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Abstract

We investigate the state feedback pinning synchronization of fractional-order complex
networks. Based on the stability theory of fractional-order differential systems and state
feedback control by a single controller, synchronization conditions for fractional-order
complex networks are given. We assume that the coupling matrix is irreducible, and
provide a numerical example to illustrate the validity of the proposed conclusions.
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1. Introduction

Recently, human society has entered the Internet age, and people live in a world
filled with all kinds of complex networks due to the development of information
technology. The synchronization phenomenon occurs in complex communication
networks [16]. Network synchronization plays a very important role in the fields
of signal generators, nuclear magnetic resonance spectrometers, superconducting
materials, granule crumblers, laser gears, communication systems and so on. In
the past few decades, integer-order complex network synchronization has been
widely studied and many control methods have been employed to deal with complex
network synchronization. However, there is not much work on fractional-order
complex network synchronization, although it has strong practicability. There exist
many fractional-order systems in the real world, such as the fractional-order Lorenz
system [6], fractional-order Chua system [7] and fractional-order Chen system [11].
Synchronization of fractional-order chaos systems is becoming a challenging and
interesting research topic due to its potential application in secure communication [2,
6, 22]. Many control schemes have been employed to achieve chaotic synchronization,
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such as adaptive control [1], the time delay feedback approach [5, 17], nonlinear
feedback control [4] and active control [8, 19].

State feedback control is one of the characteristics of modern control theory. After
recent decades of development, state feedback control is being more widely used
in real control systems. In recent years, the state feedback control method has also
been used in synchronization of fractional-order complex networks. Tang et al. [20]
investigated pinning synchronization of fractional-order complex networks based on
state feedback and established a local synchronization criterion by using the stability
theory of fractional-order systems and a numerical algorithm. Wang et al. studied the
synchronization of complex dynamical networks with fractional-order chaotic nodes,
and proposed some sufficient synchronization criteria based on the Lyapunov stability
theory and the LaSalle invariance principle [21].

When the network node number or system dimension is very large, state feedback
may lead to a massive increase in the amount of calculation due to the involvement of
a large number of system states. Chen et al. [3] investigated pinning synchronization
of integer-order complex networks and proved that complex networks can be
synchronized when only one node is controlled using state feedback. In this paper we
study pinning synchronization of fractional-order complex networks using the idea of
Chen et al. [3]. We establish synchronization conditions for fractional-order complex
networks, and investigate the range of feedback gain.

The rest of the paper is organized as follows. In Section 2 the network model is
described and some definitions and lemmas are given. Asymptotical synchronization
conditions for fractional-order complex networks are discussed in Section 3. Section 4
shows the validity of the proposed synchronization schemes through numerical
simulations. We conclude with some remarks in Section 5.

2. Model description and preliminaries
The fractional-order integro-differential operator is a generalized concept of

an integer-order integro-differential operator. The commonly used definitions of
fractional-order derivatives are the Grunwald–Letnikov, Riemann–Liouville and
Caputo definitions [18]. We employ the Caputo fractional derivative operator in this
paper, since it has well-understood physical meanings.

The Caputo fractional derivative is defined as follows:

C
a Dα

t f (t) =
1

Γ(n − α)

∫ t

a
(t − τ)(n−α−1) f (n)(τ) dτ, n − 1 < α < n,

where n ∈ Z+ and Γ(·) is the gamma function, Γ(z) =
∫ ∞

0 tz−1e−t dt. In the following,
we denote C

0 Dα
t as Dα

t .
Consider a generic controlled complex network consisting of N coupled identical

nodes, with each node being an n-dimensional fractional-order dynamical system,
which is in the form:

Dα
t xi(t) = f (xi(t), t) + c

N∑
j=1

bi jΓx j(t) + ui(t), xi(0) = xi0, i = 1, 2, . . . ,N, (2.1)
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where 0 < α < 2, xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn is the state variable of the ith
node, xi0 is an n-dimensional constant vector, i = 1, 2, . . . ,N, and f : Rn × R→ Rn is
a smooth time-varying nonlinear function. The scalar c > 0 is the coupling strength.
The coupling matrix B = (bi j) ∈ RN×N is determined by the topological structure of
the network, where bi j ≥ 0 denotes the coupling coefficient from node j to node
i, for i, j = 1, . . . , N, i , j, and bii = −

∑N
j=1, j,i bi j, i = 1, 2, . . . , N. The matrix Γ =

diag(γ1, . . . , γn) denotes the inner connection at each node with γi ≥ 0, i = 1, 2, . . . , n,
which means that two nodes are connected by their ith component, if γi > 0. The
matrix u(t) = [u1(t), u2(t), . . . , uN(t)] ∈ Rn×N is the controller to be designed.

