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On Functions Satisfying Modular Equations
for Infinitely Many Primes
Dmitry N. Kozlov

Abstract. In this paper we study properties of the functions which satisfy modular equations for infinitely
many primes. The two main results are:

1) every such function is analytic in the upper half plane;
2) if such function takes the same value in two different points z1 and z2 then there exists an f -preserving analytic

bijection between neighbourhoods of z1 and z2.

1 Introduction

We study the analytic properties of functions which satisfy modular equations for infinitely
many primes. Such functions appear most naturally in the context of Monstrous Moonshine.
This area arose from McKay’s observation that the degree of the first non-trivial irreducible
character of the Monster group (the largest sporadic group), which is 196883, differs only
by 1 from the first coefficient in the power series of the j function, which in its turn plays
a fundamental role in analytic number theory. The paper of J. H. Conway and S. P. Norton
[6] revealed more relations, which were mostly observed empirically at the time, initiating
a large body of research.

We make use of certain polynomials Fn(x, y) which we call modular polynomials. These
polynomials are symmetric in both variables and have degree n

∏
p|n(1 + 1/p). A good

overview of their theory can be found in a long paper by K. Mahler [9]. We say that the

function f satisfies a modular equation of degree n (or “for n”), if Fn

(
f
(
(az + r)/d

)
, f (z)

)
= 0, whenever ad = n, 0 ≤ r < d and (a, r, d) = 1 (Definition 3.2). The guiding
observation is that a completely replicable function of order 1 satisfies modular equations
for all n (Proposition 3.3).

The main results of this paper are:

• if a function satisfies modular equations for infinitely many primes, then it is analytic in
the upper half plane;
• furthermore, if such function takes the same value in two different points z1 and z2, then

there exists an f -preserving analytic bijection between neighbourhoods of z1 and z2.

These results have been used in [7].
Briefly, the plan of the paper is the following:

Section 2. We recall the setting of completely replicable functions in terms of S. P. Norton’s
bivarial transform;
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Section 3. We show that completely replicable functions of order 1 satisfy modular equa-
tions for all n;
Section 4. We prove the two main theorems mentioned above.

Acknowledgments I am deeply indebted to A. Meurman for guiding me to this project
and providing his help many times along the way. I would also like to thank J. McKay and
the referee for many valuable comments which led to a substantially better paper.

2 The Bivarial Transform and the Definition of Completely Replicable
Functions

Let f (z) = q−1 + H1q + H2q2 + · · · , where q = e2πiz, coefficients are arbitrary complex
numbers and the power series is purely formal. This needs a few words of explanation.
When one considers usual examples, this function f is analytic in the unit circle (or in the
upper half plane if one prefers to use z as variable). We do not assume that here as well as
we do not assume that Hi ’s are integers (which is also most often the case). However we
do use usual notations, though purely formally. We also use without further warning the
formal rational powers of q, for example the expression f ( z+1

4 ) means f (i ·q1/4) and f ( az+r
d )

means f (eπir/dqa/d).
Following [12] we give two definitions.

Definition 2.1 Let

∞∑
m,n=1

Hm,nqmrn = log(r−1 − q−1)− log
(

f (y)− f (z)
)

= − log
(

1− qr
∞∑
i=1

Hi(qi−1 + qi−2r + · · · + ri−1)
)
,

where r = e2πi y . We call the sequence {Hm,n}∞m,n=1 the bivarial transform of {Hi}∞i=1 (equiv-
alently of f ).

Clearly, H1,n = Hn and Hm,n = Hn,m. One calls a function f replicable if Ha,b = Hc,d,
whenever ab = cd and (a, b) = (c, d).

Definition 2.2 The function f (given by formal power series as above) is called completely
replicable of order k, if there exists a sequence of formal power series

{ f (s) = q−1 + H(s)
1 q + H(s)

2 q2 + · · · , where q = e2πiz}, s = 1, 2, 3, . . . ,

called the replicates of f , such that

(1) f (s) = f ((s,k)), f = f (1);
(2) if {H(s)

m,n}
∞
m,n=1 is obtained as a bivarial transform of f (s) then, for all integers m, n,

s ≥ 1,

H(s)
m,n =

∑
t|(m,n)

1

t
H(st)

mn/t2 .
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In particular, one can see that if f is completely replicable of order k, then for any s, f (s)

is completely replicable of order k/(s, k). Namely, one can simply define f (s)(t) = f (st) and
verify all the properties of this sequence of formal series. Also any completely replicable
function is of course replicable (as easiest it can be deduced from (2) with s = 1), but not
vice versa, take for example− j(z + 1/2).

