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Abstract

There is no single generalization of distributivity to semilattices. This paper investigates the class of
mildly distributive semilattices, which lies between the two most commonly discussed classes in this
area—weakly distributive semilattices and distributive semilattices. Particular attention is paid to
describing and characterizing congruence distributive mildly distributive semilattices, in contrast to
distributive semilattices, whose lattice of join partial congruences is badly behaved and which are
difficult to describe.
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1. Introduction

Between the classes of weakly distributive semilattices and distributive semi-
lattices lies the class of mildly distributive semilattice. These semilattices are first
defined by the distributivity of the lattice of all strong ideals, and the second
section goes on to find a sequence of first order sentences which defines mild
distributivity. Section 3 shows how to construct mildly distributive semilattices,
and more importantly, how they can be characterized as weakly distributive
semilattices in which each ideal is a strong ideal. It is this characterization which
motivates the rest of the paper, since the correct notion of morphism and
congruence for mildly distributive semilattices are join partial homomorphism and
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Jjoin partial congruence; that is the appropriate notions for weakly distributive
semilattices.

Sections 6, 7 and 8 investigate the question: “ When is the lattice of join partial
congruences of a weakly distributive semilattice distributive?” This problem is
solved for finitely derivable semilattices, that is those semilattices which have only
a finite number of non-principal finitely generated ideals, and has a particularly
pleasing solution for mildly distributive semilattices.

The investigation into the lattice of join partial congruences is continued in the
final section which looks at the restriction map from the lattice of join partial
congruences of a weakly distributive semilattice to the lattice of join partial
congruences of a principal filter. For finitely derivable semilattices, this map is a
lattice homomorphism if and only if the semilattice is strongly connected, a
condition which has earlier been shown to imply congruence distributivity.

2. Definitions

Let S be a (lower) semilattice. For a subset 4 of S let A" denote the set of all
upper bounds of A4, and let A* be the set of all lower bounds of 4. A non-empty
subset I of S is called a strong ideal if for every finite set F C I,

FY CIL
A strong ideal is hereditary; that is x € I and y < x implies y € 1. The concept
of strong ideal was introduced by O. Frink in [6]; see also C. M. de Barros [3]. In
both cases the emphasis was on partially ordered sets rather than semilattices.
Foreacha € S, let

(a] = {(x € S: x<a) = {a}* and
[a) = {xES:x=a) = {a})".

Thus (a] is a strong ideal for each @ € S and I is a strong ideal if and only if for
each finite set {a,,...,a,} C I,

[x) 2[a) N ---N[a) impliesx € I.

If S is a lattice, the strong ideals are precisely the lattice ideals of S. If “¢4(S)
denotes the set of all strong ideals of S, then “$(S) U {¢} is an algebraic closure
system on S, and so it is meaningful to talk about the strong ideal generated by a
non-empty set A. It will be denoted by (4) or {a,,...,a,) if 4 = {a,,...,a,} is
finite. Clearly (a)= (a]. Strong ideals of this last type are called principal.

A semilattice S is called mildly distributive if “4(S) is a distributive lattice. Our
first objective is to describe mildly distributive semilattices in first order terms.
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LemMa 2.1. If a,,. .. ,a, are elements of a semilattice S then {a,,...,a,)= {x €
S: [0 2 [a) N Nlay).

ProoFr. It suffices to show that {x € S: [x) D [a¢;) N --- N[a,)} is a strong
ideal, so suppose x,,...,x, are in this set and [y) D [x,) N --- N[x,). Since
[x)D{a) N ---Nla,) we have [Y)D[x)N---N[x)D[a)N---N[a,)
and so y is in the set.

A non-empty subset F of a semilattice S is called a filter if a N\ b € F if and
only if ¢ € Fand b € F. The set of all filters of S is written ¥(S). If S is directed
above then %(S) is a lattice, and if not then %(S) U { @} is a lattice. Clearly [a)
is a filter for each a € S; such filters are called principal. Let

G(S)=A{la)n---Nn[a,):ay,...,a, ES}.
If S is not directed above then ¢ € §(S) and §(S) is a lower subsemilattice of
%(S) U {@}; otherwise 5(S) is a lower subsemilattice of F(S).

The set of all strong ideals that are generated by non-empty finite sets is

denoted by “’?,(S ). If + denotes the join in the lattice “$(S) then

(aj,...,a,)y+ (by,....b,)=(a,,...,a,, b,....,b,)
so that “$,(S) is an upper subsemilattice of “$(S).

PROPOSITION 2.2. For any semilattice S, G(S) is anti-isomorphic to “’%(S ).

PrOOF. Define a map y: “$,(S) — §(S) by
v({ay,...,a,)) =[a) N---N[a,).

To see that y is well defined, suppose (a,,...,a,)= (b,,...,b,). Then, for each
i, a,€(b,,...,b,) whence [a) D [b)N---N[b,) and [a) N ---N[a,) D
[6)) N ---N[b,). Since the reverse inequality may be similarly obtained,
v({ay,...,a,)) = Y ({b,...,b,)) and ¢ is well defined. Clearly

v({ay,...,a,)+ (by,....b,)) =¥({ay,...,a,)) N Y({b,,...,b,))

and v is obviously onto. Finally y is one to one by a direct application of Lemma
2.1.

PROPOSITION 2.3. The following are equivalent for a semilattice S.
(1) S is mildly distributive.

(ii) “%,(S) is a distributive sublattice of “$(S).

(iii) “$,(S) is a distributive lattice.
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PROOF. (i) = (ii). Suppose {a,,...,a, ) and {b,,...,b, ) are finitely generated
strong ideals. As “4(S) is distributive,
(@158, )0 (byse by )= (] + -+ +(a,]) N ((By] + -+ +(5,])
X((a] n(B:]) + -+ +((a)] N(B]) + -+ +((a,] N(Ba])
=(al N bl] +oe- +(an A bm]
={a,A\b,,...,a,\b,)
and so “$,(S) is a (distributive) sublattice of “4(S).
(ii) = (iil) is trivial.
(iii) = (i). It is well known that if the compact elements of an algebraic lattice
are a distributive lattice then the algebraic lattice is distributive. In our case

“4,(S) U {2} are the compact elements of “4(S) U {@}, so this last lattice is
distributive and hence “4(S) is distributive.

COROLLARY 2.4. A semilattice S is mildly distributive if and only if G(S) is a
distributive lattice.

Let V denote the join in §(S) (when it exists).

THEOREM 2.5. A semilattice S is mildly distributive if and only if for each n the
following formula is valid in S.

VxVa,,...,a¥b([b = a,,...,a,= b =>x]
—x=(xAa)V(xAa) V- V(xAa,)).
(In words, this says if x is below every upper bound of {a,,...,a,} then x = (x N\
a)Vv---V(xNa,))

PROOF. Suppose S is mildly distributive and x is below every upper bound of
{a,,...,a,}. Then [x) D [a;) N --- N[a,) and so

(9 =19V (la) 0+ nla)) = [V ()] -0 (19 V [a)
=[xAag)N---N[xAa,)

whence x = (x Aa;)V---V(xNa,).
Conversely, suppose § satisfies the given formula for each n. First observe that
ifa, V --- Va, exists in S and x is arbitrary, then

(1) xA(aV---Va,)=(xNa)V---V(xANa,).
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Indeedleta = a, V --- Va,. Then

XA (@ Ve Va) = (xAa) Al V- Va,)
= (xAa)A@) VeV ((xAa)Aa,)
(by our assumption)
=(xAa)V---V(xAa,).

