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Non-technical Summary

We present an overview of conservation paleobiology and the directions in which the field
could progress in the next 50 years to aid conservation. To do so, we use elasmobranchs
(sharks, rays, and skates), one of the mostly highly marine endangered groups today, as a
model. The perspectives we share are guided by current conservation priorities and recent
advances in elasmobranch paleobiology and are developed around four main topics. For
each topic, we outline knowledge gaps, discuss the potential of near- and deep-time records
to contribute relevant information, highlight examples, and suggest research directions.
Ultimately, we aim at focusing conservation paleobiology research agendas, encouraging col-
laborations across timescales, and distilling lessons that could be transferred to other threat-
ened but understudied taxa in conservation paleobiology.

Abstract

Humans have dramatically transformed ecosystems over the previous millennia and are
potentially causing a mass extinction event comparable to the others that shaped the history
of life. However, only a fraction of these impacts has been directly recorded, limiting conser-
vation actions. Conservation paleobiology leverages geohistorical records to offer a long-term
perspective on biodiversity change in the face of anthropogenic stressors. Nevertheless, the
field’s on-the-ground contributions to conservation outcomes are still developing. Here, we
present an overview of directions in which paleobiological research could progress to aid con-
servation in the coming decades using elasmobranchs (sharks, rays, and skates)—a highly
threatened group with a rich fossil record—as a model. These research directions are guided
by areas of overlap between an expert-led list of current elasmobranch conservation priorities
and available fossil and historical records. Four research topics emerged for which paleobio-
logical research could address open questions in elasmobranch science and conservation: (1)
baselines, (2) ecological roles, (3) threats, and (4) conservation priorities. Increasingly rich
datasets and novel analytical frameworks present exciting opportunities to apply the elasmo-
branch fossil record to conservation practice. A similar approach could be extended to other
clades. Given the synthetic nature of these research topics, we encourage collaboration across
timescales and with conservation practitioners to safeguard the future of our planet’s rapidly
disappearing species.

Introduction

Over the previous millennia, humans have dramatically transformed ecosystems and pushed
species to the edge of extinction (Vitousek et al. 1997; Richardson et al. 2023). These anthro-
pogenic impacts have accelerated since the 1950s (Steffen et al. 2015) and have potentially trig-
gered a sixth mass extinction event comparable in magnitude to the other five that shaped the
history of life (Barnosky et al. 2011; Dirzo et al. 2014; Ceballos et al. 2015). Change has pro-
gressed over different timescales on land and in the ocean, with marine impacts beginning
more recently, so we sit at a critical moment where recoveries remain within reach
(McCauley et al. 2015). Because resources are finite, decision makers must prioritize what
and where to protect as well as which benchmarks to use when tracking progress toward con-
servation goals. Information about natural ecosystem states and vulnerabilities can help guide
these decisions. However, human impacts often preceded the instrumental records and biolog-
ical monitoring programs used to collect this information, shifting the reference points used
for conservation (Pauly 1995; Jackson 2001).

The geological record captures a long-term view of environmental change that can inform
conservation and inspire action. Geohistorical records (e.g., fossil records, sediment cores, tree
rings, and archaeological middens) extend our understanding of ecosystem trajectories beyond
the time frame of direct human observation (National Research Council 2005). They are
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commonly divided into near time (last 2.58 Myr, known as the
Quaternary Period) and deep time (older than 2.58 Myr), which
vary in scale, resolution, and completeness, and reflect different
eco-evolutionary processes (Dietl and Flessa 2011; Fig. 1).
Collectively, geohistorical records can be used to reconstruct
natural variability before human disturbance (Willis and Birks
2006; Keane et al. 2009; O’Dea et al. 2020; Fig. 1C–G), document
the patterns and drivers of biotic change over millennia to mil-
lions of years (Jablonski and Sepkoski 1996; Jackson and Blois
2015; Duda et al. 2020; Fig. 1A–G), estimate extinction risk
(Harnik et al. 2012; Finnegan et al. 2015; Collins et al. 2018;
Fig. 1B), and anticipate species’ responses to future climatic con-
ditions that have yet to be observed in the instrumental record
(Davis 1989; Willis et al. 2010; Fordham et al. 2020; Fig. 1A).
The potential for geohistorical records to tackle conservation
challenges has accrued over decades (e.g., Martin and Wright
1967; Graham 1988; Smol 1992; Birks 1996; Swetnam et al.
1999; Jackson et al. 2001), setting the stage for conservation
paleobiology to emerge as a named subfield in 2002 (Flessa
2002).

Conservation paleobiology aims to apply geohistorical records
to the conservation, management, and restoration of biodiversity
and ecosystem services (Dietl and Flessa 2011; Dietl et al. 2015).
It integrates information from a variety of related disciplines,
such as archaeology, paleoecology, historical ecology, and conser-
vation biology (Louys 2012; Barnosky et al. 2017; Dillon et al.
2022b), and it has benefited from recent advances in paleontolog-
ical and analytical methods (Dillon et al. 2023; Tomašových
et al. 2023) as well as interdisciplinary collaborations (e.g.,
Conservation Paleobiology Network, https://conservationpaleorcn.
org). Over the last two decades, conservation paleobiology has
attracted a growing research community interested in leveraging
geohistorical records to help address the climate and biodiversity
crises (Dillon et al. 2022b). Examples of conservation paleobiology
research in action are mounting: geohistorical records have sup-
ported caribou management in Alaska (Miller et al. 2021, 2023;
Fig. 1C), forest restoration on Kaua‘i (Burney et al. 2001;
Fig. 1D), traditional clam gardening practices in British
Columbia (Toniello et al. 2019; Fig. 1E), coral outplanting in
Hong Kong (Cybulski et al. 2020; Fig. 1F), and freshwater flow

Figure 1. Examples of conservation paleobiology in action. Conservation paleobiology uses a variety of near-time (blue; last 2.58 Myr) and deep-time (yellow; older
than 2.58 Myr) geohistorical records to extend the temporal span of direct observations (green; ca. last century). The application of deep-time geohistorical records
to conservation practice remains unrealized, although it has promise: A, insect herbivory increased in North America during the Paleocene–Eocene thermal max-
imum (rapid global warming ca. 56 Ma), offering an analogue for how future warming might precipitate heightened insect damage to plants (Labandeira and
Currano 2013); B, morphological traits of fossil Caribbean corals during the Plio-Pleistocene were used to predict the extinction risk of extant corals and validate
their conservation status (Raja et al. 2021). Examples of conservation paleobiology studies resulting in tangible conservation outcomes are accumulating: C, car-
ibou antlers exposed on landscapes dating back decades to millennia have supported spatial management plans (Miller et al. 2021, 2023); D, excavations from
Makauwahi Cave Reserve on Kaua‘i have informed forest restoration and the introduction of giant tortoises to fill lost ecological roles (Burney et al. 2001); E, inter-
tidal death assemblages, archaeological shell middens, and modern clams have guided Indigenous-led ecosystem restoration goals and traditional clam gardening
practices in the Salish Sea of British Columbia, Canada (Toniello et al. 2019); F, Holocene-age coral subfossils defined spatially explicit historical baselines for coral
outplanting in Hong Kong (Cybulski et al. 2020); G, estimates of pre-alteration (before 1900 CE) hydrology reconstructed from pollen and mollusks were used to set
salinity targets in the Florida Bay and manage freshwater flow through the Greater Everglades ecosystem (Marshall et al. 2014; Wingard et al. 2017). Illustrations by
Ian Cooke Tapia (Cooked Illustrations).
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restoration in the Florida Everglades (Marshall et al. 2014; Wingard
et al. 2017; Fig. 1G). These case studies have begun to instill opti-
mism in the field’s ability to “put the dead to work” (Dietl and
Flessa 2011) and provide a framework for others to follow (Groff
et al. 2023).