Influenced by experimental observations on Monster group characters, J. H. Conway
and S. P. Norton defined in [6] abstract replicability with the help of collection of functional
equations. The following polynomial plays an important role in their approach.

Definition 2.3 Let Pn(x, y1, . . . , yn−1) be the polynomial in n variables uniquely deter-
mined by the property that, for any formal power series f (q) = q−1 + H1q + H2q2 + · · · , the
formal power series Pn

(
f (q),H1,H2, . . . ,Hn−1

)
− q−n contains only positive powers of q.

For example P3(x, y1, y2) = x3 − 3y1x − 3y2.

We recall here how these two definitions are related.

Lemma 2.4 For all positive integers n,

n ·
∞∑

m=1

Hm,nqm + q−n = Pn

(
f (q),H1, . . . ,Hn−1

)
.

Proof It is enough to show that the left hand side is a polynomial in f (q) and H1, . . . ,Hn−1.
As a matter of fact it is n times the coefficient of rn in the following expression:

− log(1− r/q) + log(1/r − 1/q)− log
(

f (r)− f (q)
)

= − log(r)− log
(

f (r)− f (q)
)

= − log

(
1−

(
f (q)−

∞∑
i=1

Hir
i+1
))
,

which is obviously a polynomial in f (q) and H1, . . . ,Hn−1 as power series expansion of the
logarithm function shows.

To make our formulae more concise we need the following notations:

An = {(a, r, d) | ad = n, 0 ≤ r < d},

Bn = {(a, r, d) | ad = n, 0 ≤ r < d, (a, r, d) = 1}.

Proposition 2.5 The following are equivalent:

(a) f is completely replicable of order k, with replicates f (s);
(b) The sequence ( f (s))∞s=1 satisfies

(1) f (s) = f ((s,k)), f = f (1);

(2) for all s ≥ 1, n ≥ 2,

https://doi.org/10.4153/CJM-1999-045-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-045-x


On Functions Satisfying Modular Equations 1023

∑
(a,r,d)∈An

f (sa)
(az + r

d

)
= Pn

(
f (s)(q),H(s)

1 , . . . ,H
(s)
n−1

)
.(2.1)

The formulae (2.1) are usually called the replication formulae.

Proof (a)⇒ (b).

(1) Obvious.
(2) We have

∑
(a,r,d)∈An

f (sa)
(az + r

d

)
=
∑
d|n

∑
0≤r<d

f (sn/d)
(nz/d + r

d

)

= q−n +
∑
d|n

d · (H(sn/d)
d qn/d + H(sn/d)

2d q2n/d + · · · )

= q−n +
∑
d|n

n

d
(H(sd)

n/d qd + H(sd)
2n/dq2d + · · · )

=

∞∑
k=1

ckqk + q−n,

where ck = n ·
∑

d|(k,n)
1
d H(sd)

kn/d2 = nH(s)
k,n. Using Lemma 2.4 we get

∑
(a,r,d)∈An

f (sa)
(az + r

d

)
= n ·

∞∑
m=1

H(s)
m,nqm + q−n = Pn

(
f (s)(q),H(s)

1 , . . . ,H
(s)
n−1

)
.

(b)⇒ (a). Similar to the above.

3 Completely Replicable Functions of Order 1

In this section we prove that completely replicable functions of order 1 satisfy modular
equations for all n.

We need the following notations

Tm
n ( f )(z) =

∑
(a,r,d)∈An

f m
(az + r

d

)
, T̃m

n ( f )(z) =
∑

(a,r,d)∈Bn

f m
(az + r

d

)
.

The following fact is immediate.

Lemma 3.1 Tm
n ( f )(z) =

∑
α2|n T̃m

n/α2 ( f )(z).
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Reformulating the Proposition 2.5, f is a completely replicable function of order 1 if and
only if it satisfies the following infinite system of functional equations:

T1
2 ( f )(z) = f (2z) + f

( z

2

)
+ f
( z + 1

2

)
= f 2(z)− 2H1,

T1
3 ( f )(z) = f (3z) + f

( z

3

)
+ f
( z + 1

3

)
+ f
( z + 2

3

)
= f 3(z)− 3H1 f (z)− 3H2,

T1
4 ( f )(z) = f (4z) + f

(2z

2

)
+ f
(2z + 1

2

)
+ f
( z

4

)
+ f
( z + 1

4

)
+ f
( z + 2

4

)
+ f
( z + 3

4

)
= f 4(z)− 4H1 f (z)2 − 4H2 f (z)− 4H3 + 2H2

1 , . . .

where f (z) = q−1 + H1q + H2q2 + · · · , q = e2πiz.