Assume x € (ay,...,a,) N (by,...,b,). By Lemma 2.1 x = (x A a,)
V.- V(xANa,)and x =(x Ab))V ---V(x Ab,). Taking the meet of these
two expressions and applying (1), we have

x=(xNayAb)V(xNayAb)V---V(xAa,Nb,)

since each of the elements in the join is in (a; A b,,...,a, N\ b, ) and strong
ideals are closed under finite joins. Hence

{ay,...,a,)N (by,....b,)=(a, Ab,,...,a, \b,).

From here it is an easy matter to show that “’%(S ) is a distributive lattice, and
consequently S is mildly distributive.

3. Construction and comparisons

If P, and P, are disjoint partially ordered sets, then their ordinal sum P, ® P, is
the set P, U P, with partial order p < q if

(i)p € P,andg € P,, or

(i)p,gEP,i=1lor2andp<gqin P,

PROPOSITION 3.1. The ordinal sum of two semilattices is mildly distributive if and
only if both are mildly distributive.

REMARK. If the two semilattices in question are not disjoint, take an isomorphic
copy of one which is disjoint from the other.

PROOF. Suppose S| and S, are mildly distributive and x, a,,...,4, € S5, ® S,
are such that [x) D [a) N ---N[a,). If {x,a,,...,a,} CS; for some i then
x=(xANa)V---V(xANa,) by the mild distributivity of S;. If x € S, and
{a,-..,a,} C S, and g, €S, for some j=1,...,n then x Na;=x and so
x=(xANa)V---V(xAa,) Finally if x €S, and q; € S, for some j, let
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{a;qy>- - - 8jn) = {ay,...,a,} NS, Then [x) D [a) N---N[a,) = [a;,)
N - - N[ay,)) and hence

x:(x/\aj(l))v"'V(x/\aj(r)):(X/\al)\/"'v(x/\an)-

Conversely, if S| @ S, is mildly distributive then S, and S, are mildly distribu-
tive, since for each /, S; is a subsemilattice of S, @ S, and if x, a,,...,a, € S, then
[x)D[a)N---N[a,)in S;ifand only if [x) D [a) N --- N[a,)in S, & S,.

A semilattice S is said to have the upper bound property if whenever a and b
have an upper bound in S then a V b exists in S. Clearly S has the upper bound
property if and only if S ® 1 is a lattice, where 1 is the one element lattice.
Observe that each finite semilattice and each lattice has the upper bound
property. A more comprehensive survey of semilattices with the upper bound
property may be found in R. C. Hickman [10]. For our part we will just provide
the following corollary to Proposition 3.1.

COROLLARY 3.2. A semilattice S with the upper bound property is mildly distribu-
tive if and only if S ® 1 is a distributive lattice.

THEOREM 3.3. Let {S;: i € I} be a family of mildly distributive semilattices, at
least two of which are not the single element semilattice. Then the product X {S;:
i € I} of the S;’s is mildly distributive if and only if, for each i, S, is directed above.

PROOF. Suppose each S; is directed above and x, a,,...,a, € X{S;:i € I} are
such that [x) D [q)) N ---N{a,). Since each S; is directed above, [a(i))
N --- N[a,i)) is non-empty for each i. Fix i and select, for each j # i, an
element b, in [a,(j)) N --- N{a,(j)). Then for each choice of b; € [a\(i))
N --- N[a,(i)), wehave x < bwhereb: I - U {S;:i € I} is defined by b(k) = b,
for all k € I. Hence x(i) < b, and so [x(i)) D [a,(i)) N --- N[a/i)), whence

x(1) = (x() Aa(D) V-V (x(0) A, ()
=((xANa)V---V(xAa,))(i).
Since the choice of i was arbitrary, we deduce that x = (x A a,) V --- V(x N a,)
and X {S;: i € I'} is mildly distributive.
Now assume that S; is not directed above and for some j # i, S; is non-trivial.

Choose a}, a? € S; with [a}) N [a}) = @ and a}, a] € S; with a] < a]. For each

k & (i, j) select an arbitrary element a, in S,. Define a', a> € X {S;:i € I'} by
' a, ifké{i,j}, a, ifke {i,j},
al(k)={al ifk=i, a¥(k)=1a? ifk=i,
a' ifk=, al ifk=j.

~
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Thus a'(k) = a*(k) for all k # i and [a") N [a%) = & since [a'(i)) N [a*(i))
= @. Hence [x) D [a') N [a?) for all x, and in particular when
a, ifké& {i,j},
x(k) = al ifk=i,
2

a; ifk=j.

But for this choice of x,
af = x(1) #(x(j) Na' () V (x(j) N a®(j)) = a;
and so X {S;: i € I} is not mildly distributive.

These last two results do not provide many examples of mildly distributive
semilattices at this stage, since we have, as yet, no example of an up directed
mildly distributive semilattice which is not a lattice. However this situation will be
rectified later in the paper.

A lower semilattice S is called distributive if for all a,b,c €S, a=b N,
a#® b and a# ¢ implies the existence of b’,¢’ € § with b’ = b, ¢’ = ¢ and
a =b" N ¢'. This idea was introduced by T. Katrindk in [11], and is a slight
generalization of the usual concept of distributive semilattice. Normally a lower
semilattice is called “distributive” if it is distributive in our sense and directed
above, or equivalently, if a = b N ¢’. Semilattices of this last kind are explored in
J. B. Rhodes [13].

LemMma 3.4 (Katrindk [11, 1.6]). A semilattice S is distributive if and only if
F(S) U {2} is a distributive lattice.

As the name suggests, distributive semilattices are mildly distributive, and it is
possible to characterize those mildly distributive semilattices which are distribu-
tive.

THEOREM 3.5. A semilattice S is distributive if and only if it is mildly distributive
and (S is a sublattice of 5(S) U { D }.

PROOF. Suppose S is distributive and [x) D [a,) N --- N[a,). Then

[x) =(w) V([a) n---Nla,)) = ([x) VI[a)) 00 ([x) V]a,)

=[xAa)n---nlxAa,),

where V' denotes the join in F(S) U { @ }. Thus
x=(xNa)V---V(xAa,)
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and S is mildly distributive. To show that §(S) is a sublattice of F(S) U {&},
suppose {a,) N --- N{a,) and [b)) N --- N[b,) are in §(S). Then

([a) 0= N [a) V([8) N - [b,))
= (1a) V1)) 0+ (1) ¥ 15)

=[a,Ab)N---N[a,N\b,)
:([al) n--- n[an))v([bl)n n[bm))'

Conversely, suppose S is mildly distributive and §(S) is a sublattice of
F(S)U{@}.Ifa=bAcanda# b,a* cthen

[@=anAdﬂ@nﬁw0w)

= ([a) N[5)) V ([a) N[e))
= ([a) N [5) V ([a) N [c))

and so a = b' N ¢’ for some b € [a) N [b) and ¢’ € [a) N [¢). Since b’ N ¢’ €
[@), b’ A ¢’ = aand a = b" N ¢’ as required.

COROLLARY 3.6. A mildly distributive semilattice with the upper bound property is
distributive.

PROOF. If [a)) N --- N[a,) is a non-empty member of §(S) then there exists
b € S with a,,...,a,<b. Since S has the upper bound property, this implies
a,V---Va, exists in S and so [a)) N --- N[a,) = [a, V --- Va,). Thus each
non-empty member of §(S) is of the form [a) for some a € S, and consequently
§(S) is a sublattice of F(S) U {2 }.

A semilattice S is called weakly distributive if whenevera, V - -- Va, exists in S
then (x Aa,) V- ---V(xAag,existsxA(aq; V- ---Va,)=(xNa)V - V(x
A a,). Weakly distributive semilattices have been studied in R. Balbes [1], J.
Varlet [14] and W. H. Cornish and R. C. Hickman [4].

