4.26) and (4.27), we get that there exists (x;,x2) € X X X such that for the T X T-
invariant measure A := A(4, x,), We have that (a,x;) € gen(d,¥), (x1,x2) € supp(d) and also
(x1,x2) € E X (U,eq T, 'E). Hence, there is # € G such that x; € E and x; € T, ' E. Finally, applying
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Lemma2.5forY = XxX,S=TxT,y = (a,x;)andw = (x1,x2), v = A and for the Fglner sequence P,
we get that there is an infinite sequence (g, )nen in G such that (Tg, X Ty, )(a,x1) = (x1,x2) in X X X.
Therefore, (a,x1,x;) € X 3 forms an ErdGs progression, and this concludes the proof of Theorem 3.8.

5. Proof of the corollaries of Theorem 1.6

We start by showing Theorem 1.8, and then we will prove Corollaries 1.9 and 1.10. We split the proof
of Theorem 1.8 into the following three lemmas:

Lemma 5.1. Let G be an amenable group, let M > 0, and let ¢ : G — G be a map such that for every
g€ G, ¢ ({g})] < M. Suppose that there exist two Fplner sequences ® and ¥ in G and some n > 0
such that for any N € N, we have that $(¥n) C @y and

o)l
|Pn|

Then G is ¢-absolutely continuous.

Lemma 5.2. Let G be a torsion-free finitely generated nilpotent group. Then the squaring map s on G
is injective.

Lemma 5.3. Let G be a torsion-free finitely generated nilpotent group. Then there exists some Fglner
sequence ¥ in G and some 11 > 0 such that for any N € N, we have that sg(¥Yn) C Yn+1 and

lsc (YNl _
YN 1]

It is clear that Theorem 1.8 follows immediately from Lemmas 5.1, 5.2 and 5.3, where Lemma 5.1
is applied for ¢ = s, ¥ the Fglner guaranteed by Lemma 5.3 and ® the Fglner given by ®y = Wy 4.

5.1)

Proof of Lemma 5.1. Let G, M, ¢, ®, ¥ and 77 be as in the assumptions of Lemma 5.1. We will prove
something stronger than we require, namely that for any u : G — [0, 1] we have

limsup —
N —o |lP |

Y, ul6g) < T limswp e 3 (o)

ge¥nN N 8EdN
and then for any & > 0, taking 6 = ne/M > 0 yields that G is ¢-absolutely continuous. Letu : G —
[0, 1], and let (W, )ren satisty

lim
k—oo |TNk |

2 19(g)) = limsup s m, IR

g€¥n, ge¥n

For each k € N, using the assumption on ® and ¥, we have that ¢(¥n,) € ®pn, and “ﬁg\/’vkl)l >n
k

Then for every k € N, we have

1 M M 1
T 2 MOE) S T ) u(e) < S ] > ule),

K ge¥y, Ni ged(¥ny) gedn,

so letting k — co, we obtain that

1 1
lim u(p(g)) < —hm 1 Sup u(g) < —hm ' Sup u(g),
k—o0 |lPNk| ; |CI) | ; |q) | ZO
g€ Ny I4S gedbN
which concludes the proof. O
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Let G be a torsion-free finitely generated nilpotent group and fix a Mal’cev coordinate system
(t1,...,t5). By [11, Theorem 17.2.5], we have that for any 1 < i < s, there are polynomials p; ini — 1
variables, with rational coefficients, satisfying pi(Zi‘l) C Z such that for any x € G, we have

1 (x%) = 2t;(x) + pi(t1(x), . . ., 121 (x)). (5.2)
In the previous, p; is a polynomial in O variables, which means that it is a constant polynomial.

Proof of Lemma 5.2. The proof becomes obvious by using (5.2) and the injectivity of the coordinate
map G — Z°, x — (t1(x),...,ts(x)), which follows from the fact that G is torsion-free. O

Proof of Lemma 5.3. Let G be a torsion-free finitely generated nilpotent group and fix a Mal’cev
coordinate system (1, . .., ;). We identify the group G with Z° as implied by the Mal’cev coordinate
system. Let (p;)1<i<s be the sequence of polynomials satisfying (5.2), and for each i, we denote the
number of terms of p; by ;. Now we will define three integer-valued sequences (b;)1<i<s, (¢i)1<i<s
and (d;)1<i<s that will help us to construct the Fglner sequence ¥ with the required properties. We
start with the latter one, and we define it recursively as follows: Let d; = 1. Now let 1 < i <
s and suppose that d; has been defined for all 1 < j < i. Given a monomial m(xy,...,x;_1) =
xit.oxi, with e; > 0 forany 1 < j < i, we let d(m) = Y,.;.; e;d;, and then we also let
d(p;) = max{d(m): the monomial m appears in p;}. Then we define d; = max{d(p;), 1}. The other
two sequences are defined as follows: Let b; = 0. Now we fix 1 < i < 5. We denote by m; the monomial
m appearing in p; with maximal coefficient in absolute value such that d(p;) = d(m). Then we define
b; to be the ceiling of the absolute value of the coefficient of m;. Finally, for any 1 < i < s, we let
¢; =v;b; +2. We also note that d; = d(m;) foreach 1 <i <'s.

