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COMPACT MODULI OF ENRIQUES SURFACES OF DEGREE 2

VALERY ALEXEEV , PHILIP ENGEL , D. ZACK GARZA and

LUCA SCHAFFLER

Abstract. We describe a geometric, stable pair compactification of the moduli

space of Enriques surfaces with a numerical polarization of degree 2, and

identify it with a semitoroidal compactification of the period space.
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§1. Introduction.

Enriques surfaces are quotients of K3 surfaces by basepoint free involutions. They satisfy

2K ∼ 0 and q=0 and occupy a place somewhere in between rational and K3 surfaces. Unlike

K3 surfaces, there are only finitely many moduli spaces of polarized Enriques surfaces, see

[19]. Each of them parameterizes the same surfaces, with some finite data attached.

In this paper we consider the moduli space FEn,2 of pairs (Z, [LZ ]), where Z is an Enriques

surface with ADE singularities and [LZ ] ∈ PicZ/Z2 is an ample numerical polarization of

degree 2. Equivalently, this is the moduli space of ADE Enriques surfaces (Z,M) with

a 2-divisible polarization M = L⊗2
Z ∈ PicZ of degree 8. The Baily–Borel compactification

F
BB

En,2 of this space was described by Sterk [44].

By the classification of big and nef linear system on Enriques surfaces [9], see also [10],

[11], the linear system |M| is basepoint free and defines a double cover ρ : Z → W to

a quartic del Pezzo surface with 4A1 or A3 +2A1 singularities. The ramification divisor

RZ ∈ |M| of ρ is ample and the pair (Z,εRZ) is log canonical for any 0 < ε � 1. Thus,

the moduli space FEn,2 admits a geometric, modular compactification FEn,2 in the KSBA

moduli space of pairs (Z,εRZ) with semi log canonical singularities, KZ ≡ 0 and ample

Q-Cartier divisor RZ . See [25] for their general theory. Our main result, in Section 5.2, is

Theorem 1.1. The normalization of FEn,2 is a semitoroidal compactification F
F

En,2

corresponding to a collection F = {Fk}k=1,2,3,4,5 of explicit semifans, one for each 0-cusp

of FEn,2, and it is dominated by a toroidal compactification F
cox

En,2 for a collection Fcox =

{Fk
cox}k=1,2,3,4,5 of Coxeter fans.

In Sections 6 and 7, we describe all stable pairs parametrized by the boundary of FEn,2.

The irreducible components of these pairs turn out to be surfaces that naturally correspond

to the ABCDE Dynkin diagrams. They generalize the ADE surfaces of [6] that appear on

the boundary of K3 moduli spaces.

In Section 4, we also provide a detailed description of some nice models of Enriques

degenerations, which are slightly more singular than simple normal crossing. Instead, they

are dlt (divisorially log terminal, see [27, Definition 2.37]).

Just as weighted graphs encode semistable degenerations of curves, K -trivial semistable

(i.e., Kulikov) degenerations of K3 surfaces X → (C,0) are encoded by integral-affine
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COMPACT MODULI OF ENRIQUES SURFACES 3

structures on the 2-sphere, or IAS2 [14], [15], [20]. An IAS2 is a collection of local embeddings

of S2 minus a finite set into the flat plane, which differ on overlaps by SL2(Z)�Z2. Complete

triangulations of IAS2 which take their vertices in Z2, under the local embedding, describe

the dual complexes Γ(X0) of Kulikov degenerations. In this paper, we realize Diagram (2.1)

on the integral-affine level, by constructing Γ(X0) together with two commuting involutions

ιEn, IA and ιdP,IA of the IAS2.

The quotient of Γ(X0) by ιEn, IA is either an integral-affine structure on a disk D2 or a real-

projective plane RP2. These IAD2 and IARP2 are the dual complexes Γ(Z0) of particularly

nice dlt models of Enriques surface degenerations Z → (C,0). From these dlt models, one

can extract a completely explicit description of the stable limit of any degeneration in FEn,2

from Hodge-theoretic data.

The validity of our description of these Kulikov, dlt, and stable models relies on the

general theory of compactifications of moduli spaces of K3 surfaces developed by the first

two authors [2], [3]. Most relevant to the situation at hand, [2] considers the 75 moduli

spaces of K3 surfaces with a non-symplectic involution. For 50 of them, the ramification

divisor R contains a component C of genus g(C) ≥ 2 providing a polarization. For these,

[2] describes the Kulikov models and KSBA compactification for the pairs (X,εC).

Crucial for us here is the compactified moduli space F (2,2,0) of K3 surfaces of degree

4 with a del Pezzo involution ιdP corresponding, generically, to double covers of P1×P1

branched over a curve of bidegree (4,4). By immersing the moduli space FEn,2 → F (2,2,0)

and understanding the Enriques involution on the fibers, we give a description of FEn,2 and

its universal family.

The plan of the paper is as follows. In Section 2, we discuss the model of Enriques surfaces

which we use in this paper. We also recall the description of the moduli space FEn,2 after

Sterk [44]. Then we describe morphisms between FEn,2, F(2,2,0) and the moduli F(10,10,0)

of unpolarized Enriques surfaces. Finally, we briefly recall the theory of KSBA stable pairs

and their compact moduli.

In Section 3, we recall the cusp diagrams of F(2,2,0), F(10,10,0), FEn,2 and determine how

they map to each other. Next, we describe Coxeter diagrams associated with each of the five

0-cusps and the 9 1-cusps of FEn,2. The diagrams are the same as in Sterk [44] but we find

them in a different way, “folding by involutions” the Coxeter diagrams of the lattices U⊕E2
8

and U(2)⊕E2
8 corresponding to the two 0-cusps of F(2,2,0). This is the combinatorial heart

of the paper. An idea from [2], [5] employed here is that one can read off degenerations of K3

surfaces directly from Coxeter diagrams. Consequently, we are able to read off degenerations

of Enriques surfaces from the Coxeter diagrams of FEn,2.

Using the above description, in Section 4 we find integral-affine spheres with two com-

muting involutions ιEn, IA and ιdP,IA and the corresponding Kulikov models of K3 surfaces

with involutions. We then describe how to construct the dlt models for degenerations of

Enriques surfaces, and give some detailed examples.

In Section 5, as an application of general theory and in a similar way to [1], [2] we describe

the KSBA compactification FEn,2 and the stable pairs appearing on the boundary. For K3

surfaces, the irreducible components of degenerations are ADE surfaces of [6]. In the case of

Enriques surfaces, additional B and C surfaces appear, corresponding to B and C Dynkin

diagrams resulting from folding ADE diagrams. We describe them in Sections 6 and 7.

We work over the complex numbers, although most of the results can be generalized to

any field of characteristic 	= 2.
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4 V. ALEXEEV ET AL.

§2. General setup.

2.1 The main diagram, general case.

Consider a surface Y = P1 ×P1 with an involution τ : (x,y) → (−x,−y) and quotient

W = Y/τ . Let B ∈ |− 2KY | be a τ -invariant divisor with at worst ADE singularities not

passing through the four points with x,y ∈ {0,∞} fixed by τ . The double cover π : X → Y

branched in B is a K3 surface with a del Pezzo involution ιdP so that Y = X/ιdP. The

involution τ on Y lifts to a basepoint-free Enriques involution ιEn on X commuting with

ιdP and the quotient Z = X/ιEn is an Enriques surface. The second lift of τ is a Nikulin

involution and the quotient Z ′ = X/ιNik is a K3 surface with eight A1 singularities and

possibly more. This gives the following commutative diagram:

X Z Z ′

Y W

π

ψ

ψ′

ρ
ρ′

ϕ

(2.1)

The surface Y = P1×P1 is toric and the line bundle O(4,4) has, as its polytope, a square

Q with sides of lattice length 4, shown in the left panel of Figure 1. The surface W is toric

as well, for the same polytope but for the even sublattice Z2
ev = {(a,b) | a+b∈ 2Z} shown by

gray dots. It is a quartic del Pezzo surface with four A1 singularities. Vectors in Z2
ev are in

bijection with monomials xayb invariant under the involution τ : (x,y)→ (−x,−y). Here, we

freely identify monomials 1,x, . . .x4 with x4
0,x

3
0x1, . . . ,x

4
1, and 1,y, . . . ,y4 with y40,y

3
0y1, . . . ,y

4
1.

Let f(x,y) be a τ -invariant polynomial of bidegree (4,4) in which 1, x4, y4, x4y4 have

nonzero coefficients, so that the hypersurface {f(x,y) = 0} ⊂ Y = VQ does not contain any

of the four torus-fixed points. Let P ⊂ R3 be the pyramid over Q⊂ 0×R2 with the vertex

(2,2,2), to which we associate the monomial z2. Then the K3 surface X is a hypersurface

defined by the equation z2+ f(x,y) in the projective toric variety VP associated with P.

The polynomials f(x,y) invariant under τ are linear combinations of 13 monomials marked

by gray dots. Thus, f defines a point in an open subset U ⊂ P12 and in its quotient U/D4�

(C∗)2, of dimension 10. There are three commuting involutions on X :

del Pezzo ιdP : (x,y,z)→ (x,y,−z)

Enriques ιEn : (x,y,z)→ (−x,−y,−z)

Nikulin ιNik : (x,y,z)→ (−x,−y,z)

Figure 1.

Polytopes Q and lattices for the toric surfaces Y and W.
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COMPACT MODULI OF ENRIQUES SURFACES 5

which together with the identity form a Klein-four group. Both ιEn and ιNik are lifts of τ .

On an affine subset of X, a nonvanishing 2-form is given by

ω =ResX
dx∧dy∧dz

z2+f
.

One has ι∗dPω = ι∗Enω = −ω and ι∗Nikω = ω. So ιdP and ιEn are nonsymplectic and ιNik

is symplectic. The Enriques surface Z is then a hypersurface in the toric variety for the

polytope P but for the even sublattice Z3
ev = {(a,b,c) | a+ b+ c ∈ 2Z}. It is defined by the

same polynomial z2+f(x,y) whose monomials lie in Z3
ev.

Let R be the ramification divisor of π. The involution ιdP on X descends to an involution

τdP on Z, and W = Z/τdP. Let RZ and BW be the ramification and branch divisors of ρ.

Then R = ψ∗(RZ) and RZ = 1
2ψ∗(R). Since R = 1

2π
∗(B) is an ample divisor, RZ is ample

as well. One has O(RZ) = L⊗2
Z ∈ PicZ.

Horikawa [23] analyzed in some detail the sets of possible equations f(x,y) and the

maps from various opens subsets of P12 to the period domain D/Γ and its Baily–Borel

compactification, introduced in the next section. In particular, he showed that certain mildly

singular f(x,y) vanishing at a torus-fixed point correspond to Coble surfaces, which are S2-

quotients of nodal K3 surfaces.

The GIT compactification P12//D4�(C∗)2 was described by Shah [43], who gave normal

forms for polystable orbits. As usual for the moduli of K3 surfaces with a projective

construction, the relation between the GIT and the Baily–Borel compactifications is not

straightforward, cf. [34] for K3 surfaces of degree 2 and [31] for degree 4 K3 surfaces which

are double covers of P1×P1.

2.2 The main diagram, special case.

The previous section describes the general case, when the K3 cover X is non-unigonal.

The special case corresponds to a Heegner divisor in FEn,2 for which (Y,L)= (P(1,1,2),O(4))

is a singular quadric. The toric surfaces Y andW correspond to the same polytope Q shown

in the right panel of Figure 1 but for different lattices: Z2 and Z2
ev. The surface W is a

quartic del Pezzo surface with A3+2A1 singularities.

There are still 13 even monomials giving a family over U ⊂ P12. However, in this case

Aut(W ), the centralizer of τ in Aut(Y ), is three-dimensional, equal to S2� (C∗2�C). So

there is only a 9-dimensional family of non-isomorphic surfaces.

Remark 2.1. To our knowledge, Diagram (2.1) minus Z ′ first appeared in [9, Section

6.3.1], see also [11, Corollary 4.7.2]. Horikawa model [22] is a birationally isomorphic version

of this diagram. Ultimately, it can be traced back to the Enriques’ double plane model [16].

We refer the reader to [10] for a detailed historical account and many other projective

models of Enriques surfaces.

Remark 2.2. The entire Diagram (2.1) is intrinsic to the pair (Z, [LZ ]), in both the

general and special cases. Indeed, W = ϕ|L⊗2
Z |(Z), Y = SpecOW ⊗OW (A) where A is the

generator of TorsCl(W ) = Z2, and X = Y ×W Z. One has

Z ′ = SpecOW ⊕OW (KW ) and Z = SpecOW ⊕OW (KW +A)

with the multiplications defined by the divisor BW ∈ |−2KW |= |−2(KW +A)|.
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6 V. ALEXEEV ET AL.

2.3 Period domains.

We follow [44] for the moduli space of Enriques surfaces with a numerical degree 2

polarization, and [2] for the moduli space of K3 surfaces of degree 4 with a nonsymplectic

involution.