An ideal of a semilattice is a non-empty subset 7 of S such that

()ifx ETandy < x theny € I;

()ifa,,...,a,€EIanda,V --- Va,existsin S thena, V --- Va, € L

The family of all ideals of S is denoted by $“(S); clearly $“(S) U {@} is an
algebraic closure system. From Cornish and Hickman [4, Theorem 1.1] we use
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PROPOSITION 3.7. A semilattice is weakly distributive if and only if $°(S) is a
distributive lattice.

THEOREM 3.8. A semilattice is mildly distributive if and only if it is weakly
distributive and each ideal is a strong ideal.

PrOOF. The proof of Theorem 2.5 showed that a mildly distributive semilattice
is weakly distributive. If a,,...,a, are elements of an ideal I and [b) D [a,)
N---Nla,) then be I sinceb=(bANa)V---V(bAa,) and each member
of this join is in I. Thus I is a strong ideal, completing the first assertion.

If S is weakly distributive and each ideal is a strong ideal then $(S) =“4(S)
since strong ideals are always ideals. By Proposition 3.7 this implies that S is
mildly distributive.

A proper ideal P is called prime if a A b € P implies a € P or b € P for all
a, b € S, and a proper filter F is called prime ifa, V --- Va, € Fimpliesq; € F
for some i. Clearly a filter is prime if and only if its complement is a prime ideal.
Balbes showed [1, Theorem 2.2] that if S is a weakly distributive semilattice, I an
ideal of S, F a filter of S and I N F = @ then there exists a prime ideal P with
ICcPand PN F= @. In view of Theorem 3.8 this result readily extends to
mildly distributive semilattices.

4. Join partial homomorphisms

Let f: S, — S, be a semilattice homomorphism. Then f is called

(i) join partial if whenever a; N\ --- Aa, exists in S, then f(a)) V --- Vf(a,)
existsin S, and f(a,) V --- Vf(a,) = f(a, V -+ Va,);

(ii) strong join partial if whenever [x) D [a)) N --- N[a,) in S, then [ f(qa,))
N N[fa,)in S,

LEMMA 4.1. A strong join partial homomorphism is join partial.

PROOF. Suppose f: §; - S, is strong join partial and a, V - - - Va, exists in S,.
Then [a,V ---Va,)=[a))N---N[a,) and so [f(a,V - - Va,)) D [f(a)))
N ---N[f(a,)). Since f is isotone, f(a, V --- Va,) = f(a;) foreachi = 1,...,n,
whence [f(a, V --- Va,)) = [f(a))) N --- N[ f(a,)), giving f(a, V --- Va,) =
fap) V- Vf(a,).

LeEMMA 4.2. Let S, be a mildly distributive semilattice, S, an arbitrary semilattice
and f: S| = S, a join partial homomorphism. Then f is strong join partial.
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Figure 1. The semilattice S and the join partial congruence ®. To interpret this diagram,
first consider the lattice which has as elements all the large dots +, circles O and elements
inside the chains ||. (Here two parallel lines between two circles or dots indicate the infinite
chain Z of all integers. Some of the elements in these chains are shown by smaller dots.)
Remove from this lattice the seven circles, leaving the semilattice S. The congruence
classes of @, other than singletons, are circles. So, for example, the congruence class of
x; V x, is isomorphic to (\/ XZ) ® 1.

PROOF. Suppose [x) D [a)) N --- N]a,) for some x, a,,...,a, € S. Then x =
(xNay)V---V(xNa,)and so f(x) = (f(x) Nfla)) V --- V(f(x) A f(a,)),
whence [f(x)) = [f(x) A f(a)) N ---D[f(x) A f(a,)) 2 [f(a)))

- N[f(a,)).

A distributive lattice D is called a strong free distributive extension of a
semilattice S if

(i) There is a strong join partial embedding &: S — D.

(ii) &(S) generates D as a lattice.
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[xvxg]
(]

Barrg]

Figure 2. S/®. Clearly [x,] V [x,] does not exist even though x, V x, exists.

(iti) If D, is a distributive lattice and if f: § - D, is a strong join partial
homomorphism, then there exists a lattice homomorphism #: D — D, such that
f=hoe

Clearly, a strong free distributive extension of a semilattice is unique up to
isomorphism (if it exists).

THEOREM 4.3. A semilattice has a strong free distributive extension if and only if it
is mildly distributive.

ProoOF. If § has a strong free distributive extension D and [x) D [a,)
N---Nfa,) in S then [&(x)) D [e(a))) N --- N[e(a,)) in D and so e&(x) =
ex ANa)V---Ve(x A ay)in D, which implies x = (x AN a;) V- V(x Aa,)in
S and S is mildly distributive.

If S is mildly distributive then “%(S) is its strong free distributive extension. It
is possible to prove this by direct computation. However, by Theorem 3.8,
“4,(S) = §7°(S), the lattice of all finitely generated ideals of S, and each strong
join partial homomorphism from S is join partial, so a computational proof
would mimic the details of Theorem 1.3 from Cornish and Hickman [4], and so
we refer the reader to that paper.

Suppose S, and S, are semilattices, S, is weakly distributive and f: S, — S, is a
join partial homomorphism. Then the semilarttice congruence Ker f defined by
a = b (Ker f) if and only if f(a) = f(b) satisfies the following condition:

() Ifa,=b,(Kerf)fori=1,...,nand botha, V---Va,and b, V --- Vb,
existin S, thenq, V --- Va, =b, V --- Vb, (Ker f).

A semilattice congruence on S, which satisfies (i) will be called join partial.
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PROPOSITION 4.4. Let S be a weakly distributive semilattice and © a join partial
congruence on S. Then f: S — S/© defined by f(a) = [a]8, the congruence class of
a under ©, is a join partial homomorphism.

This proposition may not seem surprising and it is not hard to prove; however
it is interesting to note that it is in general false if S, is not weakly distributive.*
Indeed consider the semilattice given in Figure 1. The non-trivial congruence
classes of ® are circles. Fori = 1,2 we have x; = u A x,;(®), so that [x,],[x,] <[u]
in S/®. Also [u] <[x, V x,]in §/® so that [x,] V [x,] # [x, V x,] in S/®P; in
fact S/® is easily seen to be the semilattice given in Figure 2.

5. Finitely derivable mildly distributive semilattices

We recall a few definitions and results from Hickman [9]. An element x of a
semilattice S is called completely removable if

(i) x is join reducible, thatis x = x; V --- Vx, for some x; < x;

(i) [x)/{x} is either empty or a non-principal filter.

ProprosITION 5.1 (Hickman [9, Theorem 4.1)). Let S be a weakly distributive
semilattice and x a completely removable element of S. If H = S\{x}, then H is a
weakly distributive subsemilattice of S. Furthermore

(i) if a,a,,...,.a,€EH then a=a,V ---Va, in H if and only if a= a,
V---Va,ins$,

(ii) the map r: %"(S) - %"(H) defined by r(I) = I\{x} is a lattice isomor-
phism.

ProoF. The statement of (ii) is not mentioned explicitly in Hickman [9]. Rather
it is shown that g: §°(H) - $(S) defined by g(¢a,,...,a,)) = (ay,...,a,)3
is a lattice isomorphism. (Here (a,,...,a,) and (a,,...,a,)S denote the ideals
generated by {a,,...,a,} in H and S, respectively.) However it is not hard to
check that r is g~!, and so is an isomorphism.

A weakly distributive semilattice S is called finitely derivable if there exists a
sequence of weakly distributive semilattices S,...,S, = S such that S, is a
distributive lattice and for each i, S; = S;_\{x;} for some completely removable
element x; in S;_,. The sequence S,,.. ., S, is called a deriving sequence for S. It is

*The author would like to thank Dr. Brian Davey for pointing out this possibility.
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an easy consequence of Proposition 5.1 that $°(S) = S, and S has r non-principal
finitely generated ideals, and these correspond to x,,...,x, in S;.