Let us now define the Fglner sequence ¥. By the definition of (b;)1<;<s and (d;);<;i<s, we have that

forany 1 <i <s,if |x;| < M% forevery 1 < j < i, for some M > 0, then |m;(xi, ..., x;i1)| < b;M%,
and then, |p;(x1,...,xi_1)| < y;b;M%. Tt follows that for any 1 < i < s, the following implication
holds:
Nd; . Nd;
x| <¢; VI<j<i=|pi(xt,....xi-)| < yibic; “. (5.3)

Given M > 0, we use the notation [M] := (=M, M| N Z. Now, for any N € N, we define
P = [e] VN x ST e [TV

It is not hard to check that ¥ = (¥ )n e is a Fglner sequence in G. We show that sg(¥y) € Pn+1
for every N € N. Let N € N and then

56 (Pn) = {(26:(0) + pi((1; ()1 <jei) siss 1:(x) € [N V4] V1 <i<s).

Let x2 = (11(x?), ..., t;(x?)) € sg(¥x). We claim that for each 1 < i < s, we have that
1:(x%) € [eN]. (5.4)
Let1 <i <s. Forany 1 < j <i, we have that#;(x) € [cE.Nfl)d"], and then we have that

1:(x%) = 2t:(x) + pi((1;(x): j < i)
€ (pil(1;()i<j<i) = 2¢N V% pi((1)<jei) +2¢ NN 0 QZ 4+ pi(1(0))1<j<i))

c [N,

where the last one follows from |p; ((#;(x))1<j<i)| < yib,-cl(N_l)d", by (5.3), and from the definition of
¢; along with that d; > 1. This shows (5.4) and hence that sg (¥n) C Py +1-
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It remains to prove (5.1), and we show it for the Fglner sequence ¥ and with 7 := [ ] ;< ¢ di 5 0.

In other words, we prove that for any N € N, we have

lsc (¥n)I —d;
L Sl 4 R i 5.5
ot = Ll ©-)

i

I1<i<s

Let N € N. By Lemma 5.2, s¢ is injective, and since Wy is finite, we have that

N-1
sl =tewt=2( [] )

1<i<s

Moreover, we clearly have

N
|TN+1|=2S( [] c,f"') :

1<i<s
and so (5.5) follows from comparing the last two equations. This concludes the proof. O

Having established Theorem 1.8, we are ready to prove Corollary 1.9. Before we prove it, let us make
some remarks.

Lets e Nand 1 <7 < s. We say that a nonempty set L C Z° is a line in the i-th coordinate if there
is a nonempty interval / in Z (i.e., a set of the form {m, ..., m + r} for some m,r € Z with r > 0) and
some integers x;, j € {1,...,s} \ {i} such that

L= {x1} X x{ximn} X I X {xipp } X X {xg )

We refer to the cardinality of the interval I as the length of the line L.

Let G be a torsion-free finitely generated nilpotent group and (¢4, . . . , t5) aMal’cev coordinate system.
Foreach1 < i < s, let ¢; be the element with coordinates (egi), R e‘g")), where efi) =1and eg.i) = 0 for
J # i. Every g € G has a unique representation as (¢1(g), .. .,s(g)) € Z*, and this defines a bijective
map from G to Z°. From now on, we identify each g € G with its coordinates (¢;(g), . ..,#s(g)) € Z°,
and every set E C G with the corresponding set of coordinates in Z°. We freely pass from viewing a set
E c G as a subset of Z° and vice versa, without stating it, as it will be clear from the context.

If E is a finite subset of G and 1 < i < s, then E can be written as a finite disjoint union of lines in
the i-th coordinate, and this can be done in many ways. We want to write E as a union of lines which is
going to be maximal in some sense that is going to be useful for us in our proof of Corollary 1.9.

More precisely, if E is a finite subset of G, and 1 < i < s, then we can always write it as a disjoint
union E = |—|le L) such that the sets L) are lines in the i-th coordinate, and for each j, the line L(/)

is maximal within E, meaning that for each 1 < j < s, ¢;L"/) is not a subset of E. Note that although
there always exists such a choice of lines, it may not be unique, but uniqueness is not necessary for our
purposes. We are now ready to prove Corollary 1.9.

Proof of Corollary 1.9. The first part of Corollary 1.9 follows immediately by combining Theorems 1.6
and 1.8. It remains to prove that if G is a torsion-free finitely generated nilpotent group, then given a
Mal’cev coordinate system (71, .. .,;) on G, we can choose B so that for any finite set C C Z and any
1 <i<s, theset {b € B:t;(b) € C} is finite.

Let G be a torsion-free finitely generated nilpotent group, let A have positive left upper Banach
density, and ¥ = (Wn)nen a left Fglner sequence such that dg(A) > 0, where the previous density
exists. In addition, let (¢, ..., ?s) be any Mal’cev coordinate system on G.

Claim. There is a Fglner sequence ¥’ such that dy (A) > 0, and for any finite set C C Z and any
1 <i<s, theset {N € N:t;(W},)NC # 0} is finite.
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Assume that we have proved the Claim. Then we can consider the set A’ := Uy ey A N'¥),. Then
we have that dg-(A) > 0, so by Corollary 1.9, there is an infinite sequence B ¢ A’ C A and some
teGsuchthatr- B4B Cc A’ c A.LetC c Zbe finiteand 1 <i < s. Foreach N € N, ‘I‘I’V is finite
and {N € N : t;(¥},) N C # 0} is also finite, so since B C (Jyen ¥y is infinite, one easily sees that
{b € B : t;(b) € C} is finite. So it remains to prove the Claim.