Let L = II3,19 = U3⊕E2
8 �H2(X,Z) be the K3 lattice. It is even, unimodular and has

signature (3,19). Here, U = II1,1 and our E8 = II0,8 is a negative-definite unimodular lattice.

Let us write L in block form:

L= U ⊕U ⊕U ⊕E8⊕E8 = {(v,u,u′, e,e′) | v,u,u′ ∈ U, e,e′ ∈ E8}.

Definition 2.3. Define three involutions IdP, IEn and INik = IdP ◦IEn on L correspond-

ing to the Enriques, del Pezzo, and Nikulin involutions on K3 surfaces of degree 4 as follows

(cf. [40] for the nodal case):

IdP : (v,u,u
′, e,e′)→ (−v,u′,u,−e,−e′)

IEn : (v,u,u
′, e,e′)→ (−v,u′,u,e′, e)

INik : (v,u,u
′, e,e′)→ (v,u,u′,−e′,−e).

Their (±1)-eigenspaces are

SdP := L+
dP =Δ(U) TdP := L−

dP = U ⊕Δ−(U)⊕E2
8

SEn := L+
En =Δ(U)⊕Δ(E8) TEn := L−

En = U ⊕Δ−(U)⊕Δ−(E8)

L+
Nik = U3⊕Δ−(E8) L−

Nik =Δ(E8).

Here, Δ and Δ− denote the diagonals and anti-diagonals in U2 and E2
8 . As lattices, they

are isomorphic to

SdP = U(2) = (2,2,0)1 TdP = U ⊕U(2)⊕E2
8 = (20,2,0)2

SEn = U(2)⊕E8(2) = (10,10,0)1 TEn = U ⊕U(2)⊕E8(2) = (12,10,0)2

L+
Nik = U3⊕E8(2) = (14,8,0)3 L−

Nik = E8(2) = (8,8,0)0.

All these lattices are even and 2-elementary, that is, with the discriminant group Λ∗/Λ�Za
2

for some a. Recall, (see e.g., [38]), that an indefinite even 2-elementary lattice is uniquely

determined by its signature and a triple (r,a,δ), where r = rkZ(Λ), a= rkZ2(Λ
∗/Λ) and δ ∈

{0,1} is the coparity: δ=0 if the discriminant form qΛ : Λ
∗/Λ→ 1

2Z/2Z, qΛ(x) = x2 mod 2Z

is Z-valued and δ=1 otherwise. In our notation, (r,a,δ)n+ denotes such a lattice of signature

(n+,n−).

Lemma 2.4. The sequence U ⊕ U(2) ⊕ E8(2) → U ⊕ U(2) ⊕ E2
8 → L of primitive

embeddings is unique up to an isometry in O(L).

Proof. By taking the orthogonals, this is equivalent to the condition that the sequence of

primitive embeddings U(2)→U(2)⊕E8(2)→L is unique. The second embedding is unique

by [38, Theorem 1.14.4]. The first embedding is equivalent to the embedding U →Λ=U⊕E8

and it is well known that it is unique. Indeed, Λ=U⊕U⊥ and U⊥ �E8. Thus both inclusions

are unique, up to isometry of the codomain. Any isometry of TdP extends to an isometry of

L by [38, Corollary 1.5.2, Theorem 3.6.3]. In particular, an isometry of TdP moving a copy

of TEn to a fixed copy can be realized by an isometry of L. The uniqueness of the entire

sequence follows.
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COMPACT MODULI OF ENRIQUES SURFACES 7

Definition 2.5. We have type IV period domains D(TEn) and D(TdP), where for

a lattice Λ of signature (2,n) the corresponding period domain D(Λ) is a connected

component of

{[x] ∈ P(Λ⊗C) | x ·x= 0, x · x̄ > 0}.

Since, TEn ⊂ TdP, one has D(TEn)⊂D(TdP). The polarizations we consider in both cases

are defined by the vector h = e+ f ∈ U(2) = SdP ⊂ SEn. Here, {e,f} is the basis of U(2)

with e2 = f2 = 0, e ·f = 2.

Definition 2.6. Define the arithmetic group ΓEn,2 as the image in O(TEn) of

{g ∈O(L) | g ◦ IEn = IEn ◦g and g(h) = h}.

Additionally, define ΓEn =O(TEn) and ΓdP =O(TdP). We have ΓEn,2 = ΓEn∩ΓdP.

Since O(L)→O(TEn) and O(L)→O(TdP) are surjective by [38, Corollary 1.5.2, Theorem

3.6.3], the homomorphisms from the centralizer groups ZO(L)(IEn)→ΓEn and ZO(L)(IdP)→
ΓdP are surjective.

Definition 2.7. Define three quotients of period domains:

FEn,2 = D(TEn)/ΓEn,2, F(10,10,0) = D(TEn)/ΓEn, F(2,2,0) = D(TdP)/ΓdP.

By [2], [4], F(2,2,0) is the coarse moduli spaces of K3 surfaces with ADE singularities and

a nonsymplectic involution for which the (+1)-eigenspace (PicX)+ is (2,2,0)1.

By [37, Theorem 2.13] there is a unique (−2)-vector α ∈ TEn modulo ΓEn. The

discriminant divisor Δ = α⊥ ⊂ D(TEn)/ΓEn parameterizes quotients of nodal K3 surfaces

by an involution fixing a node. These are rational Coble surfaces with a (1,1)
4 -singularity.

It is well known that the points of (D(TEn)\Δ)/ΓEn ⊂ F(10,10,0) are in a bijection with the

isomorphism classes of Enriques surfaces.

By [37, Theorem 2.15] there are two ΓEn-orbits of (−4)-vectors β in TEn. The divisor

corresponding to the vector with β⊥ � 〈4〉 ⊕ U ⊕E8(2) parameterizes nodal Enriques

surfaces, whose desingularizations contain a (−2)-curve. The other (−4)-vector corresponds

to the unigonal Enriques surfaces which are double covers of P(1,1,2).

By [44] the complement of the discriminant divisor in FEn,2 =D(TEn)/ΓEn,2 is the coarse

moduli space of Enriques surfaces with a numerical polarization of degree 2.

Lemma 2.8. FEn,2 is the normalization of a closed subvariety of F(2,2,0).

Proof. One has D(TEn)⊂D(TdP). The isometry group O(TdP) coincides with the image

of the group

{g ∈O(L) | g(TdP) = TdP, g(h) = h}.

Indeed, any element of O(T ∗
dP/TdP)�O(S∗

dP/SdP) can be extended to an automorphism of

SdP that fixes h because this group of order 2 preserves 1
2h ∈ S∗

dP/SdP � U(2)∗/U(2)� Z2
2.

Thus, the stabilizer of TEn in ΓdP is ΓEn,2 and so the stabilizer of D(TEn) in D(TdP) is ΓEn,2.

Thus the finite map D(TEn)/ΓEn,2 → D(TdP)/ΓdP is generically injective.

Since ΓEn,2 ⊂ ΓEn is a finite index subgroup, there is also an obvious morphism FEn,2 →
F(10,10,0). It has degree 27 ·17 ·31, see [44, Remark 2.12].
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Definition 2.9. For a type IV arithmetic quotient F = D(Λ)/Γ, denote by F
BB

its

Baily–Borel compactification [7].

The boundary components of F
BB

are points and modular curves, corresponding

respectively to primitive isotropic lines and planes in Λ. We call these boundary components

0-cusps and 1-cusps respectively.

2.4 KSBA stable pairs and their moduli spaces.

The idea behind KSBA spaces is very simple: they are a close generalization of Deligne–

Mumford–Knudsen’s moduli spaces Mg,n of pointed stable curves. For a one-parameter

degeneration of K3 surfaces with a distinguished ample divisor, there are often infinitely

many Kulikov models that differ by flops, but there is a canonical KSBA-stable limit.

In brief, a KSBA stable pair (X,B =
∑n

i=1 biBi) consists of a projective variety X which

is deminormal: seminormal with only double crossings in codimension 1, Bi are effective

Weil divisors not containing any components of the double locus of X, 0< bi ≤ 1 are rational

numbers, all satisfying two conditions:

1. (on singularities) the pair (X,B) has semi log canonical (slc) singularities, the

generalization of the log canonical singularities appearing in the MMP to the nonnormal

case, and

2. (numerical) the divisor KX +B is an ample Q-Cartier divisor.

The main result is that in characteristic zero for the fixed dimension d = dimX, number

n, coefficient vector (b1, . . . , bn) and degree (KX +B)d there is a (carefully defined) moduli

functor for families of KSBA stable pairs, the moduli stack is Deligne–Mumford, and the

coarse moduli space is projective. We refer the reader to [25] for complete details.

We need a version of this definition when KX is numerically trivial, R is an ample Cartier

divisor and the pair is (X,εR) with 0 < ε� 1 allowed to be arbitrarily small. By [8], [28]

in any dimension d for fixed degree Rd there exists ε0 > 0 such that the moduli space for

any 0 < ε < ε0 is the same. We only need this result for K3 surfaces, in which case the

construction and the proof were given in [5] and [1]. The Enriques case then immediately

follows.

In [2], [5] this general construction was applied to describe a geometric compactification

for the pairs (X,εR) where X is a K3 surface with a non-symplectic involution and ADE

singularities, and R is a connected component of genus g ≥ 2 of the ramification divisor for

the induced double cover.

In this paper we apply it to the pairs (Z,εRZ), where Z is an Enriques surface with ADE

singularities and with a numerical degree 2 polarization, an S2-quotient of a K3 surface

X ∈ F(2,2,0) with ADE singularities, and RZ is the ramification divisor of the induced

involution τdP as in the introduction. For the KSBA-stable limits, RZ will be the divisorial

part of the ramification divisor of Z →W =Z/τdP that is not contained in the double locus

of Z.

Definition 2.10. The compactification FEn,2 ↪→ FEn,2 is the closure of the space of

pairs {(Z,εRZ)
∣∣Z ∈ FEn,2} in the moduli space of KSBA stable pairs.

Our main goal is to describe the normalization of FEn,2 and the surfaces appearing on

the boundary.
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§3. Cusps and Coxeter diagrams.

3.1 Cusp diagram of F(2,2,0).

Figure 2 reproduces the cusp diagram of F
BB

(2,2,0) given in the last section of [2]. An

equivalent diagram is found in [31].

There are two 0-cusps which are in bijection with the primitive isotropic lines Ze ∈ TdP

mod ΓdP, distinguished by the divisibility div(e) ∈ {1,2} of e in the dual lattice T ∗
dP. For a

primitive vector in a 2-elementary lattice one must have div(e) ∈ {1,2}.
The lattices e⊥/e are hyperbolic and 2-elementary, and here are of the form U ⊕E2

8 =

(18,0,0)1 and U(2)⊕E2
8 = (18,2,0)1 depending on whether div(e) = 2 or 1 respectively.

Similarly, the eight 1-cusps are in bijection with the primitive isotropic planes Π ⊂ TdP

mod ΓdP. For each of them there is a negative-definite lattice Π⊥/Π which is 2-elementary

but is no longer uniquely determined by the triple (r,a,δ). The label denotes the root

sublattice of Π⊥/Π. Here, D16 is a root lattice with determinant 4 and D+
16 is its unique

even unimodular extension.

The bipartite diagram in Figure 2 depicts all 0- and 1-cusps added to compactify F(2,2,0).

An arrow indicates that a 0-cusp lies in the closure of a 1-cusp. Equivalently, there is, up to

the group action, an inclusion Ze⊂Π of the corresponding isotropic subspaces. The single

versus double arrow indicates, respectively, that the rank of the discriminant group of e⊥/e

and Π⊥/Π stays the same, or drops by 2. See [2, Sections 5C-5D] for more details.

3.2 Cusp diagram of F(10,10,0).

The cusp diagram for F
BB

(10,10,0) is well known. It can also be easily found by [2, Section

5]. We give it in Figure 3, keeping the same notation as above. There are two 0-cusps

distinguished by the divisibility div(e) = 1 or 2.

Figure 2.

Cusp diagram of F(2,2,0), for TdP = U ⊕U(2)⊕E2
8 .

Figure 3.

Cusp diagram of F(10,10,0), for TEn = U ⊕U(2)⊕E8(2).
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A geometric interpretation of these cusps is as follows. Let X → (C,0) be a Kulikov model

and consider the completed period mapping

(C,0)→ F
BB

(10,10,0).

Suppose that ιEn,t on the generic fiber extends to an involution ιEn,0 on the central fiber. If

0 ∈ C is sent to the double-circled cusp (10,10,0)1 or (8,8,0)0 then ιEn,0 is basepoint free.

Otherwise, ιEn,0 has a nonempty finite set of fixed points.

Furthermore, the dual complex Γ(X0) is a 2-sphere and the induced action of ιEn,0 on

Γ(X0) in the (10,10,0)1 case is an antipodal involution, while in the (10,8,0)1 case it is a

hemispherical involution, see [2, Sections 8F]. So the quotients of Γ(X0) by the Enriques

involution are, respectively, the real projective plane RP2 and a disk D2. In Type II, Γ(X0)

is a segment. In the (8,8,0)0 case, the action of ιEn,0 flips the segment, whereas in the

(8,6,0)0 case it fixes the segment.