ProPOSITION 5.2 (Hickman {9, Proposition 4.2]). A weakly distributive semi-
lattice is finitely derivable if and only if it has a finite number of non-principal
finitely generated ideals. Furthermore, a finitely derivable weakly distributive semi-
lattice S has a deriving sequence S, . ..,S, such that (x;] is a lattice S;_, for each
i=1,...,r

A deriving sequence of the type given in this proposition will be called a lower
deriving sequence. Many proofs will be given using induction on the number of
non-principal finitely generated ideals of S. This (partially ordered) set will be
denoted 9U(S) and its cardinality by | 9U(S)].

Finitely derivable mildly distributive semilattices are easy to describe, the
reason being the simple description of finitely generated strong ideals. This is
exploited to give the following separation theorem.

THEOREM 5.3. A weakly distributive semilattice is mildly distributive if and only if
for each pair of distinct non-principal finitely generated ideals there exists a principal
ideal containing one but not the other.

PROOF. Suppose S is mildly distributive and (a,,...,q,), (b;,...,b, ), are
non-principal finitely generated ideals with (a,,...,a,), €(b,,...,b,,),. Then
for some i, a; & (b,,...,b, ), and so there exists x € [b;) N --- N[b,) such that
a; £ x. Then (x] is the required principal ideal.

Conversely, suppose S is weakly distributive and distinct non-principal finitely
generated ideals may be separated by a principal ideal. Let (a,,...,a,) , be a
non-principal finitely generated ideal and suppose [x) D [a) N --- N]a,). If
x & {a,,...,a,), then consider the ideal (x, a,,...,a,) . If it is non-principal
then there exists y € S such that (a,,...,a,), C(y] and (x, a,,...,a,)Z(y],
so that x <y and [x) 2 [a,) N --- N[a,). On the other hand, if (x, ay,...,a,),
is principal then x V q; V - -+ Vg, exists in S, and this implies thata, V --- Va,
exists in S since [x) D [a;) N --- N{a,). In both cases there is a contradiction,
and so x € {a,,...,a,), and S is mildly distributive.

COROLLARY 5.4. A weakly distributive semilattice with only one nonprincipal
finitely generated ideal is mildly distributive.

Once we reach two non-principal finitely generated ideals the result breaks
down. Indeed let S; = (3 X 2) @ Z~, where 3 and 2 are the three and two element
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-1

Figure 3. This semilattice is not mildly distributive since ((0, 1),(1,0)), # ((0, 1), (1,0)).
In this diagram the infinite chain is Z~, the set of all negative integers.

chains respectively, and Z~ is the chain of negative integers. Define S, =
So\{(2, 1)} and S, = S\\{(1, 1)}. Then | 9(S,)|= 2 and S, is not mildly distribu-
tive—see Figure 3.

THEOREM 5.5. Let S be a finitely derivable mildly distributive semilattice and let
Sos- - - »5, be a deriving sequence for S. Then S, is mildly distributive for each i.

ProOOF. By induction it suffices to show that S,_, is mildly distributive, and by
definition, S = S, \{x} where x is completely removable in S,_,. Let
(a,,...,a,),and (b,,...,b, ), be distinct non-principal finitely generated ideals
in S,_,. If x & {a,,...,a,, by,...,b,)} then (a,,...,a,)S and (b,,...,b,)S are
distinct non-principal finitely generated ideals in S and so there exists (y] in S
which separates them. But then (y] separates (a,,...,a,), and (b,,...,b, ), in
S, 1

If x € {a,...,a,,b,,...,b,}, then since x is completely removable there exists
a finite set C C S,_, with x = V C and x € C. Simply replace each occurrence
of x in the generating sets {a,,...,a,} and {b,,...,b,} with C and proceed as in
the first case.

Unfortunately it is not possible to extend this result to distributive semilattices.
Let S, be the distributive lattice (2 X 2)® Z7) X 2, S, = S\{(1,1,1)} and
S, = S\ {(1,1,0)} (see Figure 4). Then S, is a distributive semilattice since it is
isomorphic to

(@ % 2\((1,1)}) © Z7) x 2
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1)

Figure 4. This semilattice is distributive since it is isomorphic to (2 X 2\{(1, D)) ®
Z7) X 2. The infinite chains are both Z~.

and each component of the final product is an up directed distributive semilattice
(it is an easy matter to show that the product of two such semilattices is
distributive). However S, is not distributive by the following theorem.

THEOREM 5.6. Let S be a weakly distributive semilattice with |90(S)|= 1. Then S
is distributive if and only if S is of the form H ® L where H is a distributive
semilattice with the upper bound property, H is not a lattice, and L is a ( possibly
empty) distributive lattice without a least element.

PROOF. Suppose S is distributive and let H = (a,,...,a,), be the only
non-principal finitely generated ideal in S. Either a, V a, exists in S or (a,, a,),
={a,,...,a,y,, and so we may assume that H is two generated, that is
H = {a,,...,ay), U [a;] N [a,) = & then S = H since for all x € S, [x) D
fa;) N [a,), and we have the desired result. So suppose [a,) N [a,) ¥ &. Then
S ={a;a,),Y([lay) N [ay); for if not then there exists x € S with x &
{(a,, a, )V ([a;) O [a,)). Since {a,, a, ), is the only non-principal finitely gener-
ated ideal, x V a, V a, exists in S. Choose a prime ideal P with (a,,a,), C P
and P N ([a,) N [a,)) = @. Clearly x & P. Since S is distributive, [x) V ([a,) N
[a))={yNa:y=xand a=a,a,} =[xNa)N [xNa,), and (x Na;)V
(x N ay)existsin S since x & [a)) N [a,). Thusx Aa=(xNa,)V(xANa,)€E
P for some a € [a,) N [a,), which contradicts the fact that P is prime. This
shows that S = {a,, a,), U ([a;) N [ay)).
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To prove the converse it is only necessary to show that the class of distributive
semilattices is closed under ordinal sums, and this result is due to W. H. Cornish
(private communication).

6. The lattice of join partial congruence relations

The main purpose of Hickman [9] was to investigate the relationship between
the lattice of join partial congruences of a weakly distributive semilattice S
(denoted C“(S)) and the lattice of lattice congruences of $/°(S) (denoted
C(4,(S)))- The principal result was

PROPOSITION 6.1. The restriction map p: C($7(S)) — C“(S) defined by a =
b(p(T)) if and only if (a]l = (bYT) is an isomorphism if and only if C“(S) is a
distributive lattice.

After this proposition, it is natural to question under what circumstances is
C“(S) distributive, and below two results regarding this question are detailed.

PROPOSITION 6.2 (Hickman [9, Theorem 3.4]). Let S be a distributive semilattice.
Then C“(S) is distributive if and only if S has the upper bound property.

Let S be a semilattice, a, b € S with a < b. Then a is said to be strong below b
if a V y exists for all y < b. We say that a is connected to b with complexity 0 if
there exists a =z, <z; < ---<z,= b such that z,_, is strong below z; for
i = 1,...,r. For example in Figure 5, a is not strong below 1, since a V ¢ does not
exist, but a is strong below b, b is strong below 1 and so a is connected to 1 with
complexity 0.

PROPOSITION 6.3 (Hickman [9, Theorem 3.8]). Ler S be a weakly distributive
semilattice and suppose that a is connected to b with complexity O for all a, b € S
with a < b. Then C*“(S) is distributive.