Proof of Claim. We know that dy(A) = limy —c0 |‘T$$II’| >(0.Foreachl <i<sand N € N, let

§in = RIENCRIN]
- ¥ |

Since ¥ is a Fglner sequence, for all i, 6; y — 0 as N — oo. Then we can choose a sequence Qn of
natural numbers such that Q) — o0 as N — oo and for all i, Qnd; y — 0as N — oo.
Step 1: For each N € N, Wy is a finite subset of G, so we can write it as a disjoint union of lines in

the 1st coordinate, which are maximal within ¥, . Let ‘I‘](V]) be the union of those lines whose length is
greater that O, and mpy be the number of those lines whose length is less than or equal to Q. Then

RIINCIRSD] S Onmy |¥n - |lpz(\})|
| L S Y|

ONOI,N =0N

Therefore, % — 1 as N — oo, from which one gets that L 4O (‘PI(VI)) N en is a left Fglner sequence
in G. In addition, it is not difficult to see that the density dy) (A) exists and dy) (A) = dw(A).

Recall that for each N € N, ‘I’I(Vl) is a disjoint union of some lines in the 1-st coordi-
nate L-V) . LU~-N) whose length is greater than Qn. Let Ny = 1 and set {I"fl) = ‘Pl(l).

Since ‘le is finite, the projection P; of ‘le in the first coordinate is also finite. For each
N e N, let

N
(P = (gew) in(g) e P} = U{g e LUN) 1 11(g) ¢ P1}.
=

(1,2) (1
Then ‘I’N C ‘PN and

3 1 ¢ i
(2] S He e LUN i) € P B (LGN - |Py))
= >

n, ¢ ; = ¢ ;
%y D T LN
19y,
D ) LS 1 TR 1 31
7 , > = —_—.
TN LGN INON On
1P| ool
Since Qn — o0 as N — oo, we have that Q_Ilv — 0as N — o0, so I‘I’IY”I — 1 as N — . Hence, we
hivel () _ (1.2 ’
can pick Ny € N, N> > Nj such that I‘I’Tj)l > % Set ‘I’z = ‘PNZ’ .
2

Now since ‘i‘él) is finite, the projection P, of ‘?2(1) in the first coordinate is also finite. For each
N €N, let

N
WY ={gewy n() g PLUPY =] |{ge LU 11i(g) ¢ Py UP}.
j=1
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Then ‘I‘I(\}’S) C ‘I‘I(\}) and as before, we have that

(1,3)
Wyl 1P+

('l OnN
[Py |+ P, | 1wy |
Again, since Qn —>ooasN—>00,wehavethat# —0as N — OO,SOW — las N — oo.
hivel G 1.3
Hence, we can pick N3 € N, N3 > N, such that | (,)‘ % Set ‘Pé ) = ‘P](V; ),

Continuing inductively, we find a strictly i 1ncreas1ng sequence of natural numbers (Ng)ren such that
— B |
forall k € N, ¥{"  ¥{) ¢ Wy, and || i} > 1= £ Then || L " — 1as k — oo, from which one gets

that P() = (‘f‘(l))keN is a left Fglner sequence in G. In addltlon, it is not difficult to see that the density
(A) exists and dg ) (A) = (\ym ¥ N(A) = dy) (A) = dg(A). In addition, from the construction
Ny /ke

dg)
of ¥, we have that for any finite set C C Z, the set {k e N : tl(‘?il)) N C # 0} is finite.

Step 2: Repeat Step 1 with ¢ in place of ¥, which we write as a disjoint union of lines in the 2nd
coordinate that are maximal within ‘i’;vl), to obtain a strictly increasing sequence of natural numbers
92
|

(Ni)ken and a left Fglner sequence P2 guch that for all k € N, ‘FIV’IEZ) - ‘I’(l) — lask — oo,

and such that for any finite set C C Z, the set {k € N : tz(‘.I},(f)) N C # 0} is finite. Then we will also
have that the density dg ) (A) exists and dg ) (A) = dg() (A) = dy(A).

Recall that ¥ has the property that for any finite set C C Z, the set {N € N : 7, (‘?,(\,l)) NC # 0} is
finite. As ‘?;{2) C q’z(vlk) forall k € N, we get that for any finite set C C Z, theset{k € N : 1, (‘T’](f))ﬂC + 0}

is finite. Hence, after all, for any finite set C C Z and any i € {1, 2}, the set {k € N : ti(‘?l(cz)) NnC # 0}
is finite. _

Repeating the same procedure, after s steps, we find a left Fglner sequence ¥*) such that the density
dgs) (A) exists, dg(,) (A) = dy(A) > 0 and for any finite set C C Z and any i € {1,...,s}, the set

{N e N : ti(‘i‘l(\‘;)) N C # 0} is finite. Taking ¥’ := W) we see that ¥’ satisfies the claim, thus
concluding its proof. O

Since the claim is established, the proof of the corollary is complete. O

Now, we have to show Corollary .10, but this is not hard using the fact that finitely generated
nilpotent groups are virtually torsion-free. Let us first show the following simple lemma:

Lemma 5.4. Let G be an amenable group, H be a subgroup of G with (G : H] = r < co and ® be a
Folner sequence in G. Then the following hold:

(i) do(H) =y
(ii) Letting YNy = ®n N H for each N € N, the sequence ¥ = (YN )N en is a Folner sequence in H.