3.3 Cusp diagram of FEn,2.

Sterk [44] computed the cusp diagram for F
BB

En,2. There are five 0-cusps for which we use

Sterk’s numbering 1,2,3,4,5. There are also 9 distinct 1-cusps.

Notation 3.1. We denote a 1-cusp by i1 . . . ik if its closure contains the 0-cusps i1, . . . , ik.

Here, 1≤ k ≤ 5.

Lemma 3.2. The morphisms FEn,2 →F(2,2,0) and FEn,2 →F(10,10,0) extend to the Baily–

Borel compactifications, mapping 0-cusps to 0-cusps and 1-cusps to 1-cusps in the manner

shown in Figure 4.

The images in F
BB

(2,2,0) are shown by labels from Figure 4, and in F
BB

(10,10,0) by the

corresponding border shapes (oval, double oval, rectangle, double rectangle).

Proof. The extension property holds by [24]. The maps on 0-cusps are easy to see by

looking at the divisibilities of Sterk’s isotropic vectors e1, . . . , e5 considered separately as

vectors in the lattices TEn and TdP. The maps on 1-cusps are then recovered by considering

Figure 4.

Cusps of F
BB
En,2 with images in F

BB
(10,10,0) and F

BB
(2,2,0).
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incidences between 0- and 1-cusps and the images of the 1-cusps in the Baily–Borel

compactification F
BB

4 ⊃ F
BB

(2,2,0) of the moduli space of K3 surfaces of degree 4, computed

at the end of [44].

3.4 Vinberg’s theory and Coxeter diagrams.

We refer to [46], [47] for Vinberg’s theory of reflection groups of hyperbolic lattices, saying

just enough to fix the notations.

Let Λ be a hyperbolic lattice. Let C be the component of the set {v ∈ ΛR | v2 > 0},
containing a fixed class h with h2 > 0. Let H = PC be the corresponding hyperbolic space.

A vector v 	= 0 with v2 = 0 in the closure of C defines a point on the sphere at infinity of

H. Let C denote the closure of C.
A reflection in a vector α ∈ Λ is the isometry

wα(v) = v− 2(α ·v)
α ·α α.

A root is a vector α with α2 < 0 such that wα(Λ) = Λ, equivalently such that 2div(α) ∈
(α ·α)Z. For a group of isometries Γ⊂O(Λ) we denote by W (Γ) its subgroup generated by

reflections.

We denote by C the fundamental chamber for W (Γ). Equivalently, one can treat it as

the (possibly infinite) polyhedron P = PC⊂H. One has

C= {v ∈ C | αi ·v ≥ 0 for simple roots αi} (3.1)

O(Λ) = S�W (Γ) for some S ⊂ Sym(P ). (3.2)

The fundamental chamber is encoded in a Coxeter diagram. The vertices correspond to

the simple roots αi and the edges show the angles between them as follows. Let gij =

(αi ·αj)/
√
(αi ·αi)(αj ·αj). One connects i and j by

• an m-tuple line if gij = cos π
m+2 . The hyperplanes α⊥

i , α
⊥
j intersect in H.

• a thick line if gij = 1. α⊥
i , α

⊥
j are parallel, meet at an infinite point of H.

• a dotted line if gij > 1. α⊥
i , α

⊥
j do not meet in H or its closure.

The lattices L±
En and L±

dP are even 2-elementary. For such lattices the roots are the (−2)-

vectors and the (−4)-vectors with div(α) = 2. We denote the roots with α2 =−2 by white

vertices and those with α2 =−4 by black vertices.

3.5 Coxeter diagrams for the 0-cusps of F(2,2,0).

The Coxeter diagrams for the lattices (18,0,0)1 = U ⊕E2
8 and (18,2,0)1 = U(2)⊕E2

8 ,

(cf. [2]), are shown in Figure 5. To describe Kulikov models and KSBA stable models, it is

important to keep track of the even and odd nodes on the boundaries of these diagrams.

We assign even numbers to the even nodes; in Figure 5 they are shown as double-circled

nodes. For typographical reasons, in the diagrams that follow we skip these double circles.

The corners are always even.

The lattice U ⊕E2
8 is generated by 19 roots α1, . . . ,α19 with a single relation

v = 3α1+2α2+4α3+6α4+5α5+4α6+3α7+2α8+α9

= 3α19+2α18+4α17+6α16+5α15+4α14+3α13+2α12+α11.
(3.3)
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Figure 5.

Coxeter diagrams for (18,2,0)1 and (18,0,0)1.

Figure 6.

Coxeter diagrams for (10,10,0)1 and (10,8,0)1.

The lattice U(2)⊕E2
8 is generated by 22 roots α0, . . . ,α21. The relations come from

maximal parabolic subdiagrams with more than one connected component. Maximal

parabolic subdiagrams correspond to parabolic sublattices with a unique isotropic line;

the generator of this line is a linear combination of roots in each connected component,

which gives a linear relation. For example, the following relation results from Ẽ2
7C̃2:

α16+α20+α18 = α1+2α2+3α3+4α4+3α5+2α6+α7+2α17. (3.4)

3.6 Coxeter diagrams for the 0-cusps of F(10,10,0).

The Coxeter diagrams for the lattices (10,10,0)1 = U(2)⊕E8(2) and (10,8,0)1 = U ⊕
E8(2) are well-known. They are shown in Figure 6.

3.7 Folding Coxeter diagrams by involutions.

Definition 3.3. Let Λ be a lattice with an involution and let α ∈ Λ be a vector. We

call the following vector αI ∈ ΛI=1 a folded vector:

αI =

{
α if I(α) = α

α+ I(α) if I(α) 	= α.

Lemma 3.4. Consider the lattice TdP with the involution I := −IEn = IdP ◦ IEn = INik,

so that T I=1
dP = TEn. Let α be a root of TdP and assume that α2

I < 0. Then αI is a root in

TEn and one of the following holds:

1. α2 =−2, α ∈ TEn, so α= αI is a root of both TdP and TEn.

2. α2 =−4, α ∈ TEn, so α= αI is a root of both TdP and TEn.

3. α2 =−2, α · I(α) = 0, α2
I =−4, and αI is a root of TEn but not of TdP.

Vice versa, all roots of TEn are of these three types.
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Proof. If α ∈ TEn, the claim is clear. Now suppose that α 	∈ TEn, so αI = α+I(α). Write

α ∈ TdP in the block form as in Definition 2.3. Then

α= (v,u,−u,e,e′) and I(α) = (v,u,−u,−e′,−e)

I(α) = α− (0,0,0, e+e′, e+e′),

α · I(α) = α2− (e+e′)2, α2
I = 2α2+2α · I(α).

Since, α 	= I(α), e+e′ is a nonzero vector in E8. Therefore, α · I(α)> α2.

For α2 =−2 this leaves the only possibility α ·I(α) = 0 and α2
I =−4. Clearly, div(αI) = 2

in TEn so αI is a root of TEn. But div(αI) 	= 2 in TdP. Otherwise, e−e′ ∈ 2E8, which implies

that (e+e′)2 ≡ 0(mod 4), α · I(α)≥ 2 and α2
I ≥ 0.

Now let α be a (−4)-root in TdP. Since the divisibility of α is 2, one must have e,e′ ∈ 2E8,

so also e+ e′ ∈ 2E8. But then −(e+ e′)2 ≥ 8, α · I(α)≥ 4 and α2
I ≥ 0, a contradiction. This

completes the forward direction.

The converse follows from [37, Theorem 2.13 and Theorem 2.15]: up to ΓEn = O(TEn)

acting on TEn there is only one type of (−2)-vector and two types of (−4)-vectors.

Definition 3.5. Consider a primitive vector e∈ TEn with e2 =0. We get two hyperbolic

lattices

TEn = e⊥(in TEn)/e, T dP = e⊥(in TdP)/e, with TEn ⊂ T dP.

There are induced involutions IEn and IdP on these hyperbolic lattices. We denote J =

IEn ◦IdP =−IEn, which is an involution on T dP, for which the (+1)-eigenspace of J in T dP

is TEn.

Definition 3.6. Let e ∈ TEn be primitive isotropic. The stabilizer ΓEn,2,e of e in ΓEn,2

fits into an exact sequence

0→ Ue → StabΓEn,2(e)→ ΓEn,2,e → 0

where Ue is the unipotent subgroup, which acts trivially on e⊥/e = TEn. We define ΓdP,e

and ΓEn,e similarly.

Denote by W (ΓdP,e) the reflection subgroup of ΓdP,e. Its Coxeter diagram G(T dP) is one

of the two Coxeter diagrams in Figure 5. Denote by W (ΓEn,2,e) the reflection subgroup of

ΓEn,2,e; it is generated by reflections in the roots α ∈ TEn with α · e= 0.

Definition 3.7. Let Λ be an elliptic, parabolic, or hyperbolic lattice with an involution

J, and let G be its Coxeter diagram. We define the folded diagram GJ to be the diagram

with the vectors αJ for the roots α in G for which the folded vectors αJ happen to be roots

of ΛJ=1.

Lemma 3.8. Let C be a chamber for the action of W (ΓdP,e) on the positive cone C(T dP)

whose intersection with TEn has maximal dimension. Then the cone CJ := C∩ TEn ⊗R

is a fundamental chamber for W (ΓEn,2,e) and its Coxeter diagram is the folded diagram

G(T dP)
J .

Proof. Let α be one of the simple roots in equation (3.1), so that α⊥ is a wall of C. The

intersection of the positive cone C(TEn) with α⊥ is the same as with α⊥
J . If it is nonempty

then α2
J < 0. But then αJ is a root in TEn by Lemma 3.4. So the walls of CJ are α⊥

J for the

folded roots in G(T dP)
J and CJ is the fundamental chamber for the reflection group with

Coxeter diagram G(T dP)
J .
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Figure 7.

Folded diagram for cusp 2.

3.8 Coxeter diagrams for the 0-cusps of FEn,2 by folding.

We now find five involutions of the lattices U ⊕E2
8 and U(2)⊕E2

8 and compute folded

diagrams for them. We prove that they are the Coxeter diagrams for the groups ΓEn,2,e

for some isotropic vectors e ∈ TEn. These turn out to be the same as the Coxeter diagrams

computed in [44] by Vinberg’s method [47]. We keep Sterk’s numbering for the 0-cusps. In

the order of appearance, they are 2, 1, 3, 4, 5.

Lemma 3.9. On the Coxeter diagram for the lattice T dP = (18,0,0)1, consider the

reflection J : αk → α20−k about the vertical line. Then T
J=1

dP � U ⊕E8(2) and the folded

diagram is shown in Figure 7.

Proof. The sublattice T
J=1

dP is generated by the vectors αk+α20−k, 1≤ k ≤ 8 spanning

E8(2) and two vectors spanning an orthogonal U : α10 along with the vector v in the relation

(3.3). The computation of the folded Coxeter diagram is immediate.

Lemma 3.10. Consider the following involutions J on the lattice T dP = (18,2,0)1:

1. rotation of the diagram by 180 degrees.

2. reflection of the diagram about the diagonal, followed by a lattice reflection in the root

α20.

3. reflection of the diagram about a horizontal line.

4. the composition of 8 commuting reflections in the roots α1,α3, . . . ,α15.

The fixed sublattice T
J=1

dP is isomorphic to U(2)⊕E8(2) in case (1) and to U ⊕E8(2) in

cases (3,4,5). The folded diagrams are shown in Figure 8.

Proof. The computation of the folded Coxeter diagrams is immediate. The fixed

sublattices are computed as follows. In all cases the roots generate an index-2 sublattice of

T
J=1

dP .

The Coxeter diagram for cusp 1 contains a copy of Ẽ8(2), cf. diagram 12 in Figure 10,

and so contains a copy of E8(2). Half of the isotropic vector of Ẽ8(2) is integral, that is, lies

in T
J=1

dP . Together with the root disjoint from E8(2), these two elements form an orthogonal

copy of U(2), and together they span T
J=1

dP . This gives T
J=1

dP = U(2)⊕E8(2).

For cusp 3 we observe from diagram 31 in Figure 10 that the Coxeter diagram contains

a copy of (Ẽ7Ã1)(2), that is, Ẽ7Ã1 with the doubled bilinear form. Inside it is a copy of

(E7A1)(2) which is an index-2 sublattice of E8(2). One checks that this E8(2) is indeed a

sublattice of T
J=1

dP . Half of the isotropic vector of Ã1(2) together with the root disjoint from
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Figure 8.

Folded diagrams for cusps 1, 3, 4, 5.

(E7A1)(2) form an orthogonal copy of U. The computations for cusps 4 and 5 are similar,

starting with the subdiagrams D̃8(2) and (Ã7Ã1)(2), for cusps 41 and 51. We also made a

check with SageMath [42].

Lemma 3.11. The involution J on lattice T dP of Lemmas 3.9, 3.10 can be lifted to an

involution I on TdP with the fixed sublattice TEn. Taking IEn =−I gives T IEn=−1
dP = TEn.