However, most geohistorical records do not influence conser-
vation decisions. A review of the conservation paleobiology liter-
ature found that only ∼10% of research resulted in tangible
conservation outcomes, with all successful examples using near-
time records of extant species (Groff et al. 2023). Although not
all conservation paleobiology research needs to have direct real-
world impacts, the field is still grappling with the research–imple-
mentation “gap” as it comes to terms with how applied it is, and
should be, in practice (Boyer et al. 2017; Kelley et al. 2018;
Savarese 2018; Dillon et al. 2022b). Implementation is, in part,
impeded by disconnects between research and conservation prior-
ities, such as when researchers collect data without first targeting a
relevant conservation need or defining project goals with practi-
tioners (Knight et al. 2008; Beier et al. 2017; Toomey et al.
2017). For example, conservation paleobiology research focuses
on a few taxonomic groups, such that many taxa are underrepre-
sented relative to their extinction risk (Dillon et al. 2022b). If con-
servation paleobiology aspires to increase its salience in
conservation, reframing research agendas and collaborating with
practitioners could bring the field closer to generating actionable
science that is aligned with conservation needs.

One taxonomic group that has received little attention in con-
servation paleobiology research is marine vertebrates—in particu-
lar, the most threatened marine vertebrate group today:
elasmobranchs (sharks, rays, and skates) (Dulvy et al. 2021;

Dillon et al. 2022b; Sherman et al. 2023; Fig. 1). Elasmobranchs
are found throughout all major marine (as well as some brackish
and freshwater) ecosystems, where they play important ecological
roles such as structuring food webs as upper trophic level con-
sumers (Ferretti et al. 2010; Hammerschlag et al. 2019; Flowers
et al. 2021; Heithaus et al. 2022; Fig. 2A). Elasmobranchs are
also economically beneficial for ecotourism (Gallagher and
Hammerschlag 2011; Cisneros-Montemayor et al. 2013), contrib-
ute to food security (Glaus et al. 2019), and have cultural signifi-
cance (de Borhegyi 1961; Skubel et al. 2019; Fig. 2B). However,
elasmobranchs are threatened by overfishing (Dulvy et al. 2021;
Fig. 2C), which has drastically reduced their populations in the
last decades (e.g., Pacoureau et al. 2021). If elasmobranch species
go extinct, not only would biodiversity be lost but also millions of
years of evolutionary history and ecological functions that could
not be replaced (Stein et al. 2018; Pimiento et al. 2020, 2023).
Despite how important they are to protect (Fig. 2D), elasmo-
branchs have only recently entered policy agendas (Dulvy et al.
2008, 2017; Fordham et al. 2022), so effective management is hin-
dered by a lack of information about their biology, ecology, and
conservation status (Jorgensen et al. 2022).

The elasmobranch fossil record is often overlooked when
addressing these knowledge gaps. There has been a dwindling
presence of paleobiological work at relevant biology conferences
(Shiffman et al. 2020) and little buy-in for including geohistorical
records in elasmobranch conservation assessments (McClenachan
et al. 2012; Engelhard et al. 2016). Paleobiology has a lot to con-
tribute to these conversations. First, elasmobranchs have a rich
fossil record, with their teeth being the most abundant vertebrate
fossil (Maisey 1984; Cappetta 2012). This is because their teeth

Figure 2. The potential of the elasmobranch fossil record to inform conservation. A, Elasmobranchs structure food webs, with their elimination potentially result-
ing in cascading effects (Heithaus et al. 2022). B, They are socioeconomically important, as they drive tourism (Cisneros-Montemayor et al. 2013) and are a source
of protein for artisanal fishers (Glaus et al. 2019). They also hold cultural significance, as evidenced by archaeological artifacts and motifs found in Central America,
among other regions (de Borhegyi 1961). C, Overfishing is the primary threat to elasmobranch populations (Dulvy et al. 2021). Given the antiquity of fishing, most
systematic monitoring studies are predicated on a shifted baseline, so a long-term perspective is needed to reconstruct natural variation in elasmobranch com-
munities. D, Elasmobranchs are the most threatened marine vertebrate group today (Dulvy et al. 2021) and need protection. E, Elasmobranchs have a rich fossil
record because their teeth and dermal denticles are shed continuously and are composed of hard materials that easily fossilize. F, Modern elasmobranchs have a
long evolutionary history, with extant taxa being well represented in the fossil record (Paillard et al. 2021). G, Fossil elasmobranch teeth can often be identified to
the species level, and their morphological traits enable ecological inferences (Cooper et al. 2023). H, The elasmobranch fossil record is well documented in the
paleontological literature. Illustrations by Ian Cooke Tapia (Cooked Illustrations).
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(and dermal denticles) are shed continuously and are composed
of hard materials that easily fossilize (Fig. 2E). Second, the fossil
record of modern elasmobranchs and their extinct relatives
(Neoselachii) is geologically extensive, dating back to the
Triassic (250 Ma; Maisey et al. 2004; Cappetta 2012; Fig. 2F).
Importantly, many extant taxa are represented in the fossil record,
including all orders, 88% of families, 75% of genera, and 10% of
modern species (Pimiento and Benton 2020; Paillard et al. 2021).
Third, elasmobranch fossils provide valuable biological informa-
tion (Naylor and Marcus 1994; Cooper et al. 2023; Fig. 2G).
Fourth, they are well-documented in the scientific literature,
with around 17,000 occurrences in the Paleobiology Database
(Fig. 2H). Finally, iconic specimens such as Otodus megalodon
teeth capture the public’s imagination and tell stories about
ancient animals (Clements et al. 2022). Elasmobranchs therefore
represent a ripe opportunity to incorporate geohistorical records
into conservation practice (Fig. 2).

Here, we use the elasmobranch fossil record as an example to
present research directions in which conservation paleobiology
could progress to aid conservation in the coming decades. We
share our perspectives as conservation paleobiologists working
on elasmobranchs in the near- and deep-time fossil record. To
frame our perspectives, we assessed the intersection between an

expert-led list of current elasmobranch conservation priorities
(Jorgensen et al. 2022) and available fossil and historical records
(Table 1, Supplementary Material). Four broad topics emerged
for which paleobiological research could address knowledge
gaps in elasmobranch science and conservation: (1) baselines,
(2) ecological roles, (3) threats, and (4) conservation priorities
(referred to hereafter as Topics 1–4) (Fig. 3). We pose each as a
question, discuss the potential of near- and deep-time records
to contribute relevant information, and suggest how they could
become more actionable. Our intent is to focus conservation
paleobiology research agendas, encourage collaboration across
timescales to inform elasmobranch conservation, and distill les-
sons that could be transferred to other threatened but understud-
ied taxa in conservation paleobiology.

Topic 1: What Were Baseline Elasmobranch Abundances
before and alongside Human Impacts?