Definition 3.2 We say that a function f satisfies n-th modular equation, n ≥ 2, if there
exists a polynomial Fn(x, y) such that

Fn

(
x, f (z)

)
=

∏
(a,r,d)∈Bn

(
x − f

(az + r

d

))
.

Clearly, the term of the highest degree in x in Fn(x, y) is x|Bn|, where |Bn| = n
∏

p|n(1+1/p),
p is a prime.

Proposition 3.3 Let f be a completely replicable function of order 1, then f satisfies modular
equations for all n ≥ 2.

Example F2(x, y) = x3 + y3 − x2 y2 + 2H1(x2 + y2) + (2H2 − 1)xy + (2H4 − 2H1)x +
(2H3 + H2

1 − 3H1)y + 2H5 + 2H1H3 −H2
2 − 3H2 − 4H2

1 [9, p. 90].

Proof To prove the existence of the polynomial above, it is clearly enough to prove that
any symmetric polynomial in f

(
(az + r)/d

)
, (a, r, d) ∈ Bn is a polynomial in f (z). On the

other hand, the power sums T̃m
n ( f )(z) generate the ring of symmetric polynomials, hence

it is enough to prove that for any m and n, T̃m
n ( f )(z) is a polynomial in f (z). Furthermore,

by Lemma 3.1, it is enough to show that for any m and n, Tm
n ( f )(z) is a polynomial in f (z).

We proceed by induction on m. For m = 1 the statement is the consequence of Proposi-
tion 2.5, so assume m ≥ 2. Let us now take the m-th functional equation for f (z), replace
z in it with (az + r)/d, for (a, r, d) ∈ An, and sum up all these equations. On the right hand
side we get Tm

n ( f ) + R, where R is a sum consisting of terms of the form Tm ′
n ( f )· (some

constant depending on H1,H2, . . . ), for m ′ < m. So, by the assumption of induction, R
is a polynomial in f . Hence, what we have to prove reduces to showing that the following
expression is a polynomial in f (z):

∑
f

(
a1

(
(a2z + r2)/d2

)
+ r1

d1

)
=
∑

f

(
a1a2z + a1r2 + d2r1

d1d2

)
,(3.1)
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where both sums are taken over all (a1, r1, d1) ∈ Am, (a2, r2, d2) ∈ An.
Denote the right hand side of (3.1) by Sd1,d2 . Now fix d1 and d2 for a while. Take t =

(a1, d2), and let a ′1 = a1/t , d ′2 = d2/t . Then, canceling t gives

Sd1,d2 =
∑

f

(
a ′1a2z + a ′1r2 + d ′2r1

d1d ′2

)
,

the sum is taken over all 0 ≤ r1 < d1, 0 ≤ r2 < d2.
Let us show the equality

Sd1,d2 = t ·
∑

0≤r<d1d ′2

f

(
a ′1a2z + r

d1d ′2

)
.

For that we have to prove that for all 0 ≤ r < d1d ′2 the equation

a ′1r2 + d ′2r1 ≡ r (mod d1d ′2)

has exactly t solutions (r1, r2), 0 ≤ r1 < d1, 0 ≤ r1 < d ′2. As we totally have exactly
t · d1 · d ′2 pairs (r1, r2), it is enough to prove that for each fixed pair (r1, r2) there are exactly
t solutions (r ′1, r

′
2) to

a ′1r2 + d ′2r1 ≡ a ′1r ′2 + d ′2r ′1 (mod d1d ′2).

If the above congruence is satisfied we get

d1d ′2 | a ′1(r2 − r ′2) + d ′2(r1 − r ′1),(3.2)

hence d ′2 | a ′1(r2 − r ′2), but (a ′1, d
′
2) = 1, so d ′2 | r2 − r ′2. Write r ′2 = r2 − s · d ′2. Canceling d ′2

in (3.2) we get d1 | a ′1s + r1− r ′1, so each choice of s gives uniquely defined r ′1. Since s can be
chosen in exactly t different ways we prove our statement. Observe that d1d ′2a ′1a2 = mn/t2.

So Sd1,d2 is equal to t times the part of Hecke operator Tmn/t2 , corresponding to the
chosen divisor d = d1d2/t . We know that the whole operator Tmn/t2 ( f ) is a polynomial in
f , hence we only need to prove that for each t dividing (m, n), all the parts of the Hecke
operator Tmn/t2 appears exactly t times in the sum (3.1). Let us fix t and d the divisor of
mn/t2. When does the corresponding part of Hecke operator appear in the sum (3.1)? The
necessary and sufficient conditions for d1 and d2 are:

(1) d1 | m, d2 | n;
(2) d1 · d2 = d · t ;
(3) t = ( m

d1
, d2).