Proof. For the involution of Lemma 3.9 the statement is obvious: we simply define I

to be the identity on the first summand of TdP = U(2)⊕ T dP. Similarly for cusp (1) in

Lemma 3.10 one has TdP = U ⊕T dP and we extend I to U as the identity.

In the cases (3,4,5) we have an exact sequence of abelian groups

0→ U → TdP = U ⊕T dP → T dP → 0

with T dP = U(2)⊕E2
8 , T

J=1

dP = U ⊕E8(2), and the trivial extension does not work.

Write U = 〈e,f〉 using the standard basis with e2 = f2 = 0, e ·f = 1. A section s : T dP →
Ze⊕T dP ⊂U⊕T dP is the same as an element a∈ T

∗
dP, so that x �→ x+a(x). The orthogonal

complement of T dP is 〈e,f −a〉 � U if a ∈ T dP, and 〈e,2f −2a〉 if a /∈ T dP. One has (2f −
2a)2 = 4a2. From this, we see that the last lattice is isomorphic to U(2) if the discriminant

form of T dP satisfies qTdP
(a) ∈ Z, and it is isomorphic to I1,1(2) = 〈2〉⊕〈−2〉 otherwise.

The discriminant form of T dP is the same as for U(2) = 〈e′,f ′〉 ⊂ T dP. We choose a= 1
2e

′

and define the involution I on TdP to be J on s(T dP) and the identity on its orthogonal

complement U(2). Then

T I=1
dP � U(2)⊕T

J=1

dP � TEn.

We complete the proof by Lemma 2.4.

Corollary 3.12. The above five folded diagrams G(T dP)
J are precisely the Coxeter

diagrams for the reflection groups W (ΓEn,2,e) for the isotropic vectors e ∈ TEn(mod ΓEn,2).
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Proof. By Lemmas 3.8, 3.9, 3.10, 3.11 the five diagrams we have found are Coxeter

diagrams for the reflection groups W (ΓEn,2,e) for some isotropic vectors e ∈ TEn. By [44]

the space FEn,2 has exactly five 0-cusps, so we have found them all.

Indeed, our Coxeter diagrams, obtained by folding, coincide with the ones found by Sterk

in [44] who used the Vinberg algorithm [47] to compute them.

Second proof, without using [44]. By Lemmas 3.8 and 3.11 it is sufficient to find all

involutions J on hyperbolic lattices T dP = U ⊕E2
8 and T dP = U(2)⊕E2

8 for which the

sublattice T
J=1

dP is isomorphic to U(2)⊕E8(2) or U ⊕E8(2) and such that the folded root

vectors define a chamber CJ lying inside a chamber C for the Coxeter diagram G(T dP).

Any such involution is a product of an involution of the diagram G(T dP), which may be

the identity, composed with a commuting involution in the Weyl group. It is well known

that an involution in a Coxeter group is a composition of commuting reflections.

Under the condition rk T
J=1

dP = 10, this reduces the check to the following possibilities,

in addition to the ones in Lemma 3.9 and cases (1,4) of Lemma 3.10:

a. a composition of reflections in 8 orthogonal roots of G(U ⊕E2
8).

b. the diagonal involution of G(U(2)⊕E2
8) composed with a single reflection in α0, α8, α16,

α18, α20 or α21.

c. a composition of reflections in 8 orthogonal roots of G(U(2)⊕E2
8).

The first case does not occur. We confirmed with SageMath that T
J=1

dP is never isomorphic

to U(2)⊕E8(2), and that it is isomorphic to U⊕E8(2) only in the second case for α20, and

in the last case for {α1,α3, . . . ,α15}.

3.9 1-cusps of FEn,2 by folding.

Lemma 3.13. The 1-cusps of FEn,2 correspond to the maximal parabolic subdiagrams of

the Coxeter diagrams of U ⊕E2
8 and U(2)⊕E2

8 which are symmetric with respect to one of

the five involutions of Lemma 3.10. For cusps 3 and 5 this means that the subdiagram has

to contain the roots α20, resp. α1,α3, . . . ,α15 in which the reflections are made.

Indeed, both correspond to the isotropic planes contained in the sublattice of T fixed

by the involution. We list these 1-cusps in Figures 9 and 10. They agree with Sterk’s

computations in [44], and the entire cusp diagram agrees with Figure 4.

Figures 9 and 10 contain the information of all cusp incidences of F
BB

En,2. The figures

are read as follows: the first numeral indicates one of the five folding symmetries 1,2,3,4,5

of the relevant hyperbolic lattice T dP, and this symmetry is also depicted on the Coxeter

Figure 9.

1-cusps of FEn,2 passing through 0-cusp 2.
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Figure 10.

1-cusps of FEn,2 passing through 0-cusps 1, 3, 4, 5.
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diagram for T dP, with an × indicating that we reflect in the corresponding root. These

correspond to the five 0-cusps added to FEn,2.

In blue is highlighted a maximal parabolic subdiagram invariant under the given folding

symmetry. Necessarily, all ×-ed vertices are contained in this diagram, since only these

diagrams can be invariant under the corresponding composition of root reflections. Such

blue diagrams are in bijection with the 1-cusps incident upon the corresponding 0-cusp.

The collection of all numerals, including the first label, indicate the corresponding 1-cusp,

see Notation 3.1.

Finally, adjacent to each maximal parabolic diagram for T dP is the corresponding

maximal parabolic subdiagram of the folded lattice TEn.

Remark 3.14. The 1-cusps E8D8 and D16 of F(2,2,0) do not appear as images of 1-cusps

of FEn,2. The reason is now clear: these are exactly the two of the eight 1-cusps of F(2,2,0)

for which the parabolic subdiagrams, that can be found (e.g., in [2]), are not symmetric

with respect to any of the four involutions in Lemma 3.10.

Remark 3.15. The idea that folded diagrams may be relevant to compactifying FEn,2

implicitly appears in [44], for example, there is a folded A15 diagram in Figure 16. We found

that once the K3 case is understood, the folding, when applied to the correct space—which

is F(2,2,0) and not F4—completely solves the Enriques case. Note that the moduli space F4

of quartic K3 surfaces has a unique 0-cusp with a non-reflective hyperbolic lattice, but the

moduli space F(2,2,0) of hyperelliptic K3 surfaces of degree 4 has two 0-cusps with reflective

hyperbolic lattices; see Figure 5.

§4. Dlt models via integral-affine structures on the disk and RP2.

4.1 General theory.

The general theory of integral affine spheres, IAS2 for short, in the form that we need

it here is detailed in [1], [2], [5], [14], [15]. We refer the reader to the above papers for the

necessary background, and give a broad summary now.

A Kulikov model is a K -trivial semistable model X → (C,0) of a degeneration of K3

surfaces over a pointed curve [29], [39]. For Type III degenerations, the dual complex Γ(X0)

of the central fiber is the 2-sphere S2, and for Type II degenerations Γ(X0) is a segment.

By [20, Remark 1.1v1], [14, Proposition 3.10] there is a natural integral-affine structure on

Γ(X0), with singularities. The correct notion of singularities is detailed in [1, Section 5].

Fixing one Kulikov model X → (C,0), we get Kulikov models for all other degenerations

with the same Picard–Lefschetz transform, of the same combinatorial type [18, Lemma 5.6],

[3, Definition 7.14] by deforming the gluings and moduli of components. We can extract

the KSBA stable limit of a degeneration (X ∗, εR∗) of K3 pairs, if we can describe the

integral-affine polarization RIA ⊂ Γ(X0), a certain weighted balanced graph [1, Definition

5.17]. This weighted graph encodes the line bundle OX0(R0) on a divisor model (X ,R): a

Kulikov model which admits a nef extension of Rt, t ∈ C \0, containing no singular strata

of X0 [5, Theorem 3.12], [30, Theorem 2.11].

By [4, Theorem 3.24], our chosen divisor R, as the fixed locus of an automorphism ιdP on

a general Enriques K3 surface, is recognizable, see [3, Definition 6.2]. By the main theorem

on recognizable divisors [3, Theorem 1], there is a unique semifan FR whose corresponding

semitoroidal compactification [35], [3, Section 5C] normalizes the KSBA compactification
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of FEn,2. By [3, Theorem 8.11(5)], (Γ(X0),RIA) can be chosen to be the same for all

degenerations with fixed Picard–Lefschetz transform.

In turn, the combinatorial data of (Γ(X0),RIA) determines the combinatorial type of the

KSBA stable limit of the degeneration (X 0, εR0) by [3, Corollary 8.13]. Then [3, Theorem

9.3] gives an algorithm to determine FR: Its cones are given by collections of Picard–

Lefschetz transformations for which (Γ(X0),RIA) determines a KSBA-stable pair of a fixed

combinatorial type. This is the natural notion of combinatorial constancy of such pairs.

The possible Picard–Lefschetz transformations of Kulikov degenerations in FEn,2 are

encoded by a vector λ∈ CJ called the monodromy invariant. It is valued in the fundamental

chamber CJ for one of the five folded diagrams GJ = G(T dP)
J of Figures 7 and 8 as in

Lemma 3.8 because λ must be invariant under the involution J on T dP. An algorithm

(albeit a complicated one), is provided in [2, Theorem 8.3] to build (Γ(X0),RIA) for all

monodromy invariants λ ∈ C in the fundamental chamber for the Weyl group action, for

either hyperbolic lattice T dP = (18,2,0)1 or T dP = (18,0,0)1 corresponding to a 0-cusp of

F(2,2,0).

Restricting IAS2 for F(2,2,0) to the involution-invariant sublattice T = T
J=1

dP exhibits a

polarized IAS2 for any Type III degeneration in FEn,2. Then, one can hope (and it is indeed

the case, as shown below), that on these subloci, the corresponding divisor models (X ,R)

admit a second involution identified with the limit of the Enriques involution. Thus, these

polarized IAS2 will provide a method to compute the Kulikov and KSBA-stable models of

all degenerations of both the Enriques surfaces and their corresponding double covers, the

Enriques K3 surfaces.

Definition 4.1. Let λ ∈ C, for the one of the two 0-cusps of F(2,2,0). We define

� := (�i)i∈G = (λ ·αi)i∈G

where αi are the roots of either diagram in Figure 5. Thus, �∈ (Z≥0)
22 for the cusp (18,2,0)1

and � ∈ (Z≥0)
19 for the cusp (18,0,0)1.

4.2 IAS2 for F(2,2,0).

We now identify the polarized IAS2 for degenerations in F(2,2,0) following the instructions

of [2, Theorems 7.4, 8.3]. We treat each of the two 0-cusps individually.

Cusp (18,2,0)1: We are to first take a K3 surface X̂ in the mirror moduli space for this 0-

cusp—these are U(2)⊕E⊕2
8 -polarized K3 surfaces. Then we are to consider the anticanonical

pair quotient

(Ŷ , D̂) := X̂/ ι̂dP

by the mirror involution and, for each L̂ in the nef cone of Ŷ , we must build a Symington

polytope P (�) for the line bundle L̂→ (Ŷ , D̂) corresponding to �, see [45], [2, Construction

6.16]. We build a sphere B(�)=P (�)∪P (�)opp by identifying two copies of this integral-affine

disk along their common boundary, to form the equator of the sphere. Then B(�)=Γ(X0) for

a monodromy-invariant λ↔ �↔ L̂ and the integral-affine polarization RIA corresponding

to the flat limit R0 ⊂X0 is the equator of the sphere, with weights alternating 2 and 1.

The anticanonical pair (Ŷ , D̂) is a rational elliptic surface with an anticanonical cycle

of 16 curves, of alternating self-intersections −1 and −4, which result from blowing up the
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Figure 11.

Moment and Symington polytopes for cusp (18,2,0)1.

corners of an I8 Kodaira fiber. This pair admits a toric model

(Ŷ , D̂)→ (Ŷ , D̂)

whose fan is depicted on the left-hand side of Figure 17. The rays going to the four corners

correspond to components of the toric model receiving an internal blow-up, that is, a blow-

up at a smooth point of the anticanonical boundary.

A moment polytope P (�) for the line bundle L̂ → (Ŷ , D̂) is depicted on the left of

Figure 11 and a Symington polytope P (�) for the line bundle L̂→ (Ŷ , D̂) corresponding to

� is depicted on the right of Figure 11. The right hand-side also serves as a visualization

of each hemisphere of the integral-affine sphere B(�) = Γ(X0), with the equator in blue

and integral-affine singularities in red. The quantities �20 and �21 are, respectively, twice

the lattice length between the singularities introduced by Symington surgeries on opposite

sides of the figure.

Cusp (18,0,0)1: The procedure for constructing polarized IAS2 at this cusp is essentially

the same as the above, instead taking the mirror moduli space to be U ⊕E⊕2
8 -polarized.

The fan of a toric model of the mirror is provided by the right hand side of Figure 17. The

integral-affine structures are similar to those depicted in [1, Figure 4], with an important

difference: The cusp (18,0,0)1 corresponds to a non-simple mirror of F(2,2,0). This means

that the integral-affine polarization RIA ⊂ B(�) has no support on the bottom edge of the

Symington polytope P, and R0 is empty on the corresponding components of X0. See the

discussion of a “B-move” in [2, Section 8D] for further details.