Elasmobranch populations are severely depleted across many eco-
systems today (MacNeil et al. 2020; Pacoureau et al. 2021;
Simpfendorfer et al. 2023). Yet systematic monitoring has only
captured the recent history of elasmobranch exploitation, so his-
torical baselines preceding human impacts are scarce (Jackson

Table 1. The potential of near- and deep-time geohistorical records to address priority questions in elasmobranch conservation identified by Jorgensen et al.
(2022). Three circles indicate a major contribution (e.g., relevant data are available and directly applicable); two circles indicate a minor contribution (e.g.,
some relevant data exist, but their application is less tangible or hindered by biases and/or mismatches in resolution); one circle indicates minimal
contribution (e.g., few relevant data exist, but they could hypothetically contribute); and an empty cell indicates that no viable contribution is envisioned (e.g.,
no relevant data are available or the question is out of scope). A circle with a dotted outline indicates that the question could be reframed to incorporate
geohistorical data but is not applicable as written. The bold numbers correspond to headings within the article (Topics 1–4) where examples are presented.
See the Supplementary Material for the rationale behind each assessment.
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1997; Jackson et al. 2001). These baselines define ranges of natural
variability that provide benchmarks to measure the timing, mag-
nitude, and drivers of ecological change over human timescales

(Willis and Birks 2006; Lotze and Worm 2009; Fig. 1C–G).
Without accurate baselines, our understanding of elasmobranch
ecology and conservation status can become skewed, leading to

Figure 3. The elasmobranch fossil record offers a model to align conservation paleobiology research agendas with conservation. Research topics for which near-
and deep-time geohistorical records have potential to address knowledge gaps in elasmobranch science and conservation include: (1) baselines, (2) ecological
roles, (3) threats, and (4) conservation priorities. IUCN, International Union for Conservation of Nature.
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unrealistic or unambitious conservation targets (Lotze and Worm
2009; McClenachan et al. 2012).

Elasmobranch biologists recognize the value of baselines
(Heupel et al. 2019; Jorgensen et al. 2022; Table 1) and have
employed creative approximations to compensate for the lack of
historical data. Elasmobranch baselines have been inferred using
space-for-time comparisons on remote islands (Sandin et al.
2008; Bradley et al. 2017), population models (Ferretti et al.
2018), model-estimated regional averages (MacNeil et al. 2020;
Simpfendorfer et al. 2023), and predictions based on environmen-
tal variables like primary productivity (Nadon et al. 2012; Valdivia
et al. 2017; Fig. 4A). Available time-series data have also been col-
lated in databases (e.g., Mull et al. 2022). Collectively, these stud-
ies have mapped spatial variation in modern elasmobranch
abundance to quantify depletion and understand the ecology of
less disturbed systems.

However, relying on modern survey data alone to shape expec-
tations of elasmobranch baselines might be misleading given the
ubiquity of human activities, which can overwrite the environ-
mental drivers of elasmobranch abundance (MacNeil et al.
2020; Clementi et al. 2021). Discrepancies also exist across survey
methods, because elasmobranchs are challenging to count
(McCauley et al. 2012a). Geohistorical records can therefore com-
plement ecological and fisheries surveys to track long-term popu-
lation change. In deep time, fossils track the rise of modern
ecosystem structure, whereas near-time records reconstruct his-
torical variability over shorter time periods to contextualize mod-
ern elasmobranch communities (Fig. 3).

Over millions of years, fossils chronicle how elasmobranch
abundances have shifted alongside their prey base, marking tran-
sitions between ecosystem states (Fig. 3). Relating these biological
changes to major events in Earth’s history can, in turn, evidence
the environmental, climatic, and ecological factors that have
shaped the emergence of ecosystems that we study and manage
today (see Topics 3 and 4). For example, Sibert et al. (2016)
used fossil dermal denticles and fish teeth accumulating in deep-
sea sediment cores to demonstrate that open-ocean ecosystems
have been restructured multiple times over the last 85 Myr.
Importantly, they observed a geologically abrupt disappearance
of elasmobranchs at 19 Ma, which might offer insight into the
eco-evolutionary implications of recent declines (Sibert and
Rubin 2021). Baseline carrying capacities of elasmobranchs
today are the legacy of these past events, underscoring the value
of measuring variability in deep time.

The near-time fossil record, alongside archaeological and his-
torical records, can extend biological monitoring back in time to
reconstruct elasmobranch baselines throughout human history
and before extensive human impact (Fig. 3). For example, fossil
dermal denticles accumulating in coral reef sediments have been
used as a proxy for relative shark abundance to reconstruct pre-
exploitation baselines and millennial-scale change along
Panama’s Caribbean coast (Dillon et al. 2021; Fig. 4A). When
compared with monitoring data (Chevis and Graham 2022),
these fossil assemblages suggest that the current dominance of
demersal species like nurse sharks (Ginglymostoma cirratum)
deviates from the historical state of shark communities in the
area (Fig. 4B). Likewise, archaeological records (Fossile et al.
2023) and cultural artifacts (Drew et al. 2013) have revealed shifts
in shark community composition through the lens of harvesting
as well as demonstrated their socioeconomic significance as a
food resource and cultural symbol (López de la Lama et al.
2021). Over more recent timescales, historical records—including

photographs, archival landings data, and local ecological
knowledge—have documented elasmobranch population vulnera-
bility and trajectories before industrial fishing (e.g., Ferretti et al.

Figure 4. Geohistorical and historical data can contextualize the extent of ongoing
elasmobranch declines. A, Elasmobranch population trends are estimated using a
variety of methods, including fisheries and monitoring data, historical and archaeo-
logical records, and near-time fossil records. A collection of available data from the
Atlantic Ocean, including the Caribbean Sea—a region in which dramatic declines in
shark abundance in the late twentieth century portended their dire conservation sta-
tus—are compared here. These include: (1) the Living Planet Index calculated from
abundance time-series data for 14 oceanic shark and ray species (Pacoureau et al.
2021); (2) a comparison of longline fisheries catch rates for four oceanic shark species
in the Gulf of Mexico from the 1950s and 1990s (Baum and Myers 2004); (3) relative
abundances of two resident shark species on Caribbean reefs recorded from Baited
Remote Underwater Video Stations (BRUVS) compared with a model-predicted
regional baseline (Simpfendorfer et al. 2023); (4) perceived abundances of sharks
inferred from archaeological, historical, ecological, and fisheries records in
Caribbean Panama (Dillon et al. 2021); and 5) a comparison of shark dermal denticle
accumulations from mid-Holocene and modern reefs in Caribbean Panama and the
Dominican Republic (Dillon et al. 2021). These methods have different biases and
temporal spans, with fishing impacts preceding most observational records.
Baselines are either inferred from time-series data (1) or historical observations (2
and 4) when available, predicted using a model where all parameters are set
those expected with no human impacts (3), or measured from fossil accumulations
before major human impact (5). Each method reports large declines ranging from
46% to 79%, with some of the higher estimates produced when the baseline is
extended farther back in time (although note that the data span multiple species
and areas). B, In Caribbean Panama, BRUVS deployed from 2016 to 2019 overwhelm-
ingly recorded nurse sharks (Ginglymostoma cirratum), a demersal reef-associated
species (upper green bar; Chevis and Graham 2022). Dermal denticle accumulations
sampled from modern (middle blue bar) and mid-Holocene (lower blue bar) reefs in
the same area suggest that the current dominance of nurse sharks likely does not
reflect the historical state of shark communities (Dillon et al. 2021). The shading indi-
cates the relative abundances of pelagic (light), demersal (darker), and other (dark-
est) sharks in each record. Illustrations by Ashley Diedenhofen.
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2008; McClenachan 2009; Bom et al. 2020; Martínez-Candelas
et al. 2020; Herbst et al. 2023). These examples demonstrate
how historical elasmobranch baselines can be pieced together
using a variety of methods to fill an established knowledge gap.
However, this information is not yet commonly applied in elas-
mobranch conservation.

What makes a baseline actionable? We see at least three ave-
nues for increasing the salience of historical baselines in elasmo-
branch conservation. First, because baselines vary with
environmental context (Valdivia et al. 2017), geohistorical records
could be collected from additional regions, habitats, and time
points to inform local conservation targets and model the bio-
physical drivers of natural variability. Additionally, elasmobranch
populations could be reconstructed during cultural periods with
different fishing intensities or management strategies to track
their responses to human activities over millennia (see Topic 3).
This work is being facilitated by the development of new methods,
such as lab protocols to access lesser-known dermal denticle
records (Dillon et al. 2017; Sibert et al. 2017), machine learning
to classify fossil material (Mimura et al. 2023), paleoecological
time-series analyses (Simpson 2018; Mottl et al. 2020), and
time-series databases (Smith et al. 2023). As data accumulate, a
next step could include developing data synthesis workflows
akin to those for other fossil assemblages (e.g., fossil pollen;
Flantua et al. 2023).