Obviously (2) and (3) define d1 and d2 uniquely, namely

t =
(m

d1
,

dt

d1

)
⇒ d1t = (m, dt)⇒ d1 =

(m

t
, d
)
.
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Take d2 =
dt
d1

. It is well defined since d1 | d. Now it is easy to check the conditions: (2) is
obvious, and (m

d1
, d2

)
=
(m

d1
,

dt

d1

)
=

(m, dt)

(m/t, d)
= t

gives (3). Finally,

d2 | n⇐⇒
dt

d1
| n⇐⇒ dt | d1n⇐⇒ dt |

(m

t
, d
)

n⇐⇒ dt |
(mn

t
, dn
)

and the last statement is true as dt divides both mn/t and dn.
So we have proved that the expression in (3.1) is equal to

∑
t|(m,n)

t · Tmn/t2 ( f ).

If a function satisfies a modular equation for some prime p, then, in the terminology
used by Mahler in [9, pp. 69, 80], one can say that a completely replicable function of
order 1 is a basic Sp series. In that case, by the Theorem 8 [9, 37, p. 107], f is a single-valued
analytic function in a neighbourhood of∞, with a simple pole of residue 1 at∞.

Furthermore, we can show that the polynomials in the modular equations are symmet-
ric.

Proposition 3.4 Let f be a completely replicable function of order 1 and let Fn be the poly-
nomials from the Proposition 3.3. Then Fn is symmetric in x and y, i.e., Fn(x, y) = Fn(y, x).

Remark As it was observed by K. Mahler, this property of the polynomials Fn(x, y) yields
many identities on the numbers H1,H2, . . . , for example, for n = 2, we see from the
example after Proposition 3.3 that 2H4 = 2H3 + H2

1 −H1.

Proof Let n be a fixed number and pick (a, r, d) ∈ Bn. Let us prove that Fn

(
f (z),

f
(
(az +r)/d

))
= 0. Set r ′ = a−r. Then, by what we have proved before, f

(
(dz ′+r ′)/a

)
is

a root of Fn

(
x, f (z ′)

)
, that is Fn

(
f
(
(dz ′ + r ′)/a

)
, f (z ′)

)
= 0. Substitute (az + r)/d instead

of z ′, then
(dz ′ + r ′)/a = (az + r + r ′)/a = z + 1,

hence we get

Fn

(
f
(
(dz ′ + r ′)/a

)
, f (z ′)

)
= Fn

(
f (z), f

(
(az + r)/d

))
.

This proves that Fn

(
f (z), y

)
also has roots f

(
(az + r)/d

)
, for (a, r, d) ∈ Bn. Since f (z)

has a simple pole at∞we conclude that the image of f contains an open neighbourhood of
a point in C and that there exists t (depending on n), such that for all z, such that Im z > t ,
all values f

(
(az + r)/d

)
, for (a, r, d) ∈ Bn, are distinct. For z, such that Im z > t , define
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Qz(x) = Fn

(
f (z), x

)
− Fn

(
x, f (z)

)
. Clearly Qz(x) has |Bn| distinct roots. To complete the

proof it is enough to show that the term of the highest degree in y in Fn(x, y) is y|Bn|. Since
then deg Qz(x) < |Bn|, hence Qz(x) ≡ 0 for all z, such that Im z > t , which by the previous
comments implies the polynomial identity Fn(x, y) = Fn(y, x).

We have

Fn

(
x, f (z)

)
=

∏
(a,r,d)∈Bn

(
x − f

(az + r

d

))
= x|Bn| + s1x|Bn|−1 + · · · + (−1)|Bn|s|Bn|,

where s1, . . . , s|Bn| are corresponding symmetric functions of f
(
(az + r)/d

)
, for (a, r, d) ∈

Bn. Clearly, s|Bn| = (−1)2εq−α + q−α+1Γ(q), where Γ(q) is a formal power series with only
positive powers of q, α =

∑
(a,r,d)∈Bn

a/d and ε =
∑

(a,r,d)∈Bn
r/d. Since we know that s|Bn|

is a polynomial in f (z) = q−1 + H1q + · · · , we have s|Bn| = (−1)2ε f (z)α + R
(

f (z)
)

, where
deg R < α.