The IAS2 we need is the result of taking the IAS2 of [1, Figure 4], splitting the I2
singularity at the bottom into two I1 singularities traveling in opposite directions, and

colliding each one with a corner. This produces singularities in the bottom left and right

corners of charge 2, depicted with a larger red triangle, see Figure 12.

Remark 4.2. Note that in both cases, certain coordinates of � must be divisible by 2 to

build the polarized IAS2. This does not present an issue, since we only need divisor models

for all sufficiently divisible λ.
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Figure 12.

Symington polytope for cusp (18,0,0)1.

Remark 4.3. For the cusp (18,0,0)1, the polygon P (�) in Figure 12 can be closed by

a horizontal base exactly because of relation (3.3). The same holds for cusp (18,2,0)1 with

relation (3.4) and other similar relations.

To summarize, by [2, Theorem 8.3], we have:

Theorem 4.4. Let (B(�), RIA) be the polarized IAS2 built above, from � ∈ (Z≥0)
22 or

(Z≥0)
19. Then, upon triangulation into lattice simplices,

(B(�),RIA) = (Γ(X0),Γ(R0))

is the dual complex of the central fiber (X0,R0) of a divisor model (X ,R)→ (C,0), whose

monodromy invariant λ ∈ C satisfies �= (λ ·αi)i∈G.

4.3 IAD2 and IARP2 for FEn,2.

Now suppose that (X ,R)→ (C,0) is a Type III divisor model as in Theorem 4.4, whose

period map C∗ → F(2,2,0) factors through FEn,2. Then, the general fiber Xt is an Enriques

K3 surface with degree 4 polarization, and (X ,R) → (C,0) is a divisor model for the

degeneration. The quotient

X ∗/ι∗En = Z∗ → C∗

of the general fiber by the Enriques involution is a degenerating family of Enriques surfaces.

The monodromy invariant λ ∈ CJ then necessarily lies in the fundamental chamber for one

of the five 0-cusps of FEn,2. Equivalently, � must be invariant under one of the five folding

symmetries.

Proposition 4.5. Let λ ∈ CJ , �= (λ ·αi)i∈G. The folding symmetry J on T dP induces

an isomorphism ιEn,IA of the polarized IAS2(B(�), RIA) of Theorem 4.4. The dual complexes

Γ(X0,R0) of divisor models for Enriques K3 surface degenerations in FEn,2 are exactly those
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admitting the additional symmetry ιEn,IA (appropriately interpreted for ×-ed nodes in cusps

3, 5).

Proof. For each 0-cusp, we directly inspect the IAS2 for the parameters � corresponding

to λ ∈ CJ and see that there is an additional symmetry of B(�).

Cusp 2: We have λ∈ CJ if and only if �i = �20−i for all i=1, . . . ,9. The IAS2 in Figure 12

then has a visible symmetry, which is to act on the both the hemisphere P, and its opposite

hemisphere P opp, by a flip across the vertical line bisecting the bottom and top edges.

Cusp 1: We have λ∈ CJ if and only if �i = �8+i for all i= 0, . . . ,7, �16 = �18 and �17 = �19.

Then the corresponding involution ιEn,IA of the IAS2 is to rotate each hemisphere, shown

in Figure 11, by 180 degrees, and then flip the two hemispheres P and P opp.

Cusp 3: We have λ∈ CJ if and only if �i = �16−i for all i= 1, . . . ,7, �17 = �19, and �20 = 0.

This is because the folding symmetry also reflects in the root α20. So if wα20(λ) = λ, then

�20 = λ ·α20 = 0.

Recall that �20 is the lattice distance between the singularities introduced by the

Symington surgeries resting on the edges parallel to (1,−1) and (−1,1), on the right-hand

side of Figure 11. We construct B(�) in such a way that the two singularities introduced by

these Symington surgeries coincide. The involution ιEn,IA of the IAS2 acts by flipping each

hemisphere P, P opp diagonally.

Cusp 4: Similar to Cusp 2, we have λ ∈ CJ if and only if each hemisphere of B(�) is

symmetric with respect to flipping along a horizontal line bisecting the edges �6(0,1) and

�14(0,−1).

Cusp 5: We have λ ∈ CJ if and only if �2i+1 = 0 for i = 0, . . . ,7. We declare that ιEn,IA

act in the same manner as the extension of ιdP to X0: It flips the two hemispheres P and

P opp. The eight ×-ed nodes correspond to eight collisions of pairs of I1 singularities along

the equator.

By [2, Proposition 6.17], the mirror K3 surface X̂ admits a symplectic form ω and

Lagrangian torus fibration

μ : (X̂,ω)→B(�),

for generic � ∈ CJ . Note that while some of the 24 I1-singularities collide on B(�) for Cusps

3 and 5, we only ever get, for generic �, a collision of two I1-singularities with parallel

SL2(Z)-monodromies. So the fibration μ still exists, but has I2 fibers over these collisions.

The involution ιEn,IA acting on B(�) induces an involution of the Lagrangian torus

fibration (X̂,μ) and in turn on Pic(X̂) � T dP = (18,2,0)1 or (18,0,0)1 which is generated

by classes of visible curves, cf. [2, Section 6G]. In the current setting, the visible curves

(which correspond to the roots αi) are all of the following simple form: A path connecting

two I1-singularities with parallel SL2(Z)-monodromies. For Cusps 1, 2, 4, the involution

ιEn,IA acts on the classes of visible curves by the Enriques involution on T dP and thus, by

the Mirror/Monodromy theorem [15, Proposition 3.14], [2, Theorems 6.19, 7.6], B(�) is the

dual complex of a degeneration with a monodromy invariant in T
J=1

dP .

Some additional care must be taken for Cusps 3 and 5, where B(�) is a limit of IAS2 with

24 distinct I1-singularities. For each ×-ed node, the involution J acts on T dP by reflecting

along αi and so the class [ω] of the symplectic form should satisfy [ω] ·αi = 0. Equivalently,

there should be a nodal slide, see [2, Section 6E], which collides the two I1 singularities

of the visible curve corresponding to αi into an I2 singularity. This is indeed the case for
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the IAS2 described above. To summarize, invariance under reflection of an ×-ed node αi

corresponds, on the IAS2, to colliding the two I1 singularities bounding the corresponding

visible curve.

We conclude that an ιEn,IA-invariant polarized IAS2, which has a coalescence to an I2-

singularity for each ×-ed node, is the dual complex of a divisor model (X ,R)→ (C,0) for

degree 4 Enriques K3 surfaces whose monodromy invariant λ ∈ CJ is generic. The passage

from the result for generic λ∈CJ to all λ∈CJ is a standard trick involving a limit procedure

on the corresponding IAS2, examining B(�) as some �i → 0, see [5, Theorem 6.29], [2, Section

6G].

Theorem 4.6. For all λ ∈ CJ , the general divisor model (X ,R) → (C,0) with mono-

dromy invariant λ admits a second involution ιEn : X →X extending the Enriques involution

on the general fiber, and satisfying ιEn(R) =R.

Proof. The proof is essentially the same as [2, Theorem 8.3]. The key point is that the

Kulikov models X0 which arise as limits of Enriques K3s are those whose period point

ϕX0 ∈Hom(λ⊥(T dP),C
∗) is anti-invariant under ιEn,IA—we require anti-invariance because

ιEn,IA acts in an orientation reversing manner on Γ(X0).

The anti-invariant periods are those ϕX0 for which (SdP)
⊥
SEn

=E8(2)⊂ ker(ϕX0), and the

smoothings keeping these classes Cartier are exactly those admitting an SEn-polarization

(and hence admitting an Enriques involution). Finally, the Kulikov surfaces X0 with an

anti-invariant period are also identified with those admitting an additional involution ιEn,0

because the C∗-moduli of components and their gluings are made invariantly with respect to

the action of ιEn,IA on the gluing complex [3, Definition 5.10]. Furthermore, the deformations

keeping the involution ιEn,0 are then identified with those keeping the SEn-polarization.

Since the divisor model is generic, [2, Theorem 8.3] implies that R⊂X is the divisorial

component of the fixed locus of an involution ιdP on the threefold X extending the del

Pezzo involution on the general fiber. Then ιdP and ιEn commute on the general fiber and

hence commute on all of X . So ιEn preserves R.

More generally, every degeneration of Enriques surfaces admits a divisor model (X ,R)→
(C,0) for which ιEn defines a birational involution, and for which the union of the fixed

locus and the locus of indeterminacy contains R.

Definition 4.7. Let X → (C,0), (X ,R)→ (C,0) be a Kulikov, resp. divisor, model of

Enriques K3 surfaces for which ιEn defines a regular involution on X , resp. preserving R.

We define the dlt model, resp. the half-divisor model, to be the quotient by the Enriques

involution:

Z := X/ιEn, resp. (Z,RZ) := (X ,R)/ιEn.

Proposition 4.8. Let (Z,RZ)→ (C,0) be a half-divisor model for FEn,2 for the divisor

models constructed in Proposition 4.5. Then, the fibers of Z have slc singularities, KZ+εRZ
is relatively big and nef over C, and RZ contains no log canonical centers. In Type III, for

cusp number

(1) we have Γ(Z0) = RP2. Each component Vi ⊂Z0 is isomorphic, up to normalization,

with either of the two connected components of its inverse image in X0.

(2–5) we have Γ(Z0) = D2. If the component Vi ⊂ Z0 is covered by two irreducible

components of X0 then up to normalization, Vi is isomorphic to either of these
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components. If Vi ⊂ Z0 is covered by one irreducible component of Ṽi ⊂ X0 then

ιEn,0 acts on Ṽi with exactly four fixed points, two pairs of points on appropriately

chosen double curves D̃ij and D̃ik ⊂ Ṽi.

In Type II, Γ(Z0) is a segment. For cases in Figure 4 with a double rectangle, ιEn,0 acts

by flipping Γ(X0) and fixing no points of X0. Assuming that X0 contains a double curve E

preserved by ιEn,0, the action of the involution on E is a nontrivial 2-torsion translation.

For cases in Figure 4 with a single rectangle, ιEn,0 preserves every component of X0. On

any double curve, the action is by an elliptic involution fixing exactly four points. There are

no other fixed points on X0.

Proof. In Type III, the homeomorphism type of Γ(Z0) follows directly from the

description of the action of ιEn,IA in Proposition 4.5. In Type II, we can construct divisor

models (X ,R)→ (C,0) by taking limits of B(�) as it collapses to a segment, or equivalently

as λ approaches a rational isotropic ray at the boundary of C.
The resulting central fiber X0 is a chain of surfaces and by arguments similar to

Theorem 4.6, a general degeneration (X ,R) to the given Type II boundary divisor admits

an additional involution ιEn which acts on Γ(X0) by the limit of the action of ιEn,IA on the

segment B(�). This gives the claimed action on Γ(X0), by direct examination of the limiting

dual segment B(�) for all entries of Figures 9 and 10.

If ιEn,0 permutes two irreducible components, it is clear that the normalization of the

quotient agrees with the normalization of either component.

So suppose ιEn,0 preserves the pair (Ṽi, D̃i) ⊂ X0 (necessarily we are at a Cusp 2–5).

Possibly assuming further divisibility of λ, and choosing our triangulation of B(�) � S2

appropriately, we may assume that the fixed locus of ιEn,IA is a circle S1 ⊂ B(�) formed

from a collection of vertices ṽi and edges ẽij of Γ(X0).

Denote the corresponding collection of components Ṽi ⊂ X0 the Enriques equator. For

Cusps 2, 3, 4 the Enriques equator is distinct from the del Pezzo equator, which corresponds

to the common glued boundary of P or P opp and supports Γ(R0)⊂ Γ(X0). For Cusp 5, the

Enriques and del Pezzo equators coincide since ιdP,IA = ιEn,IA.

The logarithmic 2-form on X0 is of the form dx∧ dy, dx
x ∧ dy, or dx

x ∧ dy
y depending,

respectively, on whether (x,y) are local coordinates (in a component) at a smooth point,

a point in a double curve, or a triple point of X0. Since ιEn,0 has no divisorial fixed locus

and is non-symplectic, it fixes at most a finite subset of X0 contained in the double locus,

where (x,y) �→ (−x,−y) is non-symplectic.

So in Type III, the only fixed points of ιEn,0 are points in some D̃ij ⊂ X0 along the

Enriques equator. Being an involution of D̃ij �P1, there must be exactly 2 such fixed points.

We recover then a similar phenomenon as for the Kulikov models of Enriques degenerations

which were described in [2, Section 8F].

In Type II, the analysis is similar: If ιEn,0 preserves a component Ṽi, then the involution on

a preserved double curve D̃ij �E is locally given by negation on E. So the induced action on

this (and in turn any) double curve is an elliptic involution. On the other hand, suppose ιEn,0

permutes the two components containing E. Then, since the residues ResEω˜Vi
=−ResEω˜Vj

from the two components of the logarithmic two-form are negatives of each other, we must

have by non-symplecticness that ιEn,0 preserves a holomorphic one-form on E. So it acts

by a 2-torsion translation, nontrivial because the fixed locus is finite.
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Having analyzed the action of ιEn,0 on X0, we see the quotient Z0 has SNC singularities

at all points, except the images of the fixed points along the double curves of the Enriques

equator. Here the local equation of the quotient is

{(x,y,z) ∈ C3
∣∣xz = 0}/(x,y,z) �→ (−x,−y,−z) (4.1)

which is slc, with the only log canonical center being the image of the double locus x= z=0.