The condition given in this last proposition is obviously some way short of
being a characterization for congruence distributivity. For example the semilattice
in Figure 5 is congruence distributive, (as will be shown below) and yet ¢ is not
connected to 1 with complexity 0. The aim of this and the next section is to
provide a condition which is a weakening connectivity with complexity 0, and
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1

A\

Figure 5. This semilattice is isomorphic to (2 ® Z7) X 2)\{(1, 1)}. It is connected but
not strongly connected.

which characterizes congruence distributivity for finitely derivable weakly distrib-
utive semilattice. The most important join partial congruences have been de-
scribed Katrinak, and Comnish and Hickman. Let § be a weakly distributive
semilattice, F a filter, I an ideal and a, b € S with a < b.

PROPOSITION 6.4. (a) (Katrinak [12, page 167]). Y(F) defined by x = y(¥(F))
ifand only if x N\ f = y I\ f for some f € F is a join partial congruence which has F
as a congruence class.

(b) (Cornish and Hickman [4, Theorems 3.1, 3.2]). ©(1) defined by x = y(O(I))
if and only if (x,i) ,=(y, i), is the smallest join partial congruence which has 1
as a congruence class, and T(a, b) defined by x = y(T(a, b)) if and only if
xNa=yANa and (x,b), = (y, b)Y, is the smallest join partial congruence
identifying a and b.

The notion of projectivity for semilattices is an easy generalization of the well
known concept of projectivity in lattices: see for example R. P. Dilworth and P.
Crawley [5] or G. Gritzer [7]. The pair of elements (a, b) is called a quotient if
a < b, and in this case (a, b) is written b/a. The quotient d/c is a lower transpose
of b/a and b/a is an upper transpose of d/c, written b/a\d/c and d/c 7b/a
respectively if b = a V d and ¢ = a N d. Two quotients b/a and d/c are called
projective, written b/a ~ d/c, if there exist quotients b/a = y,/x,,
Yi/Xps--5Y./%, = d/csuch that foreach i = 1,...,r, y,_ | \y,/X; 0T Y, /X; | 7
¥,/x;. Standard calculations now produce

PROPOSITION 6.5. Let S be a weakly distributive semilattice and suppose b/a ~

d/c. Then T(a, b) = T(c, d). Conversely, if T(a, b) = T(c,d) thenb/a\b N\ d/a
Nerd/e
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Let S be a weakly distributive semilattice, a, b € S with a < b. Inductively
define for d = 1, a is connected b with complexity d if there existin S, a = z, < z,
<---<z,=b,and x;, y, for i = 1,...,r with x; <y, such that z,/z,_|, ~y,/x;
for each i = 1,...,r and x; is connected to y; with complexity d — 1.

We say that a is connected to b if a is connected to b with complexity d for
some integer d, and the semilattice S is called connected if a is connected to b for
each quotient b/a in S.

THEOREM 6.6. Let S be a connected weakly distributive semilattice. Then C“(S) is
distributive.

PrROOF. It suffices to show that for each quotient y/x, T(x, y) C I, VI,
implies T(x, y) = (T(x, y) N I')) V (I(x, y) N I,). The case when x is con-
nected to y with complexity 0 is done in Proposition 6.3 (it actually appeared in
the proof of the proposition rather than the statement). Assume inductively that x
is connected to y with complexity d — 1 and T(x, y) C T, V I, implies T(x, y)
= (T(x, y) N T)) V (IT(x, y) N I},), and suppose a is connected to b with com-
plexity d and T(a, b) C T, V T,. Then there exists a =z, <z, < ---<z,=b
and y,/x; such that z,/z, | ~y,/x, and x; is connected to y;, with complexity
d— 1foreachi=1,...,r. Then

T(x;, y) = T(z;-y,2,) C T(a, b) C T, VT,
sothat T(z,_,, z,) = (T(z,_, z )N TV (T(z;,_, z;) N L)) foreachi = 1,...,r.
Since T(a, b) = T(zg,2)) vV --- VT(z,_ |, 2,),

T(a,b) = \’/ (T(Zi—l’ z;) N I‘1) V(T(Ziﬂ’ z;) N Fz)
i=1

€ (T(a,5) N 1\) V(T(a, b)) N T;) C T(a, b),

completing the proof.

7. Congruence distributivity

The aim of this section is to prove that a congruence distributive finitely
derivable weakly distributive semilattice is connected. Let £ be the largest
element in €“(S).

LemMmA 7.1 (Hickman [9, Lemma 2.3]). Let S be a weakly distributive semilattice,

a,,...,a, € S and suppose {a,,...,a,} has an upper bound. Then ©({a,,...,a,),)
V¥(a)N---Nla,))=Eifand only ifa, VvV --- Va, exists in S.
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Let I be a non-principal finitely generated ideal and p € S. We say that |
shelters p if J C I for all non-principal finitely generated ideals J C (p].

PROPOSITION 7.2. Let S be a finitely derivable weakly distributive semilattice. For
each maximal element I of 9U(S), if I # S then there exists a p € S which is
sheltered by 1. If S is mildly distributive, then for each I € 9U(S), I # S there exists
a p € S which is sheltered by I.

Proor. For each J € N(S),J ¢ I, I + J is principal, since is maximal, and so
equals (p,] for some p, € S. Choose p such that I C (p] and p <V {p,:
J € 9QU(S),J ¢ I}. This works provided I is not the largest member of J(S). If 1
is the largest non-principal finitely generated ideal, there exists, by our assump-
tion, x € S such that x & I. Then (x] + I is principal and I shelters its generator.

If S is mildly distributive, then for each J ¢ I there exists a p; in § with
I C (p;]and J Z(p,] The proof now proceeds as above.

PROPOSITION 7.3. Let S be a weakly distributive semilattice.

() If I is a maximal element of 90(S) and I # S then I is prime.

(i) If OU(S) has a largest element {a,,...,a,), and {a,,...,a,) 6 # S, and
S=L{ay,...,a,), Y (la,), then C*(S) is not distributive.

PrROOF. () f aAbETthen I=T+ ((a]N(BY =T+ (ah NI+ (b). If
neither a nor b is in I, then we have expressed I as the intersection of two ideals,
both of which are principal by the maximality of /. This would imply that I is
principal, which is a contradiction.

(ii) Since (a,,...,a,),# S, l[a)N---N[a,)* D as S=(ay,...,a,),Y
([a) N --- N[a,). We show that ¥(a)) N --- N¥(a,) = $([a) N --- N[a,)
where ¥(a;) abbreviates ¥([a,)). Suppose x ANa;, =y Aag,foralli=1,...,n. If
y€la)n---Nla,) then yNa,=a,=xNa;, so xE€[a)N---N[a,) and
x=y(¥(lap N ---Nfa)).lfy & [a)N---NJ[a,) theny € {a,,...,q,), and
soy=(yANa)V---V(yANa,)=(xNa)V---V(x Aa,). Also, since y &
[ap N ---NJa,), x & [a) N ---N]a,), whence x € {a,,...,a,), and x = (x
Na)V - ---V(xANa,)=y Once again, x =y (¥([a;) N --- N[a,)). This
shows that ¥(a,) N --- N¥(a,) C ¥([a,) N --- N[a,)) and the reverse inequal-
ity comes straight from the definition of ¥([a;) N --- N[a,)).

If C“(S) were distributive, we would have

Q(<al""’an>w) V‘I'([al) n--- n[an))
= (G)((al,...,a,,>w) \% \I'(a,)) Nn---nN (Q((a,,...,an>w) \% \I'(a,)).
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It is easy to see that ®({a,,...,a,),)V ¥(a;) = E for each i, and hence
0 ay,...,a,),)V ¥(la) N --- N[a,) = E which implies by Lemma 7.1 that
a, V -+ Va, exists in S, which is a contradiction. Thus C“(S) is not distributive.