Next we see that

α =
∑

(a,r,d)∈Bn

a

d
=
∑
ad=n

a

d

d

(a, d)
φ
(
(a, d)

)
=
∑
a|n

a

(a, d)
φ
(
(a, d)

)
=

∑
(d,r,a)∈Bn

1 = |Bn|,

where φ(σ) is the number of all integers 0 < γ < σ, such that (σ, γ) = 1.
Finally, observe that if 0 < r < d, then (a, r, d) ∈ Bn iff (a, d − r, d) ∈ Bn, hence

(−1)2ε = (−1)ε̃, where ε̃ is the number of all even d, such that d | n and (n/d, d/2) = 1. It
is easy to see that ε̃ = 1 for n = 2 and is even for n > 2. It follows that (−1)|Bn|(−1)2ε = 1,
for n ≥ 2.

Thus the highest monic term in y of Fn(x, y) is y|Bn|, on the other hand, it is clear from
our argument that for j < |Bn|, s j has degree (as a polynomial in f (z)) lower than |Bn|.
This proves that the term of the highest degree in y in Fn(x, y) is y|Bn|.

4 The Analytic Properties

As it was mentioned before, K. Mahler has proved that any function that satisfies a modular
equation for some prime number is analytic in some neighbourhood of∞ and has a simple
pole at ∞. In the next theorem, which is one of the two main results of this paper, we
strengthen Mahler’s result for the case when the function satisfies modular equations for
infinitely many prime numbers.

Theorem 4.1 Let I be an infinite subset of the set of prime numbers. Assume that f satisfies
modular equations for all p ∈ I, then f is analytic in the upper half plane, i.e., whenever
Im z > 0.

Proof Let t0 denote the smallest real number, such that f (z) is analytic in Im z > t0. As-
sume that t0 > 0. Let t1 be some real number larger then t0, such that f (z) is injective in
Im z > t1 (or more exactly f (z) is injective in the corresponding part of the strip of width 1,
remember that we have assumed that f (z) is periodic with period 1). That such t1 exists
follows from the fact that f (z) has a simple pole at∞.
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Y

t1

t0

0

z0

p2z0

pz0

z0 + r/p

X

Figure 1

Since f (z) is periodic with period 1, there must exist a singular point z0 such that
Im z0 = t0. As otherwise for each z, such that Im z = t0, we would have an open neigh-
bourhood where f (z) is analytic. Because the interval [0, 1] is a compact set we could then
choose finitely many such neighbourhoods, which would cover the segment [t0 ·i, (1+t0 ·i)]
and hence we would get a contradiction to the minimality of t0.

Pick a prime number p ∈ I, larger than t1/t0. Differentiating the equation
Fp

(
f (pz), f (p2z)

)
= 0 with respect to z gives

d

dz
Fp

(
f (pz), f (p2z)

)
=
∂Fp

∂x

(
f (pz), f (p2z)

)
p f ′(pz)

+
∂Fp

∂y

(
f (pz), f (p2z)

)
p2 f ′(p2z) = 0.

(4.1)

Because of the choice of p both pz0 and p2z0 lie in the domain where f (z) is injective,
hence f ′(pz0) 6= 0, f ′(p2z0) 6= 0.

On the other hand, if f (z0) would be a simple root of Fp

(
f (pz0), y

)
, then the fact that f

is analytic and injective in an open neighbourhood of pz0 and the implicit function theo-
rem would imply that f is analytic in an open neighbourhood of z0, which would contradict
with the singularity of f at z0. Hence f (z0) is at least a double root of Fp

(
f (pz0), y

)
.

Assume f (z0) = f (p2z0), then ∂Fp

∂y

(
f (pz0), f (p2z0)

)
= 0. Using the equality (4.1) we

get ∂Fp

∂x

(
f (pz0), f (p2z0)

)
= 0. The polynomial Fp is symmetric according to the Propo-

sition 3.4, hence Fp

(
f (pz0), f (p2z0)

)
= Fp

(
f (p2z0), f (pz0)

)
, which in turn implies that

f (pz0) is at least a double root of Fp

(
f (p2z0), x

)
. This means that either f (pz0) = f (p3z0)

or f (pz0) = f (pz0 + r/p), for some 0 ≤ r < p. In both cases we get a contradiction to the
injectivity of f in Im z > t1, since pz0 lies above Im z = t1.

The only case left is when f (z0) = f (z0 + r/p), for some 0 ≤ r < p. We have proved
this for infinitely many primes p > t1/t0, so by taking larger and larger prime numbers we
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get a sequence (zi)∞i=1 of different points, such that for all i,

Im zi = t0, f (zi) = c,

where c is some constant.
Let us again fix some prime number p > t1/t0, p ∈ I. By the symmetry of Fp the values

of f at points (pzi)∞i=1 must be roots of Fp(c, x). Since there are infinitely many points and
only finitely many roots this contradicts to the injectivity of f in Im z > t1.