So Z0 has slc singularities.

Since the fixed locus is finite, KZ is numerically trivial. Furthermore, RZ inherits the

property of containing no log canonical centers, and being relatively big and nef, from R—

it is important here that no log canonical center was introduced at (0,0,0) in the above

quotient (4.1). The proposition follows.

Corollary 4.9. The KSBA-stable limit of a degeneration of (Z∗, εR∗
Z)→ C∗ can be

computed from the half-divisor model (Z,RZ)→ (C,0) of Proposition 4.7 as

ProjC
⊕
n≥0

H0(Z,nRZ).

This also furnishes a somewhat inexplicit description of the components of the KSBA-

stable limit (Z0, εRZ,0): First, we take a component (Ṽi, D̃i, R̃i) ⊂ (X0,R0) of the divisor

model for the degeneration in F(2,2,0). This is, up to corner blow-ups, the minimal resolution

of an ADE surface of [6]. Then, we impose the condition that the periods and dual complex

of (X0,R0) are involution invariant. Now, the Torelli theorem for anticanonical pairs [21,

Theorem 1.8], [17, Section 8] implies that (Ṽi, D̃i, R̃i) admits an involution ιEn,i which acts

in an orientation-reversing manner on the cycle D̃i. Then the quotient

(Vi,Di+ εRi) := (Ṽi, D̃i+ εR̃i)/ιEn,i

is a log Calabi–Yau pair of index ≤ 2 with Ri big and nef. The stable component

(V i,Di+ εRi)⊂ (Z0, εRZ0
)

is (up to normalization) the result of contracting all curves which intersect Ri to be zero.

Alternatively, we can reverse the order, taking first the stable model of (Ṽi, D̃i+εR̃i) to get

an ADE surface of [6] forming a component of (X 0, εR0) and then taking the quotient by

the induced involution ιEn,i. These stable surfaces and their quotients are described further

in Section 6.

Remark 4.10. The quotient Γ(Z0) = Γ(X0)/ιEn,IA of the dual complex inherits

naturally an integral-affine structure (with boundary in the case of a D2 quotient) from

Γ(X0). For the D2 case, the components forming the boundary of Γ(Z0) are exactly the

image of the Enriques equator, and they are the only singular components of Z0, each

component having 4 total A1 singularities.

Remark 4.11. We have only proven that a half-divisor model (Z,RZ)→ (C,0) exists

for generic degenerations with a given Picard–Lefschetz transform λ, since ιEn will in general

be a birational involution. This issue arises even for Type I degenerations, when X0 acquires

a (−2)-curve. If one contracts the ADE configurations in components of X0 ⊂ X forming

the loci of indeterminacy of ιEn, this issue does not arise and ιEn defines a morphism. In

general, the pair (Z,Z0) will only be dlt. This lends further weight to the notion that dlt
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models are the correct analog of Kulikov models in the more general setting of K -trivial

degenerations, see [13], [26].

Remark 4.12. In [36], Morrison gave a description of semistable degenerations of

Enriques surfaces, in the style of the Kulikov–Persson–Pinkham theorem [29], [39]. The

description of irreducible components and how they are glued is quite intricate (and floral),

involving flowers, pots, stalk assemblies, and corbels.

On the other hand, by Proposition 4.8 and Remark 4.11, we have, in all cases, a relatively

simple dlt model, whose singularities are SNC, except for some copies of the singularity

with equation (4.1) on double loci, and some klt singularities which are S2-quotients of

ADE singularities in the interiors of components.

The corbels of loc.cit. correspond to the singularity (4.1) while the flowers and stalk

assemblies are the semistable resolutions of the S2-quotients of the ADE singularities, in

the total space of the smoothing. Finally, the pots are the components of our dlt models

along which the flower and stalk assembly are attached.

The cases (i a), (i b), (ii a), (ii b), (iii a), (iii b) of [36, Corollary 6.2] correspond,

respectively, to Type I degenerations, Type I degenerations with a klt singularity, Type II

degenerations with Enriques involution flipping the segment, Type II degenerations with

Enriques involution fixing the segment, Type III degenerations with Γ(Z0) =RP2 (Cusp 1),

and finally Type III degenerations with Γ(Z0) = D2 (Cusps 2–5).

4.4 Examples.

We give some examples of divisor and half-divisor models. To distinguish notationally

between different 0-cusps, we write Bk(�), k ∈ {1, . . . ,5} for the folding-symmetric polarized

IAS2 at Cusp k, from Proposition 4.5.

Example 4.13. B3(2,0
15,2,4,6,4,0,4): Consider Cusp 3, with the diagonal folding

symmetry, and set � = (2,015,2,4,6,4,0,4) ∈ (Z≥0)
22. Then from Section 4.2, the moment

polygon P (�) for the toric model of the mirror is the sequence of vectors (3,−3), (2,2),

(−3,3), (−2,−2) put successively end-to-end.

We perform Symington surgeries of size 1,2,3,2 along the four edges (3,−3), (2,2),

(−3,3), (−2,−2) respectively, because (�16, �17, �18, �19) = (2,4,6,4). The result is the

Symington polytope P (�). Glue P (�) and P (�)opp to produce B3(�), which is depicted

on the left of Figure 13 (of course, only a fundamental domain of the sphere S2 can be

depicted on flat paper). Five red triangles depict the integral-affine singularities, with their

charge [1, Definition 5.3] shown in red.

The IAS2 is then admits two involutions, Enriques and del Pezzo, whose actions are

shown in orange and blue, respectively. The corresponding Enriques and del Pezzo equators

are shown in the respective colors. A triangulation into (green) lattice triangles is chosen,

subordinate to both equators. The blue del Pezzo equator, with integer weight 2, forms the

integral-affine polarization RIA.

The middle image of Figure 13 depicts the corresponding Kulikov model X0 of Enriques

K3 degeneration. Triple points T̃ijk = Ṽi ∩ Ṽj ∩ Ṽk are depicted in yellow, double curves

D̃ij = Ṽi∩ Ṽj are depicted in black. The self-intersection numbers

D̃ij

∣∣2
˜Vi
+ D̃ij

∣∣2
˜Vj
=−2
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Figure 13.

B3(�) and central fibers for �= (2,015,2,4,6,4,0,4).

are written in red (suppressed when both equal −1). The faces, including an outer face,

represent the components Ṽi with their anticanonical cycles D̃i =
∑

j D̃ij .

The righthand of Figure 13 depicts the dlt model. It consists of eight components Vi,

i = 1, . . . ,8. Double loci and triple points are still depicted in black and yellow. Successive

components along the image of the Enriques equator are

V1∪V2∪V4∪V6∪V8∪V7∪V5∪V3∪V1

and the double curves between these two components contain two A1-singularities of either

containing surface, depicted by orange diamonds.

The double covers (Ṽ6, D̃6)� (Ṽ7, D̃7) are toric, isomorphic to a two-fold corner blowup

of F6 as is (Ṽ1, D̃1), which is the blow-up of the four corners of an anticanonical square in

P1×P1.

The double covers (Ṽ2, D̃2)� (Ṽ3, D̃3) are the internal blow-ups of P1×P1 at two points

p,q on opposite components of an anticanonical square. The Enriques involution acts in the

corresponding toric coordinates by (x,y) �→ (x−1,−y), and thus for this involution to lift

to the internal blow-up, the two blow-up points must be interchanged: y(p) =−y(q). This

corresponds to choosing the involution anti-invariant periods on X0 for the unique ×-ed

node at Cusp 3.

The double covers (Ṽ4, D̃4) � (Ṽ5, D̃5) are both isomorphic to F2. Finally, (Ṽ8, D̃8) is a

minimal resolution of the A15 surface of [6]. It is the 16-fold internal blowup of F8 at 16

points on a section s, s2 = 8. These 16 points are placed symmetrically with respect to an

involution of s and F8, giving rise to an Enriques involution on (Ṽ8, D̃8).

The divisor RZ0 ⊂ Z0 is entirely supported on V1 ∪D18 V8 and has intersection number

RZ0 ·D18 = 1. We have that R2
1 = 0 and R1 ⊂ V1 is the image of two fibers of a toric ruling

on Ṽ1 while R8 ⊂ V8 satisfies R2
8 = 8 as it is the reduced image of the fixed locus R̃8 ⊂ Ṽ8

satisfying R̃2
8 = 16.

The map to the stable model (Z0, εRZ0
) contracts all components except V1 and V8 to

points and contracts V1 along a ruling, leaving the image of V8 as the only component. The

normalization

(V 8,D8+ εR8)� (Z0, εRZ0
)ν
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Figure 14.

B5(�) and central fibers for �= (0,0,2,07,1,03,1,0,0,0,2,0,2,6).

Figure 15.

B2(�) and central fibers for �= (0,1,07,2,07,1,0).

has, as anticanonical boundary D8 � P1, which is self-glued in Z0 along an involution fixing

0,∞∈D8. The singularities at 0,∞∈ V 8 are rather complicated.

Example 4.14. B5(0,0,2,0
7,1,03,1,0,0,0,2,0,2,6): Consider Cusp 5, whose folding

symmetry is the same as ιdP. This value of � dictates that we should put (2,0), (−1,1),

(−1,0), (0,−1) end-to-end, then perform a surgery of size 1 along the edge (−1,1), to

construct P (�). The corresponding sphere B(�) is shown in Figure 14, together with a

Kulikov and dlt model, following the conventions of Example 4.13.

There are four components (Ṽi, D̃i)⊂X0 of the Kulikov model, all of them preserved by

the Enriques involution. Both (Ṽ3, D̃3) and (Ṽ4, D̃4) are corner blow-ups of D4 involution

pairs. The surface (Ṽ1, D̃1) is the internal blow-up at points on two opposite fibers of an

anticanonical square in F2 and the Enriques involution interchanges the blow-up points.

Finally, (Ṽ2, D̃2) is a corner blow-up of a D8 involution pair. We have R̃2
1 = 0, R̃2

2 = 8,

R̃2
3 = R̃2

4 = 4.

The components of the stable limit of Enriques surfaces (V 3,D3+ εR3)� (V 4,D4+ εR4)

are denoted D4 : 2 = 2
′B−

2 and (V 2,D2 + εR2) is denoted by D8 : 2 = 2
′B−

4 in Section 6,

where these surfaces are described further. Only V1 is contracted (along a ruling) in the

stable limit Z0.

Example 4.15. B2(0,1,0
7,2,07,1,0): Note here that since we are at Cusp 2, �∈ (Z≥0)

19.

To form P (�), we put (0,1), (−2,0), (0,−1) end-to-end, and then close the base of the

polygon by a horizontal line. No Symington surgeries of positive size are made, so P (�) =

P (�). We glue to get B(�) as in Figure 15. Even though the central horizontal segment is

fixed by ιdP,IA it does not form part of the support of RIA, see Section 4.2.

Then Ṽ2 and Ṽ3 are each two disjoint copies of V2 and V3. (V2,D2) � (F1, L̂+C) where

L̂ is the strict transform of a line in P2 and C is a conic. The surface (V3,D3) is, up to

two corner blow-ups, the D8 involution pair as in Example 4.14, but since (Ṽ3, D̃3) is two
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disjoint copies of such, there is no period-theoretic restriction. Finally, (V1,D1) and (V4,D4)

form the image of the Enriques equator. They are both quotients of smooth toric surfaces

by an involution (x,y) �→ (x−1,−y).

Only V3 survives as a component (V 3,D3 + εR3). The double locus D3 � P1 ∪P1 is a

banana curve. In the stable model Z0, each P1 ⊂ D2 is self-glued by an involution fixing

the two nodes in D3. We have (R3)
2 = 8.

Example 4.16. B4(0
6,1,07,1,05,2,2) =B1(0,0,1,0

7,1,09,2,2). This is the Type II ray

corresponding to the 1-cusp with label 41, so it occurs as a limit of IAS2 at either Cusp 1 or

4. The dual complex Γ(X0) is a segment of length one and the Enriques involution flips the

segment (this means that, strictly speaking, the Enriques equator is not a sub-simplicial

complex of Γ(X0), as we usually require). The surface X0 = Ṽ1 ∪E Ṽ2 is the union of two

copies of the same D̃8 involution pair, glued with a twist by 2-torsion along the elliptic

curves E ∈ |−K
˜Vi
|.

The quotient Z0 is then a non-normal surface with Zν
0 � (Ṽ1,E), and the normalization

map glues E to itself by the 2-torsion translation. We have Z0 = Z0.

§5. Toroidal, semitoroidal, and KSBA compactifications.

5.1 Toroidal compactification for the Coxeter fans.

In Section 3.4, we reviewed the basic results of [46], [47] on reflection groups acting on

hyperbolic lattices. Now we recall applications of this theory to toroidal compactifications.