In the following proof and onwards, we use the symbol LI to denote the disjoint union.

Proof. (i) This is quite easy to check.
(ii) Let 7 € H and suppose for sake of contradiction that

Yy Ny
£ = limint /2N O ¥n]

< 1.
N—eo k9N

For any N € N, we have that

hoy NOy = (KN NPN) U ((hOy NDy) \ H);
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hence,

|hdN N Dy | _ ¥y NPy N [(hdy N D)\ H| < |h¥y NY¥n| PN N [Py \ H|
| D | | Dy | | Dy - [P | | D | | Dy

Using (i), it follows that

Oy ND 1

fim PONOON] €y 1y
N —o0 |(I) N | r r

which contradicts the fact that @ is a Fglner sequence in G. Therefore, ¥ is indeed a Fglner sequence

in H, and the proof of the lemma is complete. O

Proof of Corollary 1.10. Let G be a finitely generated virtually nilpotent group, ® = (®y)nen be a
Fglner sequence in G and A be a subset of G with do(A) > 0. By passing to a subsequence for which
the limit exists, we may assume that dgp(A) > 0. Let G’ be a nilpotent finite-index subgroup of G. Since
G is finitely generated, by writing it as a disjoint union of finitely many left cosets of G, it is easy to see
that G’ is also finitely generated, and it is also nilpotent. By [11, Theorem 17.2.2], there exists a normal
subgroup H of G’ with finite index, which is torsion-free. Hence, H is a torsion-free finitely generated
nilpotent group, which has finite index in G. By writing G as finite disjoint union of left cosets of H, we
can see that there exists some g € G such that do(g~'A N H) = do(A N gH) > 0. Again, by passing
to a subsequence, we may assume that the limit exists, so de(g™'A N H) = do(A N gH) > 0. We let
Yy = Oy N H for each N € N, and by Lemma 5.4 (ii), ¥ = (¥n)nen is a Fglner sequence on H.
Hence, for every N € N, we have that

8! ANYN| _ls'ANON NH| |Py|

PNl | Dy |¥n |’
and thus,
_ do(g™'ANH)
d 'AnH) =22 "—_""7 5,
y(g ) do(H) >

using Lemma 5.4 (i). Therefore, recalling that H is torsion-free finitely generated nilpotent group,
Corollary 1.9 yields an infinite sequence B ¢ g"'!AN H c g~'A and some t; € H such that B« B C
t(;lg‘lA N H c t~'A, where we have set t = gty € G. This concludes the proof. m]

Having established the corollaries concerning finitely generated nilpotent groups, we move on to
showing the results corresponding to abelian groups — namely, Theorem 1.12 and Corollary 1.13.
Obviously, the latter is an immediate consequence of the former and of Theorem 1.6, so it suffices to
show Theorem 1.12.

Proof of Theorem 1.12. Let (G, +) be an abelian group such that 2G has finite index in G, let r = [G :
2G], and consider a collection B;,1 < i < r such that 8; = e (= the identity element in G) and
G = |Ji_, Bi +2G. Let s denote the doubling map s : G — 2G, g + 2g. From the first isomorphism

theorem for groups, we know that the map s : G/ker(s) — 2G,5(g + ker(s)) = 2g is an isomorphism.
Since 2G has finite index in G and G is infinite, we know that 2G is also infinite so the quotient G/ ker(s)

is infinite. Let (g, ),en be a sequence in G such that G/ker(s) = {gn + ker(s) : n € N} and such that
for any n # m, g, + ker(s) # gm + ker(s).

Consider a Fglner sequence F = (Fy)nen in G/ker(s)’ and for each N, take xy 1,..., XN ¢(N)
from the sequence (gn)nen such that Fy = {xny 1 + ker(s),...,xny ¢n) + ker(s)} and such that
xn,i+ker(s) #xn j+ker(s) wheneveri # j. Foreach N, let Oy =5(Fy) = {2xn 1,...,2%N ¢(N) }-

Since s¢ is an isomorphism, we have that = (&)N)NGN is a Fglner in 2G and |&>N| =|Fn| =<€(N).
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For each N, we define @y = [ |I_, i + @y, and we observe that PN = r|E)N|.
Claim 1. ® = (O )y e s a Folner in G.

Proof of Claim 1. Lety € G and & > 0. Then there exist 1 < ip < r and h € G such that y = §8;, +2h.
Then

(y+On) N Dy = (|_|<ﬁl-0 +Bi +2h+€1'>N))) n (|_|(ﬁ,- +cT>N)). (5.6)
: =

i=1

Since the cosets 8 +2G are disjoint, it follows that for each 1 < i < r, there exists aunique 1 < j(i) < r
such that 8;, + 8; € B + 2G, so there is h; € G such that 8;, + 8; = Bj(;) + 2h;. In addition, if we
assume that for iy # i, we have j(i;) = j(i2), then we have that 8; — B8;, = 2h; — 2h;, € 2G, so
Bi, +2G = Bi, +2G, which is a contradiction. Therefore, themap j : {1,...,r} = {1,...,r},i = j(i)
is a bijection, and then (5.6) becomes

r

+ @) Ny =| | ((Bji) +2hi +2h+BN)) N (Bji) + D))