In this paper we make the following assumptions for the function f (x, t).

Assumption 2.1. There exist a bounded function ω(x) ∈ Rn×n and a diagonal matrix
Σ =diag(σ1, σ2, . . . , σn) such that

f (x, t) − f (y, t) = ω(x − y)(x − y), (2.2)
(x − y)T ( f (x, t) − f (y, t)) ≤ (x − y)T Σ(x − y) (2.3)

hold for all x, y ∈ Rn and t > 0.

Remark. The most typical fractional-order chaotic systems, such as fractional-order
Lorenz systems, Chen systems, Rössler systems [10], the Lü system [12], and so on,
satisfy (2.2) and (2.3).

Definition 2.2. Assume xi(t, t0,X0), for i = 1,2, . . . ,N, to be a solution of the controlled
network (2.1), where X0 = (x10, x20, . . . , xN0) ∈ Rn×N , f : Ω × [0,+∞)→ Rn and ui :
Ω × · · · ×Ω→ Rn, 1 ≤ i ≤ N, are continuous with Ω ⊆ Rn. If there exist a controller u(t)
and a nonempty subset Θ ⊆ Ω with xi0 ∈ Θ(i = 1, 2, . . . ,N), such that xi(t, t0, X0) ∈ Ω

for all t > t0, i = 1, 2, . . . ,N, and

lim
t→∞
‖xi(t, t0, X0) − x j(t, t0, X0)‖ = 0, i, j = 1, 2, . . . ,N,

then the controlled network (2.1) is said to achieve asymptotical network
synchronization and Θ × · · · × Θ is called the region of synchronization for the
dynamical network (2.1). If Θ = Rn, then the network (2.1) is said to achieve globally
asymptotic network synchronization .

The following lemma characterizes the right and left eigenvectors of the matrix
B corresponding to eigenvalue 0, which play key roles in the investigation of the
synchronization of the coupled system (2.1).

Lemma 2.3 [14]. If B is irreducible, then the following statements are valid.

(i) The matrix B has an eigenvalue 0 with multiplicity 1, and has right eigenvector
[1, 1, . . . , 1]T .

(ii) If λ is an eigenvalue of B and λ , 0, then Re(λ) < 0.
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(iii) Suppose ξ = [ξ1, ξ2, . . . , ξN]T ∈ RN(without loss of generality, assume that∑N
i=1 ξi = 1) is the left eigenvector of B corresponding to eigenvalue 0. Then

ξi > 0 holds for all i = 1, 2, . . . ,N.

In the following discussion, we always assume that B is irreducible.
Let x̂(t) =

∑N
i=1 ξixi(t) and ei(t) = xi(t) − x̂(t), i = 1, 2, . . . ,N. The reference state x̂(t)

is introduced by Lu et al. [13], and it is a key point in discussing synchronization of
complex networks.

The objective of this paper is to find a state feedback pinning controller, such that
the network (2.1) achieves asymptotical synchronization, and the form of the controller
is {

u1(t) = −cεΓe1(t),
ui = 0, 2 ≤ i ≤ N, (2.4)

where ε > 0 is the feedback gain. In order to obtain our main results, the following
theorem is presented.

Theorem 2.4 [9]. Consider the autonomous system

Dα
t x(t) = A(x)x, (2.5)

where x = [x1, x2, . . . , xn]T ∈ Rn is the state variable with 0 < α < 1. If there exists a
real matrix P > 0, such that

H = xT (t)PDα
t x(t) ≤ 0

holds for all x ∈ Rn, then system (2.5) is asymptotically stable.

3. Pinning synchronization of complex networks

In this section the problem of synchronization of fractional-order complex
dynamical networks (2.1) based on state feedback pinning control is investigated. We
present some criteria and discuss the range of feedback gain.

Under the control law (2.4), the complex network (2.1) can be written as{
Dα

t x1(t) = f (x1, t) + c
∑N

j=1 bi jΓx j(t) − cεΓe1(t),
Dα

t xi(t) = f (xi, t) + c
∑N

j=1 bi jΓx j(t), i = 2, . . . ,N.
(3.1)

In the following, we present the synchronization conditions.