Second, baselines derived from geohistorical records could be
reported using formats compatible with modern data to create a
common currency for translating changes in elasmobranch pop-
ulations across timescales. For example, Rodrigues et al. (2019)
proposed a framework for comparing modern species’ abun-
dances to historical reference points to quantify long-term
human impacts. Their classification system consisted of categories
defined by percentage change intervals relative to a baseline
before major human impact, enabling standardized comparisons
despite patchy data. To deal with uncertainty when mobilizing
diverse datasets, they specified the likelihood of each category
and provided conservative estimates of the magnitude of change
(Rodrigues et al. 2019). Communicating uncertainty around base-
line estimates is critical to build trust in the methods, clarify their
biases, and propagate the effects of that uncertainty into down-
stream conservation decisions (Dietl 2019; Cooke et al. 2020;
White et al. 2023).

Series of paleobiological data measured in the same units are
more readily compared. The magnitude of change from a base-
line could be calculated as a percentage or effect size along with
confidence intervals, sample ages and chronological uncer-
tainty, and either sensitivity analyses or models that account
for the loss of skeletal material through taphonomic and depo-
sitional processes (e.g., Tomašových and Kidwell 2017; Kiessling
et al. 2023; Tomašových et al. 2023). For example, Dillon et al.
(2021) compared both absolute and relative dermal denticle
abundances across time points and sampling locations to char-
acterize elasmobranch community change. Denticle accumula-
tions can also be compared with contemporaneous records
(e.g., fish teeth or otoliths) after accounting for differences in
taphonomy and production rates (Sibert et al. 2016, 2017).
Converting denticle accumulations into absolute shark densities
poses a greater challenge, as denticle abundances are affected by
depositional, taphonomic, and biological processes. At a mini-
mum, information about denticle densities and shedding
rates, shark body sizes, sedimentation rates, and taphonomic
alteration would be needed to produce such estimates (Sibert

et al. 2017; Dillon et al. 2021, 2022a). In the absence of this
information, ground-truthing studies have attempted to corre-
late elasmobranch fossil accumulations (e.g., dermal denticles)
with modern surveys (e.g., shark densities) in wild (Dillon
et al. 2020) and aquarium (Dillon et al. 2022a) settings to eval-
uate their ecological fidelity.

Finally, baselines should be framed in terms of conservation
needs. This process begins with investing in partnerships with
conservation practitioners to ensure that the end goal, users,
and timeline of a conservation need inform data collection strat-
egies (Beier et al. 2017; Cooke et al. 2020; Dietl et al. 2023). When
building collaborations, partners could discuss how a baseline is
selected and what success might look like in relation to that base-
line (Campbell et al. 2009; Redford et al. 2011; MacKeracher et al.
2019; Cooke et al. 2020), consider the interplay between baselines
and human cultural practices (Simpfendorfer et al. 2021; Hoel
et al. 2022), and design multiple anticipatory recovery goals that
situate a baseline in its current sociopolitical context (Dietl
2019; Ingeman et al. 2019). These conversations are important
given the ecological and political challenges of recovering large
predators (Marshall et al. 2016; Stier et al. 2016; Ingeman et al.
2022) and the potential for human–wildlife conflict if recovery
is successful (Carlson et al. 2019). In addition to sourcing research
questions from practitioners, historical baselines could help itera-
tively shape elasmobranch conservation priorities by flagging
populations that are either vulnerable or have high recovery
potential (see Topic 4). Baselines might also uncover elasmo-
branch populations that have resisted decline, thus creating
opportunities to learn from these “bright spots” (Lotze et al.
2011; O’Dea et al. 2017; Ingeman et al. 2022). In sum, geohistor-
ical records offer an exciting research avenue to contextualize
recent elasmobranch population change and retroactively fill
monitoring gaps, especially when integrated with modern datasets
in conservation assessments.

Topic 2: What Ecological Roles Do Elasmobranchs Play?

When organisms are lost from an ecosystem—either through
population declines, extirpations, or extinctions—their ecological
functions can also be lost. Conservation efforts have traditionally
focused on species diversity, but there is a growing interest in pre-
serving species’ contributions to ecosystem processes (Soulé et al.
2003; Sanderson 2006; Akçakaya et al. 2020). One way to measure
these contributions is through species’ ecological traits, such as
body size, diet, and mobility (Petchey and Gaston 2002; Villéger
et al. 2008; Gagic et al. 2015). Ecological traits reflect how energy
or other resources are assimilated and moved across ecosystems
(Done et al. 1996; Bellwood et al. 2019). These traits, in turn, con-
stitute the functional diversity of a community or assemblage,
apart from its taxonomic composition. Functional diversity has
been measured in both modern and fossil assemblages to quantify
their responses to disturbances (Mouillot et al. 2013), identify
functions that disappear or emerge when species’ configurations
shift (Graham et al. 2014; Pimiento et al. 2017; Bellwood et al.
2019; Fig. 1D), and predict future ecosystem states using traits
as proxies (Streit and Bellwood 2022).

Elasmobranchs are at greater risk of losing functional diversity
than any other marine megafauna group under simulated extinc-
tion scenarios, likely as a result of their threatened status and
because species with extreme trait combinations are selectively
fished (Pimiento et al. 2020). Indeed, sharks are already thought
to be “functionally extinct” in some areas where their numbers
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are too low to maintain their ecological functions (Jackson et al.
2001; MacNeil et al. 2020). However, the ecological consequences
of elasmobranch declines are still being unraveled (Stevens 2000;
Heithaus et al. 2008, 2022; Ferretti et al. 2010; Roff et al. 2016),
and their functional diversity is often overlooked in current con-
servation priorities (Pimiento et al. 2023).

These knowledge gaps arise because we are still learning about
elasmobranchs’ ecological roles as they are concurrently being
eliminated or modified by human activities (Table 1). For exam-
ple, we know that great sharks (i.e., large apex predators) structure
food webs through direct predation (Ferretti et al. 2010; Heupel
et al. 2014; Fig. 2A). However, whether these top-down effects
cascade to lower trophic levels is still debated, particularly in com-
plex ecosystems like coral reefs (Bascompte et al. 2005; Estes et al.
2011; Frisch et al. 2016; Roff et al. 2016; Casey et al. 2017;
Desbiens et al. 2021). Because historical overfishing depleted
large apex sharks (Jackson et al. 2001), it is unclear whether the
lack of robust evidence stems from food web properties (e.g.,
omnivory, functional redundancy, or diffuse predation), buffering
by bottom-up processes (e.g., environmental variation controlling
prey availability), or potential confounds (e.g., simultaneous fish-
ing of predators and prey), or alternatively, whether trophic cas-
cades occurred before biological monitoring (Roff et al. 2016).
Modern ecological studies are typically limited to testing these
hypotheses after apex predators have already been removed
from food webs, and they sometimes arrive at different conclu-
sions (Heithaus et al. 2022).

Elasmobranchs are more than just predators. They alter prey
behavior (Heithaus et al. 2008; Sherman et al. 2020), compete
with or create feeding opportunities for other species
(Papastamatiou et al. 2006; Oliver et al. 2011), energetically con-
nect resource pools across habitats (McCauley et al. 2012b), trans-
port nutrients (Williams et al. 2018), and are prey themselves
(Ford et al. 2011; Mourier et al. 2013). These lesser-studied func-
tions are presumed to promote ecosystem health, yet the mecha-
nistic linkages remain untested or are similarly predicated on a
shifted baseline (Roff et al. 2016; Jorgensen et al. 2022).