Let Λ be a hyperbolic lattice of rank r and signature (1, r − 1), and let C be the

positive cone, one of the two halves of the set {v ∈ ΛR | v2 > 0}. In the applications to

(semi)toroidal compactifications, instead of the closure C one operates with the rational

closure CQ, obtained by adding only rational vectors at infinity.

Let W be a group acting on Λ, generated by reflections in a set of vectors of Λ. Its

fundamental domain is

C= {v ∈ C | αi ·v ≥ 0}

for a set of simple roots αi with α2
i < 0 which is encoded in a Coxeter diagram G. The

chamber C can be identified with a polyhedron P in the hyperbolic space PC. The vectors

with v2 = 0 are treated as points at infinity of PC.
The subgroup O+(Λ) of the isometry group O(Λ) is the subgroup of index 2 that preserves

C. One has O+(Λ) = S.W , where S is a subgroup of symmetries of P.

Definition 5.1. The Coxeter semifan Fcox is the semifan with support CQ whose

maximal cones are chambers of W, that is, C and its W -images.

It is a fan iff P has finite volume, which is equivalent to W having finite index in O(Λ).

If this condition is satisfied then the faces of C are of two types:

1. Type II rays R≥0v generated by vectors with v2 = 0 on the boundary of CQ. These are

in bijection with the maximal parabolic subdiagrams of G.

2. Type III cones. These are in bijection with elliptic subdiagrams of G.

By [2, Section 3B] the moduli space F(2,2,0) admits a toroidal compactification F
cox

(2,2,0)

defined by the collection of fans FdP
cox = {Fr(18,0,0),Fr(18,2,0)}, one for each 0-cusp. These

fans are Coxeter fans for the hyperbolic lattices (18,0,0)1, (18,2,0)1 for the full reflection
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groups Wr, generated by reflections in the (−2)-roots and in the (−4)-roots of divisibility

2. The Coxeter diagrams Gr(18,0,0) and Gr(18,2,0) are given in Figure 5.

By Lemma 2.8 there is an immersion j : FEn,2 → F(2,2,0) whose image is a Noether–

Lefschetz locus in F(2,2,0). The normalization of the closure of j(FEn,2) in F
cox

(2,2,0) is then a

toroidal compactification F
cox

En,2 for the fans {Fk
cox}k=1,2,3,4,5, one for each of 0-cusp of FEn,2.

The fans Fk
cox are the intersections of the above fans Fr in the lattices T dP = (18,0,0)1

and (18,2,0)1 with the sublattices TEn = (10,10,0)1 and (10,8,0)1, as in Section 3. By

Lemma 3.8 and Corollary 3.12 these five fans are the Coxeter fans for the folded Coxeter

diagrams Gk
r of Figures 7 and 8. By [44] the induced groups acting on e⊥/e are of the form

Γk =Aut(Gk
r )�W (Gk

r ).

Lemma 5.2. For k = 1,2,3,4,5, the numbers of Type II + Type III rays in Fk
cox/Γk are

4+4, 2+8, 3+15, 4+12, 5+17. The toroidal compactification F
cox

En,2 has 9+56 = 65 Type

II + Type III divisors.

Proof. Direct enumeration of maximal parabolic and elliptic subdiagrams of rank 9 in

the Coxeter diagrams Gk
r . Type II divisors correspond to curves in F

BB

En,2 passing through

several 0-cusps, so each of them corresponds to several rays in Fk/Γk.

5.2 Semitoroidal compactification for the generalized Coxeter fans.

Looijenga’s semitoric, or semitoroidal compactifications of Type IV domains [35]

generalize toroidal compactifications in several ways. By [3, Theorem 7.18] these are the

normal compactifications dominating the Baily–Borel compactification and dominated by

some toroidal compactification. They are defined by collections of compatible semifans, one

for each Baily–Borel 0-cusp. The data for the 1-cusps is then uniquely determined. The

cones in semifans have rational generators but, unlike in fans, there could be infinitely

many generators, and the stabilizer groups of the Type III cones may be infinite.

The generalized Coxeter semifans were defined in [5, Section 4D] using the Wythoff

construction [12], as follows. As above, let W be a reflection group with a fundamental

chamber C and G = {αi} be the corresponding Coxeter diagram. Divide the vertices of G

into two complementary sets I�J of relevant and irrelevant roots. Let Wirr be the subgroup

of W generated by the irrelevant roots and let Cgen =∪h∈Wirrh.C The maximal dimensional

cones in the semifan Fgen are the chamber Cgen and its images under W. Another way to

describe Fgen is that it is the coarsening of the Coxeter fan Fcox obtained by removing the

faces of the form ∩α⊥
j ∩C in which {αj , j ∈ J ′ ⊂ J} is a collection of irrelevant roots.

In [2, Section 9A] the authors defined a specific semitoroidal compactification of the

moduli space F(2,2,0) by the collection Fram = {Fram(18,0,0),Fram(18,2,0)} of two semifans.

(Here, ram stands for the ramification divisor.) These are the generalized Coxeter semifans

for the Coxeter diagrams of Figure 5 in which the irrelevant roots are those that do not lie

on the boundary of the square, resp. the triangle, numbered respectively 0–15 and 2–18. The

main theorem of [2] for the moduli space F(2,2,0) says that the normalization of the KSBA

moduli compactification F (2,2,0) for the pairs (X,εR) is this semitoroidal compactification.

Definition 5.3. The collection of semifans F = {Fk}k=1,2,3,4,5, one for each 0-cusp of

FEn,2 is defined by intersecting the semifans Fram(T dP) for T dP = (18,0,0)1, (18,2,0)1 with

the subspace TEn = (10,10,0)1 and (10,8,0)1 as in Section 3.
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Definition 5.4. In each of the folded Coxeter diagrams of Figures 7 and 8, call a root

irrelevant if it is obtained by folding of an irrelevant root in Figure 5, that is, a root which

does not lie on the boundary of the square, resp. the triangle.

Lemma 5.5. The semifans {Fk}k=1,2,3,4,5 are the generalized Coxeter fans for the folded

Coxeter diagrams of Figures 7 and 8 with the irrelevant roots of Definition 5.4.

Proof. By Lemma 3.8, for a root α of T dP, if α
⊥ intersects the interior of the positive

cone C in TEn then α⊥∩C =α⊥
J ∩C for the folded root αJ . By definition, irrelevant roots fold

to irrelevant roots. Thus, the fans Fk are obtained from the Coxeter fans Fk
cox by removing

the faces of the form ∩α⊥
j ∩C in which {αj , j ∈ J ′ ⊂ J} is a collection of irrelevant folded

roots. So these are the generalized Coxeter semifans as stated.

Lemma 5.6. The semifans Fk are fans for k = 2,4 and are not fans for k = 1,3,5.

Proof. Indeed, for k = 2, resp. k = 4, the irrelevant subgroup Wirr = S2, resp. S
2
2 , is

finite. For the other 0-cusps the groups Wirr are infinite, the cones Ck have infinitely many

generators, and the corresponding polyhedra have infinite volumes.

Lemma 5.7. The semitoroidal compactification of FEn,2 defined by the collection of

semifans {Fk}k=1,2,3,4,5 is toroidal over the 0-cusps 2 and 4 and the 1-cusps which are

adjacent to them, and over 1-cusp 35. It is strictly semitoroidal over the remaining cusps.

Proof. By Lemma 5.6, this semitoroidal compactification is toroidal over the cusps 2 and

4 and so also over the 1-cusps adjacent to it. In general, the definition of the generalized

Coxeter semifan above implies that the semitoroidal compactification is toroidal over a 1-

cusp exactly when the corresponding maximal parabolic diagram does not have a connected

component consisting entirely of irrelevant vertices. Examining Figure 10 shows that in

addition to the 1-cusps adjacent to the 0-cusps 2 and 4 there is just one more, for the

1-cusp 35. This completes the proof.

Lemma 5.8. For k = 1,2,3,4,5, the numbers of Type II + Type III divisors at the cusps

of the semitoroidal compactification F
F

En,2 are 2+0, 2+7, 2+7, 4+7, 3+0, for a total of

6+21 = 27 divisors.

Proof. This is obtained by removing from the list of subgraphs in Lemma 5.2 the graphs

containing a connected component consisting of irrelevant vertices.

5.3 The main theorem.

By Section 2.4 there exists a compact moduli space FEn,2 whose points correspond to

the pairs (Z,εRZ) of Enriques surfaces with numerical polarization of degree 2 and their

KSBA stable limits, for any 0 < ε � 1. This is the closure of FEn,2 in the KSBA moduli

space of stable pairs.

Theorem 5.9. The normalization of FEn,2 is semitoroidal for the collection of semifans

{Fk}k=1,2,3,4,5 of Section 5.2. It is toroidal over the 0-cusps 2 and 4, the 1-cusps which are

adjacent to them, and over 1-cusp 35. It is strictly semitoroidal over the remaining cusps.

Proof. The main theorem of [3] is that the normalization of the KSBA compactification

of K3 pairs (X,εR) for a recognizable divisor R is semitoroidal and by [4] the ramification

divisor is recognizable. The main theorem of [2] for F(2,2,0) is that this semifan is the

ramification semifan Fram of Section 5.2.
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Consider the universal family (X , εR) → F (2,2,0) of KSBA-stable pairs over the com-

pactified moduli stack. Denote the closure of the image of FEn,2 in F (2,2,0) by B. Then,

the pullback of the universal family (XB, εRB) → B is a family whose general fiber is a

pair (X,εR) of an Enriques K3 surface with the ramification divisor R of the del Pezzo

involution. By uniqueness of KSBA-stable limits, the Enriques involution on the general

fiber extends to an involution on the universal family (XB, εRB). Taking the quotient gives

a family (Z, εRZ) → B over a compact base, extending the universal family of Enriques

surfaces (Z,εRZ) with divisor.

By Lemma 2.8, the normalization Bν of B is a compactification of FEn,2 admitting a

universal family of pairs. So we have a classifying morphism Bν → FEn,2. Furthermore, Bν

is simply the semitoroidal compactification of the Noether–Lefschetz locus B, induced by

the semifan Fram which gives the normalization F
ν

(2,2,0). This gives a family of KSBA stable

pairs over the induced compactification FEn,2, whose normalization by Section 5.2 is the

compactification F
F

En,2 for the collection of semifans F= {Fk}k=1,2,3,4,5.

To prove the first statement, it remains to show that Bν → FEn,2 is a finite map.

Equivalently, we do not lose moduli when we quotient a stable K3 pair (X,εR) by ιEn.

We claim that the normalization of FEn,2 dominates the Baily–Borel compactification.

Indeed, by the argument in [5, Theorem 3.17] it is enough to show that the j -invariant of

a Type II boundary point of the Baily–Borel compactification can be recovered from the

slc stable pair (Z,εRZ). The surface Z either has an elliptic double curve, or a P1 double

curve with four distinguished points, which are A1-singularities on a component containing

it. The corresponding j -invariant is that of the double cover of P1 branched over these 4

points.

Hence the normalization of FEn,2 is sandwiched by a semitoroidal and the Baily–Borel

compactification. By [3, Theorem 7.18], the normalization of FEn,2 is given by some semifan

coarsening Fk and so it suffices to prove that the maximal cones of this semifan are the

same as the maximal cones Fk.

The explicit description of Kulikov and stable models from Proposition 4.8 and

Corollary 4.9 imply the following fact: a degeneration of (Z,εRZ) has a maximal number

of double curves if and only if (X,εR) does. But if the normalization of FEn,2 were given

by any strict coarsening of {Fk}, there would be some codimension one cone of some Fk

that parameterized a 1-dimensional family of non-maximal pairs (X,εR), whose Enriques

quotients (Z,εRZ) had the maximal number of double curves. This is impossible, so we

conclude the first statement.

The last statement follows by Lemma 5.7.

§6. ABCDE surfaces.

The paper [6] classified the surfaces which may appear as irreducible components of

KSBA stable degenerations of K3 surfaces with a non-symplectic involution (X,ι) for the

pairs (X,εR), where R is a component of genus g ≥ 2 of the ramification divisor of the

double cover X →X/ι. In particular, the irreducible components of stable pairs (X,εR) in

[2], [5] are all of these types. The surfaces appearing in Type III degenerations naturally

correspond to Dynkin diagrams An, Dn, En, and those appearing in Type II degenerations

to the affine Ãn, D̃n, Ẽn diagrams. Both come with decorations addressing parity and some

extra data, as in Section 6.2 below.

https://doi.org/10.1017/nmj.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10


COMPACT MODULI OF ENRIQUES SURFACES 33

On the other hand, it is well known that the non simply laced Dynkin diagrams of

BCFGH types can be naturally described by “folding” ADE diagrams by automorphisms.

After recalling the ADE surfaces relevant to this paper, we define new B and C type surfaces

obtained from them as quotients by involutions.