The idea of the proof of the main theorem is to examine the congruences on
certain principal ideals. The next three lemmas prepare for this.

LEMMA 7.4. Let S be a weakly distributive semilattice. Then for each b € S the
restriction map p: C°(S) —» C°((b]) defined by p(®) = ® N (b]? for each ® €
C“(S) is a lattice homomorphism of C“(S) onto C°((b)).

PROOF. Define ¢: C°((b]) - C“(S) by x = y(y(I)) if and only if x ANb=y A
b(T') in (b]. It is easy to check that Y(T') is a join partial congruence for each I in
C“((b)), and furthermore that ® C y(p(®P)) and p(Y(T)) CT. Thus p is a
residuated mapping with residual . Since residuated mappings preserve all joins
—see for example T. S. Blyth and M. F. Janowitz [2, Theorem 5.2, page 37]—p is
a lattice homomorphism. Finally, if x, y € (5] then p(Tg(x, y)) = Tji(x, y) and
this is enough to show that p is onto.

The author would like to thank Dr. Brian Davey for providing this great
improvement on the original proof.

LEMMA 7.5. Let S be a weakly distributive semilattice and b € S. Then (b)) =
{I € N(S): I C(b]}.

LEMMA 7.6. Let S be a weakly distributive semilattice,a, b € Switha <b. Ifais
connected to b in some principal ideal then a is connected to b in S.

PROOF. Suppose a < b < x and a is connected to b with complexity d in (x].
We show by induction on d that a is connected to b in S. The case d =0 is
obvious. Suppose a is connected to b with complexity 4 in (x]. Then there exist
a=zy<z,<---<z,=bandy,/x; in (x] such that z,/z,_, ~y,/x, and x, is
connected to y; with complexity d — 1 in (x]. Then z,/z,_, ~ y,/x,in S and y, is
connected to x; in S, so a is connected to b in S.

THEOREM 7.7. Let S be a finitely derivable weakly distributive semilattice and
suppose C“(S) is distributive. Then S is connected.

PrOOF. The proof is by induction on |9(S)|. Assume that |9U(S")|< k and
C“(S”) distributive implies S’ is connected and suppose | 9(S)|= k and C“(S) is
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distributive. By Lemma 7.6 it suffices to show that each principal ideal of S is
connected, and so without loss of generality, assume that S has a largest element.
Also observe that if a € S and a is not contained within a maximal element of
N(S)thena V x existsin S for all x € S.

Suppose a, b € S with a < b. If a is not contained in a maximal non-principal
finitely generated ideal, then a is strong below b, so that a is connected to b.
Suppose a € I where I is a maximal element of 9U(S). If I Z(b] then |N(bD|< k
by Lemma 7.5, and this would imply by the inductive hypothesis and Lemma 7.4
that a is connected to b in (b] and hence also in S. Thus assume I C (b]. By
Proposition 7.2 choose a p € S which is sheltered by I. Then I also shelters b A p
and b A p is strong below b. It remains to show that a is connected to b N p.
Since C“((b N p)) is distributive there exists, by Proposition 7.3(ii), ¢ € (b A p]
such that ¢ &€ I and I C (c]. Then a V c¢ exists and is strong under b N p. Finally,
aVc/anc/aNc and a A ¢ is connected to ¢ in (c¢] since |F((c])|< k and
consequently a is connected to a V ¢ in S.

It is interesting to note that the conclusion of this theorem is no longer true if S
is not finitely derivable. Example 4 of Hickman [9] is congruence distributive but
not connected.

8. Connected finitely derivable mildly distributive semilattices

The results of the last two sections have special significance for mildly
distributive semilattice, because, as we will show in this section, connected finitely
derivable mildly distributive semilattices can be constructed in a systematic way.

LeEMMA 8.1. Let S be a weakly distributive semilattice and suppose a is connected
to b with complexity d. Then for all x € S, a /\ x is connected to b N\ x with
complexity d.

PrOOF. The proof is by induction on d. To begin with, suppose a is strong
below b. Then forally < b A x,(a A x)Vy =x A (aV y), which exists since a
is strong below b. Hence a N x is strong below b N x. If a is connected to b with
complexity 0, then there exist a = z, < z; < --- <z, = b such that z;_, is strong
under z, foreachi = 1,...,r. Then

aNX=ZgANXx<zysSx<---SZAx, ANXxX=bANx

and so a N x is connected to b A x with complexity 0.
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If a is connected to b with complexity d then there exista =z, <z, < --- <z,
= b and y,/x, such that z,/z, |, ~y,/x,; and x; is connected to y, with complexity
d — 1. It remains to show that z;, A x/z,_; A x ~y, A x; /\ x and this is done by
showing that T(z;,_; A x, z; AN x) = T(x; A x, y; A\ x). Indeed (x; A x) N (z,_,
ANX)=(y Nx)N(z;_NA\x) since x; Nz, =y; Nz, Also (x; Nx,z; N x),
=(xX)N{(x;2,), = (xXIN (Y2, =¥ N x,2; AN x), and so T(x; A x, y; N
x) C T(z;_, N\ x, z; \ x). Since the reverse inequality is obtained similarly, the
proof is complete.

LEMMA 8.2. Let S be a weakly distributive semilattice and suppose a is connected
to b with complexity d. Then there exist a =z, <z, < --- <z, = b and v;/u, for
i=1,...,r such that z,/z, \N\v,/u; for i = 1,...,r and u, is connected to v; with
complexity d — 1.

PROOF. Since a is connected to b with complexity d, there exist a = z, <z, <
.-+ =<z = b and y,/x; such that z,/z,_, ~y,/x; and x; is connected to y, with
complexity d — 1. By Proposition 6.5, this implies z,/z, Nz, Ny, /z, | N x,.

Since z,_| = z(T(x;, y,)), z;—y Nx;=z; N\ x;, so that z,/z, Nz, Ny, /z; N\ x,
and now the result follows from the previous lemma by setting v, = z; A y; and
u, = z; \ x,.

THEOREM 8.3. Let S be a connected finitely derivable mildly distributive semi-
lattice with deriving sequence S,,...,S,. Then S, is connected for each i = 1,...,r.

ProoF. By induction, it suffices to show that S, , is connected, and by
definition, S = S,_\{x} where x is completely removable in S,_,. Suppose
a,beS,_,anda <b.

Case 1. a, b # x. We show by induction on d that a connected to b with
complexity 4 in S implies a is connected to b in S,_ |, but first it is necessary to do
it when a is strong below b in S. Note that a V y exists in S,_, for all y < b,
y # x. Since r is completely removablein S,_;, x = ¢, V - -+ V¢, for some ¢; < x.
If {a, c,...,¢, ), 1s principal in S then a V x exists in S,_, and a is strong below
b. So suppose (cy,...,¢,), C (b] and (a,c,,...,c,), is non-principal in S.
Choose p’ € S which is sheltered by (¢,,...,c, ), and thisgivesrisetoip = p" A b
which is also sheltered by {c,,...,c,),. Since a is strong below b in S, aV p
exists and clearly a V p/aN\p/a N p. We claim that a A p is strong below p in
S, and consequently a is connected to @ V p in S,_,. Indeed if y < p and y # x
then a V y exists in S,_; and hence so does (a Ap)Vy=(aVy)Ap. Ify=x
then (x]C (a,y),C(p] and so aVy exists in S,_, and hence so does
(a A\ p) V y. The next step is to show that p is connected to b in S, ,. This is
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done by induction on |(b\IU((p]|, or to be more precise, we show by
induction on |J{(LP\I((¢])| that for all ¢ and b, x < g < b implies g is
connected to b in S,_ . If |IU(bP\IU((¢])|= O then g is strong below b in S, _,.
Suppose | (b I\IW(gD|= k. If g is not strong below b then there exists
y € §,_, with y < b such that ¢ V y does not exist in S,_,. Consequently, (¢, y) .,
is non-principal in §, and without loss of generality, we may assume that (g, y),
is a minmal such ideal. That is, if (¢] C (q, y"), C (g, y),, then (q, y') is
principal. Since S is mildly distributive there is c;é S which is sheltered by
(g, y) ., and without loss of generality, ¢ < b. Since C“((c]) is distributive, there
exists

e €(c]\({q, ). Y ([9) N[)))).