For each of these cases, recent methodological developments
have improved our ability to extract relevant ecological informa-
tion from the elasmobranch fossil record. We discuss three
approaches here: (1) traits inferred from morphology, (2) biome-
chanical reconstructions, and (3) geochemistry. These approaches
can be used in conjunction with occurrence data to reconstruct
elasmobranchs’ ecological roles, biotic interactions, and func-
tional diversity in both near and deep time. Near-time studies typ-
ically apply these methods to detect the ecological consequences
of elasmobranch population change following fishing, whereas
deep-time studies aim to infer the trophic ecology of extinct spe-
cies and assess how disturbances like past extinction events alter
food web structure and functional diversity (Fig. 3).

Traits Inferred from Morphology

Some ecological traits can be inferred from shark tooth morphol-
ogy (e.g., body size, prey preference, and feeding mechanism;
Fig. 2G), although the associations between tooth measurements
and functional traits are not always one to one (Frazzetta 1988;
Ciampaglio et al. 2005; Cooper et al. 2023). Because shark teeth
can be identified to species (Naylor and Marcus 1994; Cappetta
2012; Paillard et al. 2021), biological processes related to these
traits can be explored over microevolutionary scales. Shark dermal
denticles also encode biological information (e.g., body size,

mobility, position in the water column, schooling behavior, and
bioluminescence), although they are less taxonomically resolved
than teeth (Reif 1985; Raschi and Tabit 1992; Dillon et al. 2017;
Ferrón and Botella 2017; Ferrón and Palacios-Abella 2022).
Additionally, elasmobranch vertebral rings preserve life-history
traits such as growth rates and age (Daiber 1960; Shimada
2008). Together, these traits reflect functional ecology, as they
relate to how species use resources (Tavares et al. 2019). For
example, analyses of fossil shark tooth morphology across the
Cretaceous/Paleogene (K/Pg) mass extinction documented a
reduction in the body size and ecological diversity of
Lamniformes (Belben et al. 2017) and a proliferation of similar
tooth morphologies within Carcharhiniformes (Bazzi et al.
2018), suggesting morphological turnover. Other studies use traits
to constrain inferences from food web networks. A. Shipley et al.
(2023) incorporated traits into a metacommunity web to model
how trophic dynamics shifted after Otodus megalodon went
extinct at the end of the Pliocene, foreshadowing the potential
ecological consequences of losing extant apex predators like
white sharks (Carcharodon carcharias). Beyond measuring indi-
vidual traits, shark teeth and dermal denticles can be ascribed
to functional groups based on their morphologies, which corre-
spond with ecological life modes (Reif 1985; Cappetta 1986;
Dillon et al. 2017; Ferrón and Botella 2017) and can be used to
infer the ecological structure of shark communities (Dillon
et al. 2021; Fig. 4B).

Biomechanical Reconstructions

When interpreting traits based on morphology, it is important to
establish the relationship between each trait and its ecological
function (Streit and Bellwood 2022; Brown et al. 2023). One
way to test hypothesized relationships between form and function
is through biomechanical reconstructions. Much of this work for
elasmobranchs has focused on locomotion and feeding kinemat-
ics (Motta and Wilga 2001; Dean and Bhushan 2010). Dermal
denticles’ hydrodynamic properties have been experimentally
tested using pieces of shark skin (Oeffner and Lauder 2012;
Afroz et al. 2016), 3D printed biomimetic foils (Wen et al.
2014; Lauder et al. 2016; Domel et al. 2018), or simplified replicas
(Bechert et al. 2000; Lang et al. 2008). Computational fluid
dynamics models have also been applied to simulate water flow
over denticles (Díez et al. 2015). These biomechanical studies sup-
port the placement of denticles into functional groups. In con-
trast, biomechanical tests of shark tooth performance show that
some tooth morphotypes used to infer diet are hazy
(Whitenack and Motta 2010; Corn et al. 2016; Ballell and
Ferrón 2021), motivating reassessments of their value as ecologi-
cal proxies to determine which tooth measurements are most
informative (Cooper et al. 2023). Collectively, this work has
refined our understanding of the functional significance of
shark tooth and dermal denticle morphology, allowing insights
to be extended back in time. Additional promise lies in applying
these methods to fossil morphologies that lack extant analogues.

Geochemistry

Geochemical approaches such as stable isotope analysis augment
what we can learn from fossil morphology. Notably, they have
revolutionized studies of elasmobranch diet and habitat use
(Vennemann et al. 2001; Boecklen et al. 2011; Hussey et al.
2012; Kim and Koch 2012). Elasmobranch diet in the fossil record
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was traditionally deduced from either tooth morphology (e.g.,
Cappetta 1986) or from infrequent bite marks, coprolites, or pre-
served stomach contents (e.g., Aguilera and de Aguilera 2004;
Benites-Palomino et al. 2022). Minute signatures of enameloid-
bound nitrogen isotopes (δ15N) can now be measured in fossil
shark teeth using the oxidation–denitrifer method (Kast et al.
2022), which has begun to reveal the diet, trophic position, and
energetic requirements of ancient sharks. In parallel, bulk nitro-
gen (δ15N) and carbon (δ13C) isotopes have been extracted
from collagen in teeth sampled from living sharks (Polo-Silva
et al. 2012; O. N. Shipley et al. 2021, 2023) and zooarchaeological
remains (Burg Mayer and de Freitas 2023) to document resource
use and connectivity—highlighting conceptual overlap across
timescales. Other promising trophic indicators include zinc iso-
topes (δ66Zn; McCormack et al. 2022, 2023) and calcium isotopes
(δ44/42Ca; Martin et al. 2015; Assemat et al. 2022). Nitrogen and
zinc isotope analyses have provided new insights into the trophic
evolution of apex predators, suggesting that large Cenozoic mega-
tooth sharks (genus Otodus) reached higher trophic positions
than any extant marine species (Kast et al. 2022) and/or poten-
tially competed for resources with C. carcharias (McCormack
et al. 2022). Additionally, stable isotopes can trace elasmobranch
movement across isotopically distinct waterbodies (i.e., δ18O and
87Sr/86Sr; Fischer et al. 2013). As these isotope systems are applied
to ever-smaller fossils with increasing precision, it could be fruit-
ful to characterize trophic niches using multiple complementary
isotopes (Cybulski et al. 2022; Lüdecke et al. 2022) and to track
changes in trophic niches across disturbance events.

How can we better leverage ecological data preserved in the
elasmobranch fossil record to anticipate and manage their future
functional ecology? As we have shown, ecological traits convey
information about ecosystem functioning that can be translated
across timescales (Fig. 3). Consequently, opportunity lies in com-
bining fossil and modern trait datasets (Brown et al. 2023). One
path forward could be to develop a conceptual framework that
unites elasmobranch functional ecology through time. Such a
framework could establish best practices for data collection,
archiving in online trait databases, and reporting. To encourage
collaboration across potential users, this framework could be
codeveloped by paleobiologists, biologists, and conservationists
asking similar trait-based questions over varying temporal and
spatial scales. Ultimately, if conservation success is framed as
restoring functionally viable populations (Akçakaya et al. 2020),
then information about past ecosystem processes could play a
role in setting and measuring progress toward recovery goals.

Topic 3: How Do Elasmobranchs Respond to Stressors?