Theorem 3.1. If B is a symmetrical matrix, Assumption 2.1 holds and

B̆ j = T T (cγ j(ΞB)s − cγ jΞε1 + σ jΞ)T ≤ 0, j = 1, 2, . . . , n,

where

T = [ξN IN−1,−ξ̄]T , Ξ = diag(ξ1, ξ2, . . . , ξN),
ξ̄ = [ξ1, ξ2, . . . , ξN−1]T , and ε1 = diag(ε, 0, . . . , 0),

then the controlled complex network (2.1) can achieve asymptotical synchronization
under control law (2.4).

https://doi.org/10.1017/S1446181117000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000013


328 Q. Fang and J. Peng [5]

Proof. Since ei(t) = xi(t) − x̂(t), i = 1, 2, . . . ,N, complex network (3.1) can be changed
to 

Dα
t e1(t) = f (x1, t) −

N∑
k=1

ξk f (xk, t) + c
N∑

j=1

bi jΓe j(t) − cε(1 − ξ1)Γe1(t),

Dα
t ei(t) = f (xi, t) −

N∑
k=1

ξk f (xk, t) + c
N∑

j=1

bi jΓe j(t) + cεξ1Γe1(t), i = 2, . . . ,N.

(3.2)
Denote ē = [eT

1 , eT
2 , . . . , e

T
N]T , P = Ξ ⊗ In, and F(t) = f (x̂, t) −

∑N
k=1 ξk f (xk, t). Then

H = ēT (t)PDα
t ē(t)

=

N∑
i=1

ξieT
i Dα

t ei

=

N∑
i=1

ξieT
i ( f (xi, t) − f (x̂, t) + c

N∑
j=1

bi jΓe j + F(t) + cεξ1Γe1) − cεξ1eT
1 Γe1

≤

N∑
i=1

ξieT
i Σei + c

N∑
i=1

N∑
j=1

ξieT
i bi jΓe j − cεξ1eT

1 Γe1.

Let

ei = [ei1, ei2, . . . , ein]T , i = 1, 2, . . . ,N,
ẽ j = [e1 j, e2 j, . . . , eN j]T , j = 1, 2, . . . , n.

Then ξT ẽ j = 0, and ẽ j ∈ L = {z ∈ Rn|ξT z = 0}, for j = 1, 2, . . . , n.
Since column vectors of matrix T form a basis of the subspace L, there exists

y j ∈ RN−1, such that ẽ j = Ty j, j = 1, 2, . . . , n. Then

H ≤
n∑

j=1

ẽT
j Ξ(cγ j(B − ε1) + σ jI)ẽ j

=

n∑
j=1

yT
j T T (cγ j(ΞB)s − cγ jΞε1 + σ jΞ)Ty j

≤ 0.

From Theorem 2.4, system (3.2) is asymptotically stable, that is, the controlled
complex network (2.1) achieves asymptotical synchronization, and this completes the
proof. �

Denote

B̆ j =

[
B̆ j11 B̆ j12

B̆T
j12 B̆ j22

]
,
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where B̆ j11 ∈ R, B̆ j12 ∈ R1×(N−2), B̆ j22 ∈ R(N−2)×(N−2). Then we have

B̆ j11 = ξ1ξN(cγ j(b11ξN + bNNξ1 − b1Nξ1 − bN1ξN − εξN) + σ j(ξ1 + ξN)),

B̆ j12 = ( 1
2 cγ j(ξ1ξN B̂12 + ξN B̂T

21Ξ̃1 + T T
21Ξ̃1B̂22 + T T

21B̂T
22Ξ̃1) + σ jT T

21Ξ̃1)T22,

B̆ j22 = T T
22( 1

2 cγ j(Ξ̃1B̂22 + B̂T
22Ξ̃1) + σ jΞ̃1)T22,

where

B̂12 = [b12, b13, . . . , b1N],

B̂21 = [b21, b31, . . . , bN1]T ,

B̂22 =

b22 b23 · · · b2N

· · ·

bN2 bN3 · · · bNN

 ,
Ξ̃1 = diag(ξ2, . . . , ξN),

T21 = [0, . . . , 0,−ξ1]T ,

T22 =


ξN

. . .

ξN

−ξ2 · · · −ξN−1

 .

By the Schur complement [15], the following result holds with respect to state
feedback gain ε.

Corollary 3.2. If Assumption 2.1 holds, B̆ j22 < 0, j = 1, 2, . . . , n, and

ε≥ ε2

= max
j=1,2,...,n

{ξ1ξN(cγ j((bNN − b1N)ξ1 + (b11 − bN1)ξN) + σ j(ξ1 + ξN)) − B̆ j12B̆−1
j22B̆T

j12

cγ jξ1ξ
2
N

}
,

then the controlled complex network (2.1) can achieve asymptotical synchronization
under control law (2.4).