i=1

(i) + (2h; +2h+ Dy ) N D)),

r
i=1

i=

and thus, we have that

|+ @n) N ON| = ) [(2h; +2h+Dy) N D). (5.7)
=1

12

Now since ® > is a Fglner sequence in 2G, for N sufficiently large, we have that for every 1 < < r,
[(2h; +2h + @) ADN| < €|D |, and then we have that

|(2h; + 27+ @) N D) o |(2h; +2h + D) ADy | ol

— — €. (5.8)
|| |On|
Then, combining (5.7) and (5.8), we get that for N sufficiently large,
|(y+®n) N DON| Xy |(2h; +2h+Dy) N D) S T (1-&)|®dy| _q_
|Dn | r|®dy| - r|®y|
Since &€ > ( was arbitrary, it follows that limpy e W = 1. Thus, ® is a Fglner sequence in G,

and the proof of the claim is complete. O

Assume that ker(s) is infinite, and let (/,,), <y be an enumeration of ker(s) (the case when ker(s)
is finite is easier and can be treated with a similar argument). Let also (Eg )ren be a Fglner sequence in
ker(s) (in case ker(s) is finite, one can take Ey = ker(s) for all k € N). Fix N € N. Then for any n, m
withl <n,m < Nandanyi,j € {l,...,0(N)},if gn +xn i — XN j + Zm € ker(s), then

 gn+xni—xN,j+2Zm+ E)AEL|
lim =0
k—co |E|
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We can then pick ky large enough such that for all n,m with 1 < n,m < N and all i,j €
{L,...,¢(N)},if gn+xN,i —XN_j + Zm € ker(s), then

+xNi—XN.i+zZm+ HNn)AH 1
|(gn N,i N,j m N) Nl <, (59)
|[Hn| N

where we have set Hy := Ey,, . Forevery N e N, let ¥y = Llf:(fv) xni+Hy.
Claim 2. ¥ = (Wn )y en is a Folner in G.

Proof of Claim 2. Let y € G, and take ny, my € N such that y = g, + zm,. Let &€ > 0. Since F is a
Fglner in G, there is Ny € N, Ng > ny, m,, such that for every N > N,

|(gn, + ker(s) + FN)AFN|
|Fn|

E
< —
2
and % < £.Let N > Ny. For each i € {1,...,{(N)}, if there is j € {1,...,£(N)} such that
gny, +XN.i € XN, j + ker(s), then this j is unique by the choice of (xn ;)ie(1......(n)}- Let
Ay ={ie{l,....,0(N)}: gn, +xn.i € xn,j+ker(s) forsome j € {1,...,¢(N)}},
and for each i € Ay, denote the corresponding unique j by j (7). Let also
By ={i€{l,....0(N)} : gn, +xn.: ¢ xn.j+ ker(s) forany j € {1,...,0(N)}}
and
Cn:={je{l,....¢(N)}:gn, +xni &xn,j+ker(s)foranyi e {l,...,{(N)}},
and observe that {g,, +xny; : i € By} = {a € G : a+ker(s) € (gn, +ker(s) + Fn) \ Fn},
{xn,j:j€CN}={a€G:atker(s) € Fn\(gn,tker(s)+Fn)}, [Bn| = |(gn, +ker(s)+Fn)\Fn|
and [Cn| = |Fn \ (gn, + ker(s) + Fn)|. We then obtain that

£(N) £(N)
(y+¥n)a¥n = ( |_| 8ny + XN it Zm, +HN)A( |_| XN.i +HN)
i=1

i=1

C( U gny+xN’i+zmy+HN)U( U xN,l-+HN)U

i€Bn ieCn
U ( U (gny +XN.i +2Zmy, + HN)A(XN (i) +HN))-
I€EAN

Therefore, we have that

[(y +¥Nn)aYN| < |BN||Hn|+|CNI|HN | + Z [(gny +XN.i +2Zm, + HN)A(xXN i) + HN)|
I€EAN

= |(gn, + ker(s) + FN)AFN|||HN| + Z |(gny +XN.i + Zm, + HN)A(xN j(i) + HN)|-

i€AN

Now for each i € Ay, we have that g, +xn,; € xn ;i) + ker(s), so also g, +XN,i + Zm, €
XN, j(i) +ker(s), and hence, there is wy, € ker(s) such that g, +xn ;i +2Zm, = XN j(i) +Wy. This implies
|(gny +XN.i + Zm, + HN)A(xXN i) + HN)| = [xn o) + wy + HN)A(XN o) + Hn)| =
|(wy + Hy)AHp|. Since wy, = 8ny, +XN.i = XN j(i) + Zm,, USING (5.9) and combining with the fact that

[(wy+HN) AHN |

1
N > ny,my, we get that T <w-
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Recall that ¥y | = €¢(N)|Hy| = |Fn||Hy| and |[An| < €(N) = |Fn/|, so after all, we have

|Hn |

(v + 9N )8Wn| _ 1(8ny +ker(s) + F)aFxllHn |+ Tieay, 'R
x| B |FN|HN |
|(gn, +ker(s)+ Fny)aFn| 1
< - +—<e.
[FN| N
Since € > 0 and y € G were arbitrary, this concludes the proof of the claim. O