Understanding how species respond to threats is important for
guiding conservation strategies. Elasmobranchs provide a useful
case study for gleaning conservation lessons from a lineage’s
past failures and successes. Elasmobranchs and their relatives
have endured major extinction events and weathered episodes
of global cooling and warming in the geological past (Kriwet
et al. 2008; Whitenack et al. 2022), marking millions of years of
stability punctuated by pronounced change (Sibert et al. 2016).
Elasmobranchs now face a new threat. Over mere decades, over-
fishing has pushed their populations to the brink of collapse
(Ward and Myers 2005; Dulvy et al. 2021; Pacoureau et al.
2021), and its effects are compounded by habitat degradation,
pollution, and climate change (Dulvy et al. 2014; Sherman et al.
2023).

However, key questions remain about how these anthropo-
genic and environmental stressors affect elasmobranchs
(Table 1). We have more to learn about how climate change
will interact with other stressors to impact elasmobranch popula-
tions (Chin et al. 2010; Rummer et al. 2022), where to focus man-
agement efforts as their ranges shift (Dulvy et al. 2017; Tanaka
et al. 2021; Diaz-Carballido et al. 2022), and which species are
most sensitive (Jorgensen et al. 2022). Because elasmobranchs
are large and mobile, it is generally not feasible to manipulate
them in real time, hindering mechanistic insight into how stress-
ors control their populations. Instead, the fossil record spans a
range of scenarios that can be leveraged to study how elasmo-
branchs responded to combinations of stressors in the past and,
in turn, assess their susceptibility to future change. Because
threats to elasmobranch populations operate over different time-
scales, both near- and deep-time records are pertinent.

Geohistorical records spanning centuries to millennia demon-
strate elasmobranchs’ responses to long-term anthropogenic
stressors such as fishing and habitat loss. These records can
help evaluate the relative impacts of multiple human and nonhu-
man stressors and identify conservation actions with the biggest
potential to mitigate their effects (Fig. 3). For example, Dillon
et al. (2021) documented a 71% decline in shark dermal denticle
accumulation since the mid-Holocene in Caribbean Panama, sug-
gesting a significant drop in shark abundance (Fig. 4A; see Topic
1). To better understand the mechanisms, they examined differ-
ences in the amount of decline across denticle functional groups
and found that commercially valuable sharks were preferentially
affected, implicating fishing as the dominant cause (Fig. 4B).
Yet they also observed declines in sharks that are infrequently
fished, evidencing the additional contribution of indirect human
pressures such as habitat degradation (Dillon et al. 2021). Other
examples come from historical ecology, where studies have
aligned time series of elasmobranch abundance derived from
archival sources with putative stressors in locations such as
Hawai’i (Kittinger et al. 2011) and the Adriatic Sea (Fortibuoni
et al. 2010). By comparing the timing, direction, and magnitude
of ecological change with cultural events in each location, these
studies disentangled the relative contributions of different
human stressors (e.g., fishing vs. habitat degradation vs. climate
change) and often showed a progression of impacts starting
with historical small-scale harvesting (a pattern documented
more broadly by Jackson et al. [2001], Pandolfi et al. [2003],
and Lotze et al. [2006]). Additional insight could be gained
from pairing these studies with modern surveys to sharpen their
temporal resolution given the fast pace of elasmobranch popula-
tion declines and conservation action.

Deep-time geohistorical records are well suited to addressing
elasmobranchs’ responses to climate change. Over millions of
years, the fossil record offers valuable parallels for future projected
environmental conditions that have not yet been experienced in
human history (Fig. 3). Earth is heading toward a climate similar
to the Paleocene–Eocene thermal maximum (56 Ma) (Burke et al.
2018; Fig. 1A) and an extinction crisis not seen since the K/Pg
mass extinction (66 Ma) (Barnosky et al. 2011; Ceballos et al.
2015). Although these protracted time frames might appear jux-
taposed with conservation’s forward-facing gaze (Dietl et al.
2019), they foreshadow how species might respond to future cli-
mate change based on how they fared during past episodes of
rapid global warming. Natural experiments in the fossil record
could anticipate elasmobranch range shifts in response to climate
perturbations or describe refugia to guide adaptive spatial
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management (see Topic 4). For example, Villafaña and
Rivadeneira (2018) tested how ecological and life-history traits
modulated elasmobranch distributions following environmental
change during the Neogene. The fossil record could also reveal
the drivers of elasmobranch diversity dynamics. For example,
Condamine et al. (2019) found that Lamniformes experienced a
significant decline in diversity over the last 20 Myr due to climatic
cooling and competition with other clades. Although the climatic
stressors faced by elasmobranchs today differ (i.e., a warming,
acidified, and deoxygenating ocean), this study illustrates how
diversity covaries with abiotic and biotic factors through deep
time. These examples demonstrate how deep-time analogues
can be leveraged to anticipate vulnerability in extant species and
plan for resilience under future climatic conditions.

Topic 4: What Are the Global Priorities for Elasmobranch
Conservation?

Current efforts to halt extinction typically use prioritization tools
that identify species and areas that are in most need of protection
(Arponen 2012; Butchart et al. 2012). These priorities exist
because extinctions do not occur randomly on the tree of life
(Wang and Bush 2008) and because resources to protect biodiver-
sity are limited (Murdoch et al. 2007). The International Union
for Conservation of Nature (IUCN) Red List of Threatened
Species provides a robust framework to categorize species accord-
ing to their extinction risk and is widely used for conservation pri-
oritization (Mace and Lande 1991; Rodrigues et al. 2006;
Hoffmann et al. 2008; Mace et al. 2008; Betts et al. 2020).
IUCN statuses have also been combined with various dimensions
of biodiversity (e.g., phylogenetic and functional) in prioritization
metrics to identify endangered species for which extinction will
result in irreplaceable losses of evolutionary history or ecological
functions. These metrics include EDGE (Evolutionarily Distinct
and Globally Endangered; Isaac et al. 2007) and FUSE
(Functionally Unique, Specialized, and Endangered; Pimiento
et al. 2020) (for a complete list, see Pimiento and Antonelli
2022). The EDGE metric prioritizes evolutionary history by com-
bining species’ IUCN statuses with a phylogeny-based calculation
of their evolutionary distinctiveness (Isaac et al. 2007), whereas
the FUSE metric prioritizes species’ contributions to functional
diversity by combining their IUCN statuses with a trait-based cal-
culation of their functional uniqueness and specialization
(Pimiento et al. 2020). These data-driven prioritizations can
then be fed into policy and management decisions such as the
Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES).

According to the IUCN, 37% of elasmobranch species are at
risk of extinction (Fig. 5A), making them the most threatened
marine vertebrate group today (Dulvy et al. 2014, 2021).
Threatened elasmobranch species are both evolutionarily (Stein
et al. 2018) and functionally (Pimiento et al. 2023) distinct.
However, the EDGE and FUSE metrics highlight different elasmo-
branch species, demonstrating the value of considering multiple
metrics (Pimiento et al. 2023). Additionally, prioritization tools
have been used to identify hotspots of threatened elasmobranch bio-
diversity (Fig. 5B) as well as to assess the spatial congruence between
different dimensions of their biodiversity (Lucifora et al. 2011; Stein
et al. 2018; Derrick et al. 2020; Pimiento et al. 2023). Although some
hotspots overlap, functional diversity appears to have a distinct spa-
tial fingerprint (Pimiento et al. 2023). Importantly, many biodiver-
sity hotspots coincide with industrial fishing, and most fall outside

the existing marine protected area network (Davidson and Dulvy
2017; Pimiento et al. 2023; Fig. 5C). Together, these studies under-
score the urgency to protect elasmobranchs (Fig. 2D) but suggest
that no single metric epitomizes the global priorities for elasmo-
branch conservation.