Note Observe that using f (z) for Im z = t0 is strictly speaking not allowed, as f (z) may not
exist there. What one should do to be absolutely correct is to work with the approximations
from above instead. For fixed z we can choose a sequence (pz + i pek)∞k=1, where ek is a
positive real number going to 0. Such that some root of Fp

(
f (pz), y

)
can be approximated

by f (z + iek) (which in its turn are roots of Fp

(
f (pz + i pek), y

)
). Then we set f (z) to be

this root. This setting is not unique, but sufficient for our purposes. The whole argument
in the proof goes through, the technicalities are left to the reader.

With the proof of this theorem we justified our notations, so in the rest of the paper, all
the formal equalities actually mean the identities for the analytic functions.

Our next goal is to show that if the function f takes the same value at two different
points, then there exists an analytic bijection, which maps an open neighbourhood of the
first point onto an open neighbourhood of the second point and preserves f .

Lemma 4.2 Let f and I be as in Theorem 4.1. Assume that there exist two points z1 and z2

such that f (z1) = f (z2) and f ′(z1) = 0, then also f ′(z2) = 0.

Proof Assume f ′(z2) 6= 0. Take t such that f (z) is injective in Im z > t . Take p ∈ I,

(a, r, d) ∈ Bp. By differentiating Fp

(
f (z), f

(
(az + r)/d

))
= 0 we obtain

∂Fp

∂x

(
f (z), f

(az + r

d

))
f ′(z) +

∂Fp

∂y

(
f (z), f

(az + r

d

)) p

d2
f ′
(az + r

d

)
= 0.(4.2)

This equality shows in particular that if f ′(z) = 0 then either f ′
(
(az + r)/d

)
= 0 or

f
(
(az + r)/d

)
is at least a double root of Fp

(
f (z), y

)
.

Let us prove that there exists a prime number p ∈ I, such that

• f (pz2) is a simple root to Fp

(
f (z2), y

)
;

• Im pz2 > qt , where q = min I.

Assume the contrary, then, for any large p ∈ I, f (pz2) is at least a double root of the

polynomial mentioned above, hence ∂Fp

∂y

(
f (z2), f (pz2)

)
= 0. From (4.2) and the assump-

tion f ′(z2) 6= 0 we conclude that ∂Fp

∂x

(
f (z2), f (pz2)

)
= 0. Using the symmetry of Fp we

conclude that f (z2) is at least a double root to Fp

(
f (pz2), y

)
. But f (z2) 6= f (p2z2) as oth-

erwise Fp

(
f (z2), y

)
= Fp

(
f (p2z2), y

)
and hence f (pz2) would be at least a double root to

Fp

(
f (p2z2), y

)
. This would yield a contradiction since Fp

(
f (p2z2), y

)
has all its roots in a

domain, where f (z) is injective. So the equality f (z2) = f (z2 + r/p), for some 0 < r < p,
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must take place. Taking larger and larger primes p ∈ I we obtain a sequence of different
points on Im z = Im z2, where f takes the same value. We know that f is analytic in the
upper half plane and hence we get f ≡ f (z2), a contradiction.

Take a prime number p ∈ I, such that f (pz2) is a simple root to the polynomial
Fp

(
f (z2), y

)
and Im pz2 > qt . Observe that Fp

(
f (z1), y

)
and Fp

(
f (z2), y

)
is one and

the same polynomial, hence f (pz2) is equal to the value of f at one of the following points:
pz1, z1/p, (z1 + 1)/p, . . . , (z1 + p − 1)/p. Denote this point by z3. As f (z3) = f (pz2) we
obtain that f (z3) must be a simple root of Fp

(
f (z1), y

)
, hence using (4.2) we can conclude

that f ′(z3) = 0. On the other hand, f ′(pz2) 6= 0, as pz2 lies in the domain where f is injec-
tive. Let us rename z3 to z1 and pz2 to z2, then all the conditions of the original assumption
are satisfied and we have an extra condition that Im z2 > qt .

Consider the sequence z2, qz2, q2z2, . . . . As Fq

(
f (z1), y

)
= Fq

(
f (z2), y

)
we have two

possibilities:

(1) f (qz2) = f (qz1),
(2) f (qz2) = f

(
(z1 + r)/q

)
, 0 ≤ r < q.

Assume that the first equality is true. Observe that Fq

(
f (z2), y

)
has only simple roots,

as Im z2 > qt , hence also f (qz1) is a simple root of Fq

(
f (z1), y

)
and, using (4.2) again, we

conclude that f ′(qz1) = 0. This allows us to rename qz1 and qz2 to z1, resp. z2 in exactly
the same manner as before. On the other hand this process must obviously terminate after
at most k steps, where k is such that qk Im z1 > t , as after each step we get f ′(z1) = 0, which
is impossible if f is injective in some open neighbourhood of z1.