We will now prove that @, ¥ satisfy Definition 1.4 for the map s and therefore G is square absolutely
continuous. Observe that 2%y = {2g : g e Yy} ={2xny ;7€ {1,...,0(N)}} =Dy, and ifu : G —
[0.1].then foreach N € N, we have Syey,, 1(28) = oo em oy 4(28) = Zi [Hn lu(2uw ) =

|Hy | de?f)N u(g). Therefore, for each N € N, we have

|II,|Z u(2g) = —Z u(g) = @lzu(g) @'Zu(g),

ge¥n gedy

Therefore, given & > 0, we can take ¢ = f, and then for any u : G — [0, 1], if

. 1 £
hmsupm Z u(g) <6 = .

then
lim sup v Z u(2g) < e
N —o0 | N| g%y
This concludes the proof of Theorem 1.12. O

6. Counterexamples on product sets

To construct the counterexamples, we introduce some convenient notation. We denote by H3 the
3 x 3 discrete Heisenberg group — that is, the group of 3 X 3 upper triangular matrices with 1 in the
diagonal and integer entries. Using the obvious Mal’cev coordinate system in this group, we identify
Hsz with Z> by writing elements of H3 as a = (ay, as,as), where the group operation is given by

b= (a; +by,ar + by,a3 + bz +aby). For N € N, we denote [N] := [1, N], where all intervals are
considered in Z, and [N]’ := [1, N] N (2Z + 1). All the counterexamples below are constructed on the
group G = H3. We may assume that any infinite sequence B C H3 arising from Corollary 1.9 considered
below is infinite an all coordinates.

Example 6.1. We construct a set A € H3z and a Fglner sequence @ with do(A) > 0 such that there is
no infinite sequence B = (h(n)),en C A satisfying B« B c At~! for some ¢ € G.

Consider the Fglner sequence ® = (@ )y eny With @y = (2V +[N]) X [N]x [N?]. Itis not hard to see
that @ is a left Fglner sequence, but not a right one. Let ®}, = (2N +[N]’) x [N]’ x [N?]’ and consider
the set A = [y ey @) - Clearly, do(A) > 0. Suppose, for sake of contradiction, that there exist an
infinite sequence B = (h(n)),cn C A and some ¢ € Hj such that {b(i)b(j): i < j} ¢ At~!. We denote
17! = (11,12, 13). We observe that BN @), # 0 for infinitely many N € N. Let b = b(i) = (by, b2, b3),
for some i € N, such that b € (D;v for some N large (compared to the ¢;’s). Then we can find some j > i
such that the element ¢ = b(j) = (c1, c2, c3) belongs in some @}, for some M much larger than N, and
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then bc € Ar~!. Tt follows that be € dD’Qt‘l, for some Q € N, where

o1 = (224101 +1) x ([Q) +12) X ([0 + 13+ 12(22 +[Q])).

Then 22 —Q +1; < (be); <22 +Q +11, and on the other hand, (bc¢); = by +¢; € 2N +2M + [N+ MY,
s02N +2M N - M < (bc); <2V +2M + N + M. Combining those with the fact that M is assumed to
be sufficiently large (and much larger than N), we obtain that Q = M. We now want to show that #, # 0.
By the fact that bc € <I>'Qt‘l, we have that

bce (2Z+1+1t)) X RZ+1+t) X 2Z+1+1t3+1).
However, multiplying b and c, and using that b; and ¢; are odd for all i, gives that
bc = (b] +C1,b2 +Cz,b3 +C3 +b1€2) € 27 X 27 X (ZZ+ 1)

It follows that all the #;’s are odd, and in particular, #, # 0.
Now, since bc € CI)L)I_1 and 1, # 0, we have that

(be); > 22 =2M.
However, for M sufficiently large, we have that
(be)s =bs+c3+bicy < N*+ M> + 2V + N)M < M?,

which yields a contradiction.

Example 6.2. We construct a set A C Hj3 and a Fglner sequence ® with do(A) = 1 such that there is
no infinite sequence B = (b(n)),cn C G satisfying B» B c t~'A forsome t € G.

Consider the same Fglner sequence ® as in Example 6.1. We observe that @y N ®3; = 0 for any
N # M, and in particular, the projections of any two such sets in the first coordinate are disjoint
subsets of Z. We define the set A = (Jy oy Py, and clearly, we have do(A) = 1. Suppose, for
sake of contradiction, that there exist an infinite sequence B = (b(n)),en C H3 and some t € Hj
such that {b(i)b(j): i > j} < t"'A. We denote t = (t1,t2,13) and b(1) = b = (by, by, b3). We
may assume without loss of generality that by # 0. We let B’ = (b(n)),»2. Moreover, we denote
b~' =y = (y1,y2,y3), and then we have that B’ ¢ ™' Ay. It follows that B’ N t~'®yy # 0 for infinitely
many N € N. Fix ¢ = b(i) for some i > 1 such that ¢ € B’ N t~'®,;y for some large M € N. Then
cb € t7' A, which implies that cb belongs in exactly one set of the form t~!® . We have that

(ch)i=ci+by €2M 4 [M]+11+y, + by =2M + [M] +1,,

and hence, cb € t~'®,,. Then we have that (cb); € [M?] +1;[M] +t3, which imples that (cb); < M?,
for M sufficiently large. However, multiplying c and b gives that

(chb)yz3 =c3+by+ciby > ¢y €2M 4+ [M] +1, + y1,

which implies that (cb); > 2M = 2™ for M sufficiently large, where the implied constant is again
absolute. This yields a contradiction.