Elasmobranch conservation has benefited from new informa-
tion about their biology and threats (e.g., Dulvy et al. 2014,
2021; Osgood and Baum 2015; Mull et al. 2022), resulting in addi-
tional species protections (Fordham et al. 2022) and priority area
designations (Hyde et al. 2022). However, many species remain
poorly understood, leaving taxonomic and geographic gaps in
our knowledge of their extinction risk (Dulvy et al. 2017; Guy
et al. 2021) and the biological outcomes of management efforts
(Ferraro and Pressey 2015; Daly et al. 2018; Pacoureau et al.
2023; Table 1). Furthermore, elasmobranch conservation priori-
ties primarily react to ongoing losses rather than anticipate future
vulnerabilities. A longer-term perspective is needed to ground
current conservation priorities in an understanding of past extinc-
tions. Here, we discuss how near- and deep-time geohistorical
records can optimize elasmobranch conservation priorities by:
(1) contextualizing IUCN assessments, (2) identifying correlates

Figure 5. Elasmobranch threats and conservation status. A, Percentage of elasmo-
branch species across the International Union for Conservation of Nature (IUCN) sta-
tuses: CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near
Threatened; LC, Least Concern; DD, and Data Deficient. Data downloaded from the
IUCN Red List of Threatened Species (http://www.iucnredlist.org, last accessed
November 2023). Adapted from Dulvy et al. (2021). The top panel shows the same
information for just extant species with a fossil record (Paillard et al. 2021).
B, Global distribution of threatened species (represented by number of species cat-
egorized by the IUCN as CR, EN, VU) per grid cell. Adapted from Pimiento et al. (2023).
C, Mean percentage of hotspot cells (top 2.5%) defined using various dimensions of
biodiversity (i.e., species richness, functional richness, phylogenetic diversity, threat-
ened species (see B), EDGE (Evolutionarily Distinct and Globally Endangered), FUSE
(Functionally Unique, Specialized, and Endangered), evolutionary distinctiveness,
functional specialization, and functional uniqueness) falling inside or outside existing
marine protected areas (MPAs). Adapted from Pimiento et al. (2023).

10 Erin M. Dillon and Catalina Pimiento

https://doi.org/10.1017/pab.2024.11 Published online by Cambridge University Press

http://www.iucnredlist.org
http://www.iucnredlist.org
https://doi.org/10.1017/pab.2024.11


of extinction risk, (3) evaluating prioritization metrics, and (4)
mapping spatial distributions of threatened elasmobranch biodi-
versity (Fig. 3).

Contextualizing IUCN Assessments

Near-time fossil and historical records spanning the last century
can contextualize IUCN assessments (McClenachan et al. 2012;
Leonetti et al. 2020; Kowalewski et al. 2023). These data are espe-
cially informative for elasmobranchs, because the IUCN measures
population changes over a period of 10 years or three generations
(up to 100 years; Mace and Lande 1991), which for long-lived spe-
cies usually exceeds modern survey data. For example, Ferretti
et al. (2008) used historical records to reconstruct population
trends of five shark species in the Mediterranean Sea since the
early nineteenth century. They found that these species had
declined >96–99.9% from their historical abundances, suggesting
an ∼2.5-fold larger decline than estimates based solely on avail-
able fisheries data spanning the last two decades (Cavanagh and
Gibson 2007; Ferretti et al. 2008). Equally large declines went
undetected in oceanic whitetip sharks (Carcharhinus longimanus)
between the 1950s and 1990s in the Gulf of Mexico (Baum and
Myers 2004; Fig. 4A). By extending the time window over
which extinction risk was evaluated, historical records contributed
to the oceanic whitetip shark’s classification as Critically
Endangered on the IUCN Red List (Rigby et al. 2019) and a
bycatch ban (PEW Environment Group 2012). Finally, historical
records are now considered in IUCN Green List assessments,
which measure species’ recoveries against historical baselines
(Akçakaya et al. 2018; Grace et al. 2019; see Topic 1). These exam-
ples show that by documenting changes in species’ abundances or
geographic ranges over multiple decades, historical records in par-
ticular can unshift the baselines used in IUCN assessments and
flag species that might be poorly monitored or not thought to
be at risk (Fig. 3).

Identifying Correlates of Extinction Risk

Over deeper timescales, the fossil record can reveal ecological and
life-history traits that make species prone to extinction. In turn,
these correlates of extinction risk can be used to test the accuracy
of IUCN assessments (Raja et al. 2021; Fig. 1B), predict the
extinction risk of Data Deficient species (Dulvy et al. 2014;
Walls and Dulvy 2020), and identify intrinsically vulnerable spe-
cies before they start to decline (McKinney 1997; Pimiento and
Antonelli 2022). Although correlations between traits and extinc-
tion risk can be inferred from extant taxa (e.g., Ripple et al. 2017;
Dulvy et al. 2021), this information is often restricted to short
ecological timescales and is not available for all regions or species.
The fossil record offers a wealth of complementary insight into
extinction selectivity patterns over long evolutionary timescales.
For example, intrinsic traits such as geographic range, body size,
diet, and thermoregulation have been associated with extinction
risk across different clades and extinction events (Harnik et al.
2012; Finnegan et al. 2015; Payne et al. 2016; Pimiento et al.
2017; Reddin et al. 2021). In some clades, intrinsic traits predict
extinctions better than abiotic factors alone (Boyer 2010).
Consequently, the fossil record could facilitate more proactive
conservation by applying lessons from past extinctions to better
understand which species might be most vulnerable—or resil-
ient—in the current biodiversity crisis (Pimiento and Antonelli
2022).

Elasmobranchs have suffered at least two major extinction
events over the last 150 Myr. Tracing the traits that influence
extinction selectivity across these events could help contextualize
their current vulnerabilities and corroborate extinction risk corre-
lates inferred from extant species (i.e., body size and depth; Dulvy
et al. 2014, 2021). During the K/Pg mass extinction, at least 62%
of elasmobranch species went extinct, with diet, habitat, and geo-
graphic range determining extinction selectivity (Kriwet and
Benton 2004; Guinot and Condamine 2023). Another important
extinction event occurred during the early Miocene Epoch,
when oceanic elasmobranchs declined in abundance by >90%
and morphological diversity by >70% (Sibert and Rubin 2021;
see Topic 1). During this event, habitat again predicted extinction,
with elasmobranchs restricted to deep-sea habitats being most
affected. Although ecological specialization appears to be a com-
mon correlate of extinction risk across these two events, it is dif-
ficult to compare them, because they were studied using different
analytical approaches and taxonomic resolutions.

Analytical advances have improved efforts to model extinction
rates and their correlates more consistently. For example, macro-
evolutionary dynamics can be estimated using R packages like
DivDyn (Kocsis et al. 2019; used by Villafaña et al. 2023), cap-
ture–mark–recapture approaches (Liow and Nichols 2010; used
by Sibert et al. 2018), and Bayesian process-based birth–death
models (Silvestro et al. 2014; used by Guinot and Condamine
2023), some of which combine fossil occurrences with phyloge-
netic information (Heath et al. 2014; used by Brée et al. 2022).
Machine learning algorithms are increasingly used to model rela-
tionships between extinction risk and traits, allowing the vulner-
ability of extant taxa to be predicted based on their traits (e.g.,
Finnegan et al. 2015; Raja et al. 2021). New methods have also
facilitated measurements of traits like trophic position, which
are hypothesized to predict extinction risk but are challenging
to infer from fossils (see Topic 2). With these tools in hand, it
has become more possible to analyze deep-time fossil trait and
occurrence data to identify which intrinsic traits are shared across
extinction events with different magnitudes and causes (Pimiento
and Antonelli 2022) or where discrepancies emerge (i.e., mis-
matches between trait-based predictions of extinction risk and
IUCN statuses; Raja et al. 2021).