4. Numerical simulation

A numerical example is presented here, to illustrate the pinning control methods
for fractional-order complex networks. Consider the fractional-order complex
network (2.1) with 10 nodes, where α = 0.995, xi ∈ R3, N = 10, Γ = I3, c = 75, the
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Figure 1. The chaotic attractor.

function f (x, t) = [10(x2 − x1), 28x1 − x1x3 − x2, x1x2 − 8x3/3]T and the matrix

B = (bi j) =



−2 1 0 1 0 0 0 0 0 0
0 −2 1 0 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 0 1 −3 0 0 0 1 0
0 0 1 0 1 −2 0 0 0 0
0 0 0 0 0 1 −3 1 0 1
0 1 0 1 0 0 0 −3 1 0
1 0 1 0 0 0 1 0 −4 1
0 0 1 1 0 0 0 0 0 −2



.

In this network, when there is no coupling relationship, each node is a fractional-
order Lorenz system, displaying a chaotic attractor as in Figure 1. Let ε = 1. Then
synchronization errors, ei1, ei2, ei3, ‖e(t)‖, under state feedback control law (2.4) are
displayed in Figure 2.

5. Conclusion

In this paper the state feedback pinning synchronization of fractional-order
complex networks with irreducible coupling matrix by a single controller has been
investigated. A reference state is employed, making use of the left eigenvector
associated with the zero eigenvalue of the coupling matrix, and some criteria for
asymptotical synchronization are obtained, based on the stability theory of fractional-
order differential systems. However, there are many unsolved problems concerning
the state feedback pinning synchronization of fractional-order complex networks. For
example, in this paper only complex networks with constant coupling matrix were
treated. Complex networks with time-varying coupling matrix have been neglected.
For the dynamical behaviours at each node, we only considered fractional-order
nominal systems; fractional-order systems with time delay need further study.
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Figure 2. Synchronization errors under state feedback pinning control.
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[16] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek and A. L. Barabási, “The sound of many hands
clapping”, Nature 403 (2000) 849–850; doi:10.1038/35002660.

[17] J. H. Park and O. M. Kwon, “A novel criterion for delayed feedback control of time-delay chaotic
systems”, Chaos Soliton Fractals 23 (2005) 495–501; doi:10.1016/j.chaos.2004.05.023.

[18] I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1999);
http://store.elsevier.com/product.jsp?isbn=9780125588409.

[19] A. G. Radawan, K. Moaddy, K. N. Salama, S. Momani and I. Hashim, “Control and switching
synchronization of fractional order chaotic systems using active control technique”, J. Adv. Res.
5(1) (2014) 125–132; doi:10.1016/j.jare.2013.01.003.

[20] Y. Tang, Z. Wang and J. Fang, “Pinning control of fractional-order weighted complex networks”,
Chaos 19 (2009) 013112; doi:10.1063/1.3068350.

[21] Y. Wang and T. Li, “Synchronization of fractional order complex dynamical networks”, Phys. A
428 (2015) 1–12; doi:10.1016/j.physa.2015.02.051.

[22] O. Zaid, “A note on phase synchronization in coupled chaotic fractional order systems”, Nonlinear
Anal. 13(2) (2012) 779–789; doi:10.1016/j.nonrwa.2011.08.016.

https://doi.org/10.1017/S1446181117000013 Published online by Cambridge University Press

https://doi.org/10.1109/81.404062
https://doi.org/10.1016/S0375-9601(02)00987-8
http://wulixb.iphy.ac.cn/CN/Y2009/V58/I4/2235
https://doi.org/10.1016/j.physa.2004.04.113
https://doi.org/10.1016/j.chaos.2004.02.035
https://doi.org/10.1016/j.physleta.2006.01.068
https://doi.org/10.1109/TCSI.2004.838308
https://doi.org/10.1016/j.physd.2005.11.009
https://doi.org/10.1016/j.chaos.2008.09.024
https://doi.org/10.1038/35002660
https://doi.org/10.1016/j.chaos.2004.05.023
http://store.elsevier.com/product.jsp?isbn=9780125588409
https://doi.org/10.1016/j.jare.2013.01.003
https://doi.org/10.1063/1.3068350
https://doi.org/10.1016/j.physa.2015.02.051
https://doi.org/10.1016/j.nonrwa.2011.08.016
https://doi.org/10.1017/S1446181117000013

	Introduction
	Model description and preliminaries
	Pinning synchronization of complex networks
	Numerical simulation
	Conclusion
	References