The argument above and the fact that we can always add an integer to z1 allows us to
assume that f (qz2) = f (z1/q). Since f ′ is not identically zero, there are only finitely many
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points in the set S of all 1/q ≤ α ≤ 1, for which there exists z such that f ′(z) = 0 and
Im z = Imαz1. Let k be a positive integer. Consider the pair of points z1/q and qz2, by (4.2)
we know that f ′(z1/q) = 0. Also f ′(qz2) 6= 0 and f (z1/q) = f (qz2) hence all the original
conditions are satisfied for the pair (z1/q, qz2). This means that one of the two equalities
above (with z1/q instead of z1 and qz2 instead of z2) is true. If it is the first one, then
f (q2z2) = f (z1) = f (z2), which is impossible. Adding some multiple of q to z1 if necessary
we obtain f (z1/q2) = f (q2z2). Repeating the above argument we get

f (z1) = f (z2),

f (z1/q) = f (qz2),

...

f (z1/q
k) = f (qkz2),

and f ′(z1) = f ′(z1/q) = · · · = f ′(z1/qk) = 0.

Finally note that for any qk−1 ≤ p ≤ qk, p ∈ I, the polynomial Fp

(
f (qkz2), y

)
has only

simple roots, as all of them lie in the domain where f is injective. Further, as Fp

(
f (qkz2), y

)
= Fp

(
f (z1/qk), y

)
and f ′(z1/qk) = 0, we obtain from (4.2) that f ′(pz1/qk) = 0. On the

other hand 1/q ≤ p/qk ≤ 1, so p/qk ∈ S (note that only the real part of z1 is ever
changed, so S is well-defined and independent of p). Since I is infinite and numbers p/qk

are different for different p ∈ I we get a contradiction.

Lemma 4.3 Let F(x, y) be a polynomial in two variables, and f (z), g(z) be analytic (say in
the upper half plane) functions of z. Then, for all k,

dk

dzk
F
(

f (z), g(z)
)
=
∂F

∂x
( f , g) f (k)(z) +

∂kF

∂yk
( f , g)

(
g ′(z)

)k

+
k−1∑
m=1

∂mF

∂ym
( f , g)Am,k +

k−1∑
m=1

f (m)(z)Bm,k,

(4.3)

where Am,k is a polynomial in g ′, g ′ ′, . . . , g(k), and Bm,k is a polynomial, in the derivatives of
f and g and partial derivatives of F.

Proof We prove (4.3) by induction. For k = 1 (4.3) is just the usual chain rule for deriva-
tive of the function with two parameters:

dF

dz
=
∂F

∂x
f ′ +
∂F

∂y
g ′.
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To carry out the induction step, assume (4.3) is true for k − 1 and differentiate with
respect to z each:

d

dz

(
∂F

∂x
f (k−1) +

∂k−1F

∂yk−1
(g ′)k−1 +

k−2∑
m=1

∂mF

∂ym
Am,k−1 +

k−2∑
m=1

f (m)Bm,k−1

)

=
∂F

∂x
f (k) + f (k−1)

(
∂2F

∂x2
f ′ +

∂2F

∂x∂y
g ′
)

+
∂k−1F

∂yk−1
(k− 1)g ′′(g ′)k−2

+
∂kF

∂x∂yk−1
f ′(g ′)k−1 +

∂kF

∂yk
(g ′)k +

k−2∑
m=1

∂mF

∂ym

d

dz
Am,k−1 +

k−2∑
m=1

∂m+1F

∂ym+1
g ′Am,k−1

+
k−2∑
m=1

∂m+1F

∂x∂ym
f ′Am,k−1 +

k−2∑
m=1

f (m+1)Bm,k−1 +
k−2∑
m=1

f (m) d

dz
Bm,k−1

=
∂F

∂x
f (k) +

∂kF

∂yk
(g ′)k +

k−1∑
m=1

∂mF

∂ym
Am,k +

k−1∑
m=1

f (m)Bm,k.

Lemma 4.4 Let f be as in Theorem 4.1. Assume that for two points z1 and z2 the following
is true:

(1) f (z1) = f (z2)
(2) f ′(z1) = f ′ ′(z1) = · · · = f (k)(z1) = 0
(3) f ′(z2) = f ′ ′(z2) = · · · = f (k−1)(z2) = 0.

Then f (k)(z2) = 0.