Evaluating Prioritization Metrics

Geohistorical records can also be incorporated into species-based
conservation prioritization metrics like EDGE and FUSE to test
their performance. For example, Cavin and Kemp (2011) showed
that when fossils are included in the lungfish (Sarcopterygii:
Dipnoi) phylogeny, the rankings of top EDGE species change.
The fossil record has also been used to evaluate the evolutionary
implications of conservation actions guided by the EDGE metric
—namely whether it prioritizes species representing the “seeds” of
future radiations or whether it preserves the tail ends of depauper-
ate clades now “doomed” to extinction. Bennett et al. (2019)
found that, when applied to mammals, the EDGE metric does
not prioritize seeds or doomed clades but rather slow-evolving
“living fossils” that disproportionately contribute to their clade’s
evolutionary history. This approach could be applied to elasmo-
branchs to simulate how phylogenetic diversity and EDGE prior-
itizations might change after hypothetically losing or saving
threatened species with unique evolutionary histories (Pimiento
and Antonelli 2022). Additionally, the fossil record could test
the extent to which implementing the FUSE metric would preserve
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ecosystem functioning over time. Such tests could show whether
certain components of elasmobranchs’ ecological distinctiveness
(uniqueness vs. specialization) are more vulnerable to extinction
or important for maintaining functional diversity (Pimiento and
Antonelli 2022). At least 10% of extant elasmobranch species
(∼100 species) have a fossil record (Paillard et al. 2021; Fig. 5A),
making them a good testing ground for evaluating these prioritiza-
tion metrics and predicting the evolutionary and functional legacies
if they are used to guide conservation decisions (Fig. 3).

Mapping Spatial Distributions of Threatened Elasmobranch
Diversity

Fossil occurrences archive spatially explicit relationships between
biodiversity and environmental conditions through geological
time, which could help guide area-based conservation. For exam-
ple, Carrillo-Briceño et al. (2018) used the Neogene elasmobranch
fossil record to catalog geographic patterns of paleodiversity in
Tropical America, a study that has since contextualized regional
conservation priorities (Ehemann et al. 2019; Becerril-García
et al. 2022). Similarly, macroevolutionary analyses could demon-
strate whether diversity hotspots are conserved and might repre-
sent resilient areas worth protecting (Pimiento and Antonelli
2022). Another example comes from Finnegan et al. (2015), in
which the geographic distribution of extinction risk predicted
from the Neogene–Pleistocene fossil record was overlaid with
maps of human impacts and climate velocity to locate present-day
hotspots of extinction vulnerability. Although fossil-informed
maps of extinction vulnerability have yet to be incorporated
into decision-making processes (Kiessling et al. 2019), there is a
precedent for similar maps of current anthropogenic impacts to
prioritize areas for protection (e.g., Queiroz et al. 2019).

Fossil and historical occurrences are also increasingly used in
conjunction with modern occurrences in species distribution
models. These models have been implemented to hindcast ecolog-
ical niches (Nogués-Bravo 2009; Myers et al. 2015; Monsarrat
et al. 2019; Skroblin et al. 2021), evaluate area-based prioritization
strategies (Williams et al. 2013), and identify potential refugia or
range shifts under future projected climate scenarios for a variety
of taxa (Maguire et al. 2015; Lima-Ribeiro et al. 2017; Jones et al.
2019; see Topic 3). There is great potential to apply these methods
to elasmobranch occurrence data (e.g., Klippel et al. 2016;
Birkmanis et al. 2020; Sabadin et al. 2020; Diaz-Carballido et al.
2022), especially for large migratory species, to describe their spa-
tial distributions and protect areas that harbor threatened diver-
sity (Fig. 3). At the same time, because elasmobranch
distributions do not fall neatly within the geopolitical boundaries
in which conservation policies are implemented (Dulvy et al.
2017; Fordham et al. 2022), incorporating fossils into area-based
conservation begins with investing in collaborative international
science that is coproduced by researchers and decision makers.

Limitations

Conservation paleobiology can contribute valuable temporal per-
spective to current elasmobranch conservation priorities (Fig. 3,
Table 1), although certain attributes of geohistorical records
limit their application (Kidwell 2013, 2015; Kidwell and
Tomašových 2013; Kowalewski et al. 2023). The fossil record is
inherently incomplete due to a combination of geological, sam-
pling, and taphonomic biases that influence what is preserved,
when, and where (Raup 1972, 1976; Sepkoski et al. 1981;

Benson et al. 2021). Furthermore, although elasmobranch teeth
are diagnostic, other components of their fossil record (e.g., ver-
tebrae) cannot be identified to species or even genera, limiting
taxonomic insight (Reif 1985; Cappetta 2012). Paleobiological
work on elasmobranchs also appears to be biased toward sharks,
leaving rays, a highly threatened clade (Dulvy et al. 2021), less
studied. Some limitations can be addressed by investing in taxo-
nomic expertise, specimen and data digitization, and additional
field or collections work, which could expand available datasets
and improve our understanding of elasmobranch systematics
and traits. Additionally, future work could assess whether sharks
could serve as taxonomic surrogates for rays. At the same time,
striking differences in the pace and scale of human impacts on
elasmobranch populations today relative to the time-averaged
eco-evolutionary dynamics captured by the fossil record remain
an impasse. This often manifests as misalignment between the
spatiotemporal scale of a conservation problem and available geo-
historical records (Dietl et al. 2019; Kiessling et al. 2019).
Although no silver bullet, pairing one record’s limitations with
another’s strengths could help improve data coverage and resolu-
tion (Buma et al. 2019).

Other elasmobranch conservation needs fall outside the scope
of conservation paleobiology. For example, Jorgensen et al. (2022)
identified several priorities that are not answerable using informa-
tion preserved in geohistorical records, such as those involving
tourism, vessel tracking, trade laws, and bycatch mitigation poli-
cies (Table 1). Effective governance and community buy-in are
critical for achieving conservation successes but cannot be tackled
with fossils alone. Other priorities identified by the authors would
require creative reframing for geohistorical records to be relevant
(e.g., tagging technologies, which track species’ movement), high-
lighting the value of jointly developing these priority questions.
To increase the conservation relevance of paleobiological data,
conservation paleobiologists could collaborate across disciplinary
boundaries, such that geohistorical records are matched with con-
servation problems that they are well suited to address in comple-
ment with approaches from other fields. Doing so could help
ensure that paleobiological research, when applicable, considers
the multidimensional nature of conservation problems and pro-
vides actionable results targeted to specific conservation needs
that are voiced by practitioners or other decision makers
(Savarese 2018; Dietl et al. 2023). This collaborative approach
could ultimately help cement geohistorical records’ place in con-
servation problem-solving toolboxes.

Coda

Throughout this article, we have highlighted research directions in
conservation paleobiology that have potential to address emergent
priorities in elasmobranch science and conservation. These prior-
ities were broadly assembled from expert opinions (Jorgensen
et al. 2022), whereas on-the-ground conservation problems may
be more context specific and evolve as needs change.
Nonetheless, this exercise could serve as a model for understand-
ing which geohistorical records are most useful for conservation
practice. Evaluating alignment between conservation needs and
geohistorical records could lead to more tangible conservation
paleobiology research goals that are designed with implementa-
tion in mind, for elasmobranchs as well as other clades. We
find that these areas of overlap are often best addressed with
information spanning many timescales and branches of paleon-
tology and biology, creating opportunities for interdisciplinary
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collaboration and synthesis. For conservation paleobiologists
seeking to increase the practical applications of their work, we
encourage finding similar horizon-scanning lists of priority ques-
tions (or similar venues where such priorities are exchanged) as a
potential starting point for initiating conversations with practi-
tioners working in their study systems. These two-way interac-
tions could define shared questions that conservation
paleobiology could help answer and, in doing so, coproduce
more actionable science.
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