Example 6.3. Consider the same ® and A € H3 as in Example 6.2. Then we show that there is no
infinite sequence B C Hj satisfying B» B ¢ At~

To see why, suppose, for sake of contradiction, that there exists such a sequence B and, as we did in
Remark 1.14, consider the sequence B’ = t~1Bt. Then we have that B’ » B’ c t~' A, which cannot hold
for this particular set A as we saw in Example 6.2. This yields a contradiction.
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A. A result of Host and Kra for amenable groups

The purpose of this appendix is to prove Lemma 3.5. The proof follows the ideas in the proof of [9, Proof
of Proposition 6.1], adapted in our setting. We state the following classical result (see, for example, [19,
Example 11.13 (a)]), which we will need in the proof of Lemma 3.5:

Lemma A.1. Let X be a compact metric space. Then the only linear multiplicative functionals on the
algebra C(X) are the point evaluations, (i.e., evy(f) = f(x), for x € X).

For convenience, we restate the lemma we want to prove:

Lemma 3.5. [9, Proposition 6.1 for group actions] Let G be an amenable group, let (X, u,T) be an
ergodic G-system, and (Z, m, R) be its Kronecker factor and p : (X,u,T) — (Z,m, R) be a factor
map. If a € X is a transitive point, then there exists a point z € Z and a Fglner sequence ¥ such that

ln Y i) R = [ i (o) du (A

N-o [Py =

holds for any f, € C(X) and f, € C(Z).
We remark that the result still holds if we replace (Z,m, R) by any factor of (X, u,T) that is distal
as a topological system.

Proof. As in [9], we split the proof into two parts.

Construction of a common extension. Let A C {f : X — C: f is measurable and bounded} be the
closed (in norm) subalgebra that is spanned by C(X) and { fop : f € C(Z)}. Thisis a unital commutative
separable algebra, which contains the constants and is invariant under both complex conjugation and 7.
Consider the Gelfand spectrum of A, which is defined as

W ={x: A — C: yis linear and multiplicative}.

Note that W is compact and metrizable since A is separable. By Gelfand’s theorem, there exists an
isometric isomorphism F : C(W) — A, satisfying F‘~1 (X)) = x(f) forall f € Aandall y € W.
Hence, for all f € C(W) and all y € W, we have f(y) = x(F(f)). For g € G and y € W, we
define Sg(x) : A — C, Sg(x)(f) = x(f o Tg). Then it is not too difficult to see that for each g € G,
Sg : W — W is a homeomorphism, and we also let S = (Sg)geg- Then for every y € W, we have that

X(F(foSg) = f(Sg(x) =Se(x)(F(f) = x(F(f) o Ty)

for f € C(W) and any g € G. In particular, for every x € X, by considering the evaluation functional
ev, € W, it follows that

F(f o 55)(x) = evx(F(f 0 Sg)) = evx(F(f) 0 Ty) = (F(f) 0 Ty) (x)
holds for any f € C(W) and any g € G. Thus, we have that
F(foSg)=F(f)oT, (A.2)
for every f € C(W) and for every g € G.
Now, we consider the embedding F~'|c(x) : C(X) < C(W). Given w € W, ev,, o F! lcx) isa
linear multiplicative functional on C(X), and by Lemma A.1, there exists a unique x € X such that

ev,, o F~1 lc(x) = evyx. Thus, we can define 7x : W — X by mx (w) = x if and only if ev,, o F! lcx) =
ev,. The last equation is equivalent to that for any f € C(X) and w € W,

Fomx(W) =eVay(w)(f) =evy o F e (f) = F7H(f) (w).
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Hence, my is the unique map from W to X satisfying

fonx =F'(f) (A.3)

for any f € C(X). We claim that 7x is continuous and surjective.

To show continuity, we let (w,),en in W such that w,, — w € W. Then for any f € C(W), we
have ev,, (f) — ev,,(f). Hence, for any f € C(X), we have eV, (w,)(f) — eV, (w)(f); that is,
f(ax(wp)) — f(rx(w)). Since X is compact, rx (w,) has a convergent subsequence, which by abuse
of notation we denote by mx (w,). Suppose for sake of contradiction that 7x (w,) — y # ax(w).
Then by Urysohn’s lemma, we can find some f € C(X) and some disjoint open neighborhoods
U, 5 nx(w),Uz 3 y, such that f|y, = 1 and f|y, = 0. It follows that mx (w,) € U, for large n, hence
f(rx(wy)) = 0 for large n, while f(mrx(w)) = 1, but this contradicts the fact that f(rx(w,)) —
f(mx(w)). This shows that every convergent subsequence of 7x (w,,) converges to mx (w), and since X
is compact, it follows that 7x (w,) — mx (w), showing the continuity of 7x.

To show that mx is surjective, let x € X and consider the linear multiplicative functional ev, on
C(X).Since F~! |c(x) is an embedding, it follows that F¥ -1 |c(x) oevy is a linear multiplicative functional
on C(W). Then, by Lemma A.1, there exists some w € W such that F ‘1|C(X) oev, = ev,,. Hence,
nmx (w) = x, showing that 7y is surjective. _ _

Moreover, for any g € G and any f € C(X), let f = F7'(f) € C(W), and then F(f) = f € C(X),
and by (A.2), F(f o Sg) = f o T, € C(X). Then, using (A.2) and (A.3), we have that

fngonX :F(foSg)on'X :foSg:F(]T)on'XoSg:fon'XoSg
for any g € G and any f € C(X). It follows by Urysohn’s lemma that
Toonxy =nx oS, (A4)

for any g € G. Therefore, we have proved that W is an extension of X with mx being a continuous
topological factor map.