Proof Assume f (k)(z2) 6= 0. The proof is similar to the one of Lemma 4.2. The only
difference is that we use (4.3) instead of (4.2).

We start by proving that there exists a prime number p ∈ I such that f (pz2) is a root
of Fp

(
f (z2), y

)
of multiplicity at most k and f ′(pz2) 6= 0. Assume that such p does not

exist. Then for all large primes p ∈ I we have that f (pz2) is a root of Fp

(
f (z2), y

)
of

multiplicity at least k+1. Then (4.3) gives ∂Fp

∂x

(
f (z2), f (pz2)

)
f (k)(z2) = 0. We assumed that

f (k)(z2) 6= 0, so it follows that ∂Fp

∂x

(
f (z2), f (pz2)

)
= 0, and, because Fp(x, y) is symmetric,

f (z2) must be at least a double root of Fp

(
f (pz2), y

)
. The same argument as in the proof

of Lemma 4.2 shows that there exists 0 < r < p, such that f (z2) = f (z2 + r/p). Taking
larger and larger primes p ∈ I we obtain a contradiction.

Let us take a prime number p ∈ I as above, that is f (pz2) is a root of Fp

(
f (z2), y

)
of multiplicity at most k and f ′(pz2) 6= 0 (for the last condition to be fulfilled, one has
to take p large enough). Just in the same way as in the proof of Lemma 4.2 there exists
z3 ∈ {pz1, z1/p, . . . , (z1 + p − 1)/p} such that f (z3) = f (pz2). If f ′(z3) = 0, then
f ′(pz2) 6= 0 gives a contradiction with Lemma 4.2, so we can assume f ′(z3) 6= 0.

Let l(z) be the linear function, which reflects how z3 is obtained from z1 (for example if
z3 = (z1 + 4)/p, then l(z) = (z + 4)/p). Consider (4.3), when F = Fp, g(z) = f

(
l(z)
)

and
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f (z) is just our function. For k = 1 one gets

∂Fp

∂y

(
f (z1), g(z1)

)
g ′(z1) = 0,

but g ′(z1) = (non-zero const) · f ′(z1) 6= 0, hence ∂Fp

∂y

(
f (z1), f (z3)

)
= 0. For k = 2 (4.3)

yields
∂2Fp

∂y2

(
f (z1), g(z1)

)(
g ′(z1)

)2
+
∂Fp

∂y

(
f (z1), g(z1)

)
A1 = 0,

which allows us to conclude that
∂2F

∂y2

(
f (z1), g(z1)

)
= 0. Proceeding in the same manner

we obtain

∂Fp

∂y

(
f (z1), f (z3)

)
=
∂2F

∂y2

(
f (z1), f (z3)

)
= · · · =

∂kF

∂yk

(
f (z1), f (z3)

)
= 0,

which means that f (z3) is a root of multiplicity at least k+1 of the polynomial Fp

(
f (z1), y

)
.

But Fp

(
f (z1), y

)
= Fp

(
f (z2), y

)
and f (z3) = f (pz2), hence we obtain a contradiction

with the fact that p has been chosen so that f (pz2) has multiplicity at most k as a root of
Fp

(
f (z2), y

)
.

Finally we can prove the second main result of this paper.

Theorem 4.5 Let f be as above, and assume that f (z1) = f (z2) for some z1 and z2. Then
the derivatives of f vanish up to the same order at the points z1 and z2, and in particular there
exists the analytic bijection α between neighbourhoods of z1 and z2, such that α preserves f .

Proof The first statement follows immediately from the previous lemma.
To prove the second one let

(1) f (z1) = f (z2) = c;
(2) f ′(z1) = f ′ ′(z1) = · · · = f (k)(z1) = f ′(z2) = f ′′(z2) = · · · = f (k)(z2) = 0;
(3) f (k+1)(z1) 6= 0, f (k+1)(z2) 6= 0.

Then there exists analytic functions g1(z) and g2(z), such that

f (z) = c + g1(z)k+1 = c + g2(z)k+1,

where g1 and g2 are analytic bijections of an open neighbourhood of z1 resp. z2 (let us
denote it D1 resp. D2) onto an open neighbourhood of 0, which we denote D. That is
g1(z1) = g2(z2) = 0, but g ′1(z1), g ′2(z2) 6= 0. Let α(z) = g−1

2 ◦ g1(z). Then α is obviously an
analytic bijection of D1 onto D2. Finally, the following calculation shows that α preserves f :

f (αz) = c + g2(αz)k+1 = c + g2

(
g−1

2 ◦ g1(z)
)k+1
= c + g1(z)k+1 = f (z).
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