If g < e then | 9((e D\I((gD|< k and | (b PD\D((e ] |< k, implying that g is
connected to e in S, _,, e is connected to b in S,_, and hence q is connected to b in
S,_.-If g% ethen g V e existsin S and if (g, y), (g V e] then repeat the last
calculation with e replaced by ¢ Ve. If (¢, y),C(gVe]thengVe/qgNne/g /N
e. We claim that g N\ e is strong in e. Indeed, if z < e then g V z exists in S,
(since (g, y ), has minimal) and hence (g N e) Vz =(gV z) Neexistsin S,_,.
Thus, ¢ N\ e is connected to e in S,_,, ¢ is connected to ¢ V e in S, ; and also
FIABD\IU((g V e])|< k so gV eis connected to b in S, . Thus q is connected
to b in S,_,, which completes this stage of the proof of case 1. The remainder of
case 1 is now quite easy. If a is connected to b with complexity O in S then there
exista =z, <z, < ---<z,=>bin § with z,_, strong in z,. By the first stage
z;_, is connected to z; in S,_, for each i and so a is connected tobin S, . If a is
connected to b with complexity d in S, then there exist a =z, < --- <z, = b
and y,/x; in S such that z,/z, | \y,/x; and x; is connected to y, with complexity
d — 1. By induction this implies x, is connected to y; in S,_, and so a is connected
to b.

Case 2. a = x. Choose p € S, p < b such that p shelters (c,,...,c,), in S.
Then a is strong below p in S,_, and p is connected to b by case 1.

Case 3. b = x. We show by induction on |JU((bD\((¥ D |y < b = x implies y is
connected to b in S,_,. If |9L((BD\IU((y ) |= O then y is strong below b. Suppose
[DLB DNy D|= k. If y is not strong below b then there exists z < b such that
y V z does not exist in S, ,. Hence there exists g < b such that (y, z)  C(q].
Then y is connected to g by case 1 and q is connected to b since | A(bD\I((g]) |
<k.

We are now in a position to describe how to form congruence distributive
mildly distributive semilattices.
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THEOREM 8.4. Let H be a connected finitely derivable mildly distributive, semi-
lattice, x a completely removable element in H and suppose (x| is a lattice and
S = H\({x} is mildly distributive. Then S is congruence distributive if and only if,
whenever p is sheltered by {c,,...,c,), in S, where x = ¢,V --- V¢, in H, then
(p] is mildly distributive but not distributive.

PRrOOF. If ( p] is distributive, then C“(( p]) is not distributive since ( p] is not a
lattice, and consequently C“(S) is not distributive. Suppose ( p] is mildly distrib-
utive but not distributive. We show that (p] is connected. Indeed suppose
a < b < p and a is not strong below b. Then there exists y < b such that a V y
does not exist. Since |9((p])|= 1 and (p] is not distributive there exists e < p
withe & (a, y), U ([a) N [»)), and clearly a V e existsin (p]. Thena V e/a\
e/a N\ e and a A e is strong below e, and a V e is strong below p, so that a is
connected to p. By Lemma 8.1, this implies a is connected to b.

Now supposea € band b & xin H.If b # x then (b]is S equals (] in H, and
so is congruence distributive and connected in S. So assume b > x and first
consider the case when a > x. Then, using the same argument detailed in the last
theorem, it can be shown that a is connected to b. Finally, suppose a # x. Then,
for some d, a is connected to b with complexity d in H. We show by induction on
d, that a is connected to b in S. If a is connected to b with complexity 0 in H, then
there exist @ = z, <z, < --- <z, = b such that z,_, is strong below z,. Let j be
the smallest integer such that z; > x, whence z;_, # x. If z;,_, = x then choose
p € § such that p is sheltered by (c,,...,c,), and p < z,. Then a is connected to
p and p is connected to b, so a is connected to b. If z;_, # x then a is connected
toz;_,in S and z; is connected to b in S by the previous cases. If z;_, is strong
below z; in S then we are finished, so suppose z;_, V y does not exist in S.
Clearly (z; |, y). = {¢cy,.-.,¢,), since z;_, is strong below z; in H. Choose
p € S which is sheltered by (z;_,, y), and which is below z,. Then z; ; is
connected to p, p is connected to z s whence z i1 1s connected to z e

Suppose a is connected to b with complexity d in H. Then there exist

=2z, < --- <z, = bandy,/x;in H such that z,/z, | \y,/x; and x; is connected
to y; with complexity d — 1 in H. Again choose the smallest j such that z; > x. If
z;_, = x, then a is connected to z; as above, so suppose z,_; # x. If y;, x; # x
then z;_, is connected to z; in S by the inductive hypothesis. Since x is meet
irreducible we cannot have x; = x, so suppose y; = x, and choose p < z; which is
sheltered by (c,,...,c,), in S. Since ( p] is not distributive there exists e € (p]
such thate & (c,,...,c,),and {¢,...,c,), €(el,andletf=eV ¢,V --- Vc,.
Thenif z;_  ANfe€ {(¢,...,¢,),In S, then z; | Af=x;in H so that z,/z; |\
f/x; and f is connected to x; by the first part of the proof. If z;, | Af €&
(€ps---s€,) ,thenz;,_ A fis strong below fand z,/z,_;\f/z; . A f. Thusz;, s
connected to z; in S and the proof is complete.
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COROLLARY 8.5. Let S be a finitely derivable mildly distributive semilattice and
let S,,...,S, be a lower deriving sequence for S with S; = S,_ \{x,;}. Then S is
congruence distributive if and only if, for each i, if x,=c¢, vV --- V¢, in S;_,,
¢; < x; and p shelters {c,,...,c,), in S;, then (p] is mildly distributive but not
distributive.

COROLLARY 8.6, Let S be a finitely derivable mildly distributive semilattice. Then
S is congruence distributive if and only if whenever I is a non-principal finitely
generated ideal and p is sheltered by I, then there exists b < p such that b & I and

1g(b).

9. Congruences on principal filters

Lemma 7.4 showed that restriction map p: C“(S) — C“(a]) is a lattice
homomorphism for any weakly distributive semilattice S and any a € S. For
example consider the semilattice S in Figure 5. Clearly @((a]) A ¥([a)) = E, the
largest congruence on S. However, if ¢: C“(S) - C“([c)) is the restriction map
then ¢(O((a])) V ¢(¥([a))) # ¢(E). This section looks at necessary conditions
and sufficient conditions for the restriction maps ¢,: C“(S) = C“({a)) to be
surjective lattice homomorphisms. The investigation could be carried out by using
the description of the join in C“(S) given in Cornish and Hickman [4}; the proofs
are then rather technical and provide little insight into the material. The path
chosen, while no shorter, hopefully gives a better unerstanding of the matter.

A weakly distributive semilattice S is said to have full congruence restriction if
for each a € S, the restriction map ¢,: C“(S) - C°([a)) is a surjective lattice
homomorphism.

PROPOSITION 9.1. A weakly distributive semilattice S has full congruence restric-
tion if and only if (b} has full congruence restriction for each b € S.