Similarly, by considering the embedding F' _1|C(z)op : C(Z) o p = C(W), there exists a unique
surjective continuous map nz : W — Z such that

fornz=F'(fop) (A5)
for any f € C(Z), and
Roonmz =mz 08, (A.6)

for any g € G. Hence, W is also an extension of Z with 7z being a continuous topological factor map.
Now we will find a measure on W, with which W will become a measurable extension of X and Z.
Since f +— f f du is a positive linear functional on A, there exists a unique probability measure v on

W such that
_ -1
«/X fap= «/W i

for any f € A. By (A.2), we have that v is S-invariant; by (A.3), we have mxv = u; and by (A.5), we
have mzv = m. Consequently, mx and 7 are factor maps.

The last thing in this first step is to show that 7y is actually a measurable isomorphism between W
and X and thus that the measure v is ergodic. First, we want to extend (A.3) in C(W) ~ A. For f € A,
it holds fW |[F~Y(A)P dv = fX |f|? du, and F~! is an isometry from A (with the L?>(X, x) norm) into
L?*(W,v). Combining the facts that C(X) is dense in A (with respect to the L?(X, u) norm) and that
(A.3) holds for all f € C(X), we obtain that (A.3) holds for all f € A, v-almost always. Then consider
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the map H : L>(X, u) — L>(W,v), such that f — f o xx. Then H(L?(u)) is closed in L>(W, v) since
the map is an isometry, and notice that it contains F~'(A) = C(W). Thus, H(L*(X,u)) = L*(W,v),
showing that wx is a measurable isomorphism and, consequently, that (W, v, S) is ergodic. Finally, for
any f € C(Z), using (A.3) and (A.5), we see that f o 1z = F~'(f o p) = f o p o mx holds v-almost
always, and so, 1z = p o mx.

Construction of the Fglner sequence. Since (W, v, S) is ergodic, it follows that there exists w| €
gen(v, @) for some Fglner sequence @.

Set x| = mx (wy). Transitivity of a implies that there exists a sequence (ix)nen C G such that

lim sup dx (Tgx1,Tenya) =0, (A7)
N ® gecdy

where dx is the metric on the space X. Now set z; = mz(w;). Let E(Z, R) be the Ellis semigroup of
(Z, R), that is, the closure of R as an element of ZZ, where this space is equipped with the pointwise
convergence topology. Let Ry € (Rpy)nay € E(Z, R). By Proposition 2.12, R is a rotation, which
implies that is a bijection from Z to itself. In case that (Z, m, R) is any distal system (and not necessarily
the Kronecker factor), then we also have that R is a bijection (see by [3, Chapter 5]). Therefore, there
exists zg € Z such that Ry(z9) = z1. Then there exists a subsequence of (/y)n ey, Which, by abuse
of notation, we denote as (& )nen, such that limy_, Ry, zo = z1. Therefore, there exists a further
subsequence, which once again we denote in the same way, for which it holds that

lim sup dZ(Rgzl,RghNZO) =0, (AS)
N ® gecdy

where d is the metric on the space Z.
Let fi € C(X), f» € C(Z).By (A.7) and (A.8), we have that

llm sup |f1(Tgx1) — fi(Tgnya)| =0 and llm sup |f2(Rgz1) — f2(Rgny20)| = 0.

X gedy X gedy

We define the Fglner sequence ¥ = (VN )nen, by Pn = Onhy for any N € N. It is easy to check
that since ® is a left Fglner sequence, then W is also a left Fglner sequence. It follows from the above
equations that

1
Iéil)nw Wl gEZP:N fi(Tga) f2(Rgz0) — |q> | g;N fi(Tgx1) f2(Rgz1)
= lim o > (AT o R 0) = i(Te) o(Re)

gedn
< lim sup |fi(Tenya) fo(Rgny20) — fi(Tgx1) f2(Rgz1)]
N—)oogE(DN

< lim sup (1fi(Teny @) fo(Rgny20) = f1 (Tgnn @) f2(Rgz1)|

N—)OO&E Dy

+|f1(Tgny @) fr(Rgz1) — f1(Tgx1) f2(Rgz1))
Sl\}lin (IIfillco sup |f2(Rgnyz0) = fo(Rgzi)| + | fallo sUp |fi(Tenya) — fi(Tgx1)l)

gedn gedy

=0. (A.9)
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Moreover, recalling that w € gen(v, ®) and observing that fj o 7y € C(W) and f, o 1tz € C(W), we

have that
. 1 , 1
aim |Dn | Z Ji(Tgx1) fa(Rgz1) =1\}1{)nmm Z JiTg(mx (w1))) f2(Rg (w2 (w1)))
gedy gedyn
. 1
= Jim D Alrx (Sgwn) falrz(Sgwn))  (by (A4),(A6))
gedn
= / (fiomx)(faomz)dy
w
=/ (fionx)(faopomx)dv (since 7z = p o x)
w
= / fi-(faop)du (since x v = p). (A.10)
w
Combining (A.9) and (A.10) yields the desired result. The proof is complete. O
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