PRrOOF. Consider the diagram
e“(s) ee((s])
¢l lo

e([a) = e([a) n(s])

in which a < b are arbitrary elements of S and p, o, ¢ and © are the restriction
maps. Clearly 6o p =0 o¢ and p and © are surjective homomorphisms by
Lemma 7.4. If § has full congruence restriction then ¢ is a surjective lattice

]
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homomorphism, showing that ¢  p is a surjective homomorphism and hence so is
.

Suppose (b] has full congruence restriction for each b € §, and suppose a € S.
Then ¢: C“(S) - C“([a)), being the restriction map, preserved intersections.
Suppose I}, I, € S and x = y(¢(I'; V I,)) for some y = x = a. Write b for y and
examine the diagram. Clearly

X “:‘-‘y(O(P(rl \% rz)))

and since both ¢ and p are lattice homomorphisms, this implies x = y(o(p(I})) V
o(p(I,))). Buto o p = O o ¢ and O is a lattice homomorphism. Hence

x = y(0(¢(T)) V ¢(I3)))

which implies x = y(¢(I'}) V ¢(I,)) and ¢ is a lattice homomorphism. To see
that ¢ is onto first observe that for y = x = a, p(Ts(x, y)) = T}, (x, y) and that
p preserves arbitrary joins by compactness.

A semilattice is called strongly connected if for all a, b with a < b, a is
connected to b with complexity 0.

LEMMA 9.2. If S is a strongly connected semilattice then [a) is strongly connected
for eacha € S.

THEOREM 9.3. A strongly connected weakly distributive semilattice has full
congruence restriction.

PrOOF. By Proposition 9.1 we may assume that our semilattice S has a largest
element b, and suppose a € S. Since S is strongly connected, there exist a = z, <
z, < - <z =bin § with z;_, strong below z,. The first stage of the proof is to
show that the restriction map p: C°(z,]) — C“([z;_,) N (z;]) is a surjective
homomorphism. By Theorem 6.6 and Lemma 9.2, both @“((z,;]) and C“([z,_}) N
(z,]) are distributive and so, by Proposition 6.1, the restriction maps

A C(42((z])) - e“((z])
and
pC($2([z,2)) N(z]) =~ €([z,-,) N(z])

are both lattice isomorphisms. Now consider the map

X: 3;,([21'—]) r_](Zi]) - L= {] = 3';’((2:]) (Zi—l] - I}’
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defined by x({a,...,a,),) = {a,...,a,), in (z;]. Clearly x is a well defined
injective homomorphism. If {(b,,...,b, Y& L then z,_, € (b,,...,b, ), so that
(byy....by=(byVz,_y,...,b,Vz,_), and consequently x is surjective.
Since x is an isomorphism it induces an isomorphism 7: C($/({z,—,) N (z;])) -
G(L), and furthermore the restriction map 4: C($((z,])) » C(L) is a surjective
homomorphism. This we have the following diagram.

p—

e(gr(al) 2 ey S e(d(lzy) n(zd)

Xt b
p

@w((zi]) > @w([zi—l) n(zi])‘
It is straightforward to check that this diagram commutes, and that consequently
p 1s a surjective homomorphism.

We proceed by induction to show that the restriction map ¢: C“((z;]) -
C“({a) N (z;]) is a surjective homomorphism. As in the proof of Proposition 9.1,
it suffices to show that v, is a homomorphism, and the proof so far has shown
that ¢, _,: C°((z;,_,]) = C“([@) N (z;,_,]) and p: C°((z;]) - C°([z;_;) N (z,]) are
surjective homomorphisms, as is »: C“((z;]) = C“((z,_,]). Observe that x =
y((T)) if and only if x Az, =y Az, (¢ (»(I)) and xVz,_, =y V
z;_(p(T)). Consequently if x = y(¢(I', VI,)) then xVz_, =y A
(G (T V(1)) and x V iz, =y Vz, (p(I)) V p(I3)). Finally
Vi (n(T) V 4 (n(13)) C (1) V Y(I3) and p(T)) V p(I;) C (I V
¥i(I,), and hence x = y(Y(T')) V §(I13)).

Our aim is to prove the converse of this theorem under the additional
assumption that § is finitely derivable.

LEMMA 9.4. Let S be a finitely derivable weakly distributive semilattice with full
congruence restriction. Suppose x, y, a € S are such that x, y < a and x V' y does
not exist in S. Then there exists z € S with x<z<a and z ¥ y such that

(2, )0 (X% V) u

ProoF. Since S has full congruence restriction so does (@] for each a € §. Let
x, y, a be as in the statement of the lemma and work within (a].

LetJ ={bE(al: b=xand (b, y) 6 = (x, y),}- Clearly J is an ideal in [x).
We claim that [x)\ J # [x) N [y). For if this were not the case then J would be a
prime ideal in [x) and the partition I' = {J, [x)\ J} would be a join partial
congruence on [x). Now consider ©((y]), ¥([y)) and the restriction map p:
C*((a]) » C([x) N (a]). Then, p(O((y]) V ¥([»)) = p(E) = E|,). Also b =
x(p(O((yD)) if and only if b € J, and os J is a congruence class of p(O(( y])),
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where p(O((y 1)) C T. Since | y) is a congruence class of ¥([)), [x)\J = [x) N
[») is a congruence class of p(¥([ »))) and hence p(¥([y))) C I'. This shows that

p(8((y]) vV ¥([) # Ey,

which contradicts the assumption that p is a lattice homomorphism. Thus our
claim that [x) N [y) # [x)\J has been verified. Since [x) N [y) C [x)\ J there
exists z in (a] such that z = x, z € J and z # y, which is the desired result.

THEOREM 9.5. Let S be a fintely derivable weakly distributive semilattice with full
congruence restriction. Then S is strongly connected.

PROOF. Let x < b be arbitrary elements of S. We have to show that x is
connected to b with complexity 0. If x V y exists for all y < b then there is
nothing to prove, so suppose the contrary. Let P be the partially ordered set of all
non-principal ideals of the form (x, y) , where y varies over (b]. By assumption
P is finite and has a finite number of minimal elements, any (X, ¥5) o»---»{X, Yy )u
(all distinct). Set a = b, y =y, and choose z, such that z, # y, z, = x and
(Zgs Yo)w 7 {X, Yo« s in the lemma. If (x, y;), C (z,] for some i, then set
a =2y, y =y and choose z; as in the lemma. Continue this process until
(x, ¥, Z(z;] for each i = 1,...,n. Set x, = z;. Then x < x, and x V y exists
for all y < x,. Repeat the whole process with x, instead of x, and hence find an
x, = x, such that x, V y exists in S for all y < x,. Continuing, we get a sequence
X = Xg<Xx, <Xx,<---<bsuch that x;_, is strong below x;. It remains to show
that this sequence terminates. Consider the following set of non-principal finitely
generated ideals,

X={{x0, °) 0o (315 'Y oo s { Xy V" Y -}

where y' is the final y used in the construction of x,, ,. We claim that {x,, y')  #
(xi31, ¥'Y),, for each i. Otherwise we would have, for some i, x,.; € (x,, y'),,
and so (x,,, ¥'), = (x;, ¥'),, a contradiction. This also shows that x; &
(x;, y'), for each j > i and so, for each i, j with i # j,

(% 7)o # (x50 7)o

Since S is fintely derivable, X is finite and so x = xy < x;, <x, < ---<bisa
sequence which connects x to b with complexity 0.

COROLLARY 9.6. A finitely derivable weakly distributive semilattice with full
congruence restriction is congruence distributive. Consequently a finitely derivable
distributive semilattice with full congruence restriction has the upper bound property.
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The final part of this corollary is actually true without the assumption of finite
derivability.
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