The surfaces in [6] come in pairs π : (X,D+ εR) → (Y,C + 1+ε
2 B), fully analogous to

Diagram (2.1) in the introduction. Here:

1. (Y,C) is a log del Pezzo pair of index 2 with reduced boundary C and a nonempty nonklt

locus. The divisor B ∈ |− 2(KY +C)| is ample Cartier, and the pair (Y,C + 1+ε
2 B) is

KSBA stable; in particular it is log canonical.

2. π : X → Y is the index-1 cover for KY +C. Explicitly, X = SpecA, where A = OY ⊕
OY (KY +C) is an OY -algebra with the multiplication defined by an equation of B. One

has KX +D ∼ 0, R= 1
2π

∗(B) is ample, the pair (X,D+ εR) is KSBA stable and it has

a nonempty nonklt locus.

By the Riemann–Hurwitz formula, one has

KX +D+ εR= π∗ (KY +C+ 1+ε
2 B

)
. (6.1)

By [6, Lemma 2.3], the pairs (Y,C + 1+ε
2 B) and (X,D + εR) are in a one-to-one

correspondence. To distinguish them we will call the former del Pezzo ADE surfaces and

the latter anticanonical ADE surfaces.

6.1 Type III ADE surfaces.

The only ADE surfaces needed in this paper are the ones that appear on the boundary

of the KSBA compactification F (2,2,0). They are described in detail in the last section of

[2]. Most of them are easy: they are hypersurfaces in projective toric varieties in a way very

similar to the construction in Section 2.1.

As an example, consider one of the lattice polytopes Q in Figure 16 with an ADE Dynkin

diagram fitted into it. The polytopes are in Z2, and the gray dots indicate the sublattice

2Z2. The Type III polytopes for the ordinary elliptic ADE diagrams have a distinguished

vertex with two bold blue sides emanating from it. In the Type II polytopes for the extended

D̃Ẽ diagram there is a distinguished point in the interior of the bold blue segment. Together

with the ends of this segment, it makes three special vertices.

Figure 16.

Some ADE surfaces.
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By the standard construction, one associates to Q a toric variety VQ with an ample line

bundle LQ. Let us define a section of LQ as the following sum of monomials in Q∩Z2.

For Type III, each of the three special vertices above gets coefficient 1. The coefficients of

the vertices in the highlighted Dynkin diagrams are arbitrary numbers ai ∈ C. The other

coefficients are zero. Concretely:

1. (A5) f = (1+y2+x6)+
∑5

i=1aix
i,

2. (−A−
1 ) f = (x+y2+x3)+a1x

2,

3. (A−
0 ) f = 1+y2+x,

4. ( ′A−
4 ) f = (y+x2y2+x3)+a1xy+a2+a3x+a4x

2,

5. (D−
5 ) f = (y2+x2y2+x3)+a1xy+a2y+a3+a4x+a5x

2,

6. (D′
8) f = (y2+x2y2+x4y)+a1xy+a2y+

∑4
i=0ai+3x

i+a8x
3y,

7. (−E7) f = (y3+x2y2+x4)+a1xy+a2y
2+a3y+a4+a5x+a6x

2+a7x
3.

The corresponding del Pezzo ADE surface is the toric variety Y = VQ together with the

boundary C =C1+C2 for the two blue sides, and the divisor B is (f). Combinatorially the

condition B ∼ −2(KY +C) is equivalent to the condition that the other sides of Q have

lattice distance 2 from the distinguished point.

We now put these polytopes in Z2×0⊂ Z3. Let p0 be the position of the distinguished

vertex, we then add another vertex at the point p0 + (0,0,2) to which we associate the

monomial z2. Let P be the pyramid with the apex at the new vertex and with base Q.

Associated with it we have a 3-dimensional polarized toric variety (VP ,LP ) and a section

z2 + f of LP . An anticanonical ADE surface X is the zero set of this section, so it is a

hypersurface in VP . It comes with a del Pezzo involution ιdP : (x,y,z) → (x,y,−z), the

quotient map is π : X → X/ιdP = Y , the boundary is D = π−1(C), and the ramification

divisor is R= π−1(B).

Varying the free coefficients ai we get a family over Cn, where n is the rank of the Dynkin

diagram. This Cn is the quotient of the algebraic torus Hom(Λ∗,C∗)� (C∗)n by the Weyl

group W (Λ) for the ADE root lattice Λ with the weight lattice Λ∗. So it naturally comes

from a family over a torus.

6.2 Decorations.

Because of z2 and the double cover, the vertices in 2Z2 ⊂ Z2 are clearly distinguished;

let’s call them even. When the end of a bold blue edge is even, this edge is long, of lattice

length 2. Then we use no decorations. When this end is odd, the edge is short, of lattice

length 1. To indicate that it is short, we use a minus or a prime sign. We also use primes

to distinguish shapes where the long leg pokes into the interior of Q.

The classification of del Pezzo ADE surfaces (Y,C+ 1+ε
2 B) in [6] is divided into pure and

primed shapes. The surfaces for the pure shapes are all toric. The surfaces for some of the

primed shapes are toric, but not in general. They are obtained from pure shapes by making

a blow up at a point x∈D∩R on X, resp. a weighted blowup at a point y ∈C∩B in Y. For

each side D1,D2, the set Di∩R is either a single point (if the side is short) or two points

(if it is long). For example priming An on a long side once gives A′
n and twice gives A′′

n.

Priming A−
n on a short side is denoted by A+

n .

The blow up disconnects Di from R at that point. If all points in Di∩R are blown up,

for the strict preimages we have D′
i ·R′ = 0. In this case the linear system |mR′| for m� 0

contracts D′
i and the corresponding ADE surface has fewer boundary components. Thus,

https://doi.org/10.1017/nmj.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10


COMPACT MODULI OF ENRIQUES SURFACES 35

the surfaces for example for the shapes A′′
n and A+ have only one boundary component,

and for the shapes ′′A′′
n,

′′A+
n ,

+A+
n have zero boundary components.

6.3 Type II ADE surfaces.

The construction for the Type II polytopes is similar. The ends of the bold blue edge

have coefficients 1 in f, and the distinguished interior point has coefficient λ∈C. For clarity,

in Figure 16 one has

1. (Ẽ7) f = (y4+λx2y2+x4)+a1xy+a2y
3+a3y

2+a4y+a5+a6x+a7x
2+a8x

3,

2. (Ẽ−
8 ) f = (y3+λx2y2+x6)+a1xy+a2y

2+a3y+
∑5

i=0a4+ix
i,

3. (D̃−
8 ) f = (y2+λx2y2+x4y2)+a1xy+a2x

3y+a4x
4y+

∑4
i=0ai+5x

i.

The coefficients for the nodes of the extended Dynkin diagram are arbitrary numbers ai ∈C,

not all of them zero, and they are now treated as homogeneous coordinates of weight equal to

the lattice distance from the bold blue edge. Thus, for a fixed λ one gets a family of sections

z2+ f of LP and a family of anticanonical KSBA stable pairs (X,D+ εR) parameterized

by a weighted projective space. For Ẽ7 it is P(12,23,32,4), for Ẽ8 it is P(1,22,32,42,5,6),

and for D̃2n it is P(14,22n−3). The weight of the coordinate ai is the fundamental weight

of the Dynkin diagram on the associated monomial, shown in Figure 16.

The restriction of z2 + f to the divisor corresponding to the bold blue line gives a

double cover of P1 which is an elliptic curve. Varying λ we get a family of ÃD̃Ẽ surfaces

parameterized by a bundle of weighted projective spaces over the j -line. This is the same

bundle of weighted projective spaces that appeared in [32], [33], [41], whose fiber over j(E)

is the Weyl group quotient of Hom(Λ,E) for the relevant root lattice Λ.

The Ã2n−1 surfaces do not directly correspond to polytopes. These surfaces are double

covers of cones over elliptic curves branched in a bisection. The easiest description, closest

to toric is to use the Tate curve. For each i ∈ Z2n define the theta function θi as the formal

power series

θi =
∑

k≡i(mod 2n)

qk(k−1)/2xk.

It converges for any q ∈ C∗ with |q| < 1 and defines a section of L2, where L is an ample

line bundle of degree n on the elliptic curve Eq = C∗/qZ. For any ci ∈ C not all zero,

g(x) =
∑

ciθi is a nonzero section of L2 and f(x,y) = y2+ g(x) is a section on the square

of the tautological line bundle on Ỹ = P(O⊕L). It also defines a section of a line bundle

on the surface Y that is a cone over E, obtained by contracting an exceptional section of

Ỹ . Finally, z2+ f(x,y) defines a double cover X → Y and the covering involution ιdP is

(x,y,z)→ (x,y,−z).

6.4 Anticanonical ADE surfaces with two commuting involutions.

Let (X,D) be a log canonical pair with KX +D ∼ 0. Pick a generator ω of the space

H0(O(KX +D)) =C. Just as for K3 surfaces, an involution ι is called symplectic if ι∗ω = ω

and nonsymplectic if ι∗ω = −ω. By looking at a local equation dx∧ dy
y of ω near the

boundary, it is easy to see that for a nonsymplectic involution the quotient map X →X/ι

is not ramified along any irreducible component of D.

Proposition 6.1. Let π : (X,D+ εR) → (Y,C + 1+ε
2 B) be the anticanonical and del

Pezzo ADE surfaces, and ιdP be the anticanonical involution such that Y =X/ιdP. Suppose
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that ιEn : X →X is another nonsymplectic involution commuting with ιdP such that ιdP and

the induced involution τ : Y → Y both have finite fixed sets. Then there exists a diagram of

log canonical pairs

(X,D+ εR) (Z,DZ + εRZ) (Z ′,DZ′ + εRZ′)

(Y,C+ 1+ε
2 B) (W,CW + 1+ε

2 BW )

π

ψ

ψ′

ρ
ρ′

ϕ

(6.2)

in which

1. ψ : X → Z is the quotient by ιEn and ψ′ : X → Z ′ is the quotient by the symplectic

involution ιNik = ιdP ◦ ιEn.

2. RZ = 1
2ρ

∗(BW ) and RZ′ = 1
2ρ

′∗(BW ) are reduced divisors and one has R = ψ∗(RZ) =

ψ′∗(RZ′).

3. DZ = ρ∗(CW ) and DZ′ = ρ′∗(CW ) are reduced divisors and one has D = ψ∗(DZ) =

ψ′∗(DZ′).

4. (W,CW + 1+ε
2 BW ) is a del Pezzo ADE surface, and (Z ′,DZ′ +εRZ′) is an anticanonical

ADE surface which is its index-1 cover.

5. For any ε one has

KX +D+ εR= ψ∗(KZ +DZ + εRZ) = ψ′∗(KZ′ +DZ′ + εRZ′)

KZ +DZ + εRZ = ρ∗(KW +CW + 1+ε
2 BW )

KZ′ +DZ′ + εRZ′ = ρ′∗(KW +CW + 1+ε
2 BW ).

6. 2(KZ +DZ)∼ 0 but KZ +DZ 	∼ 0.

7. ρ′ is branched in CW and a finite subset of Branch(ϕ).

8. ρ is branched in CW , a finite subset of Branch(ϕ), and the irreducible components of

CW which are part of the branch locus of Y →W .

9. For any p ∈ Branch(ϕ)\CW , one has p ∈ Branch(ρ) iff p /∈ Branch(ρ′).

Proof. (1)–(3) are straightforward. Since ιNik is symplectic, O(KX +D) � OX , and

taking the ιNik-invariants gives O(KZ′ +DZ′) � OZ′ . (4) and (7) follow from this by [6,

Lemma 2.3]. (5) holds by the Riemann–Hurwitz formula.

The following argument applies to both T =Z or Z ′, ι= ιEn or ιNik. The image ofKX+D

under the norm map between Cartier divisors is 2(KT +DT ), thus 2(KT +DT ) ∼ 0. One

has OX =OT ⊕A for a divisorial sheaf A on T. The sheaves OT , A are the (±1)-eigenspaces

for the action of ι∗ on OT . Also, A 	� OT since X is connected. Since OX(KX +D) =OX ,

we get OZ′(KZ′ +DZ′) =OZ′ and OZ(KZ +DZ) =A 	� OZ . This proves (6).

For (8) and (9), consider p ∈ Branch(ϕ), p /∈ CW and let q = ϕ−1(p). Then the preimage

ρ−1(q) consists of two points r1, r2 interchanged by ιdP. One has p∈Branch(ρ) iff ιEn(r1) =

ιEn(r2) iff ιNik(r1) 	= ιNik(r2) iff p 	∈ Branch(ρ′).

One could say that the ADE surfaces Z ′ →W are obtained by folding the ADE surfaces

X → Y by the symplectic involution ιNik, and Z →W are obtained from X → Y by folding

by the nonsymplectic involution ιEn. The index-1 cover ρ′ : Z ′ →W and the index 2 cover

ρ : Z →W are dual in a similar way to Remark 2.2.
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In the next two sections we find several examples of such foldings, naturally corresponding

to foldings of ADE Dynkin diagrams, producing some non simply laced Dynkin diagrams

of B and C types. The smaller versions of these examples can be found in Figures 9, 10, 18,

and 19. The involutions appearing at Cusp 5 are described in Section 6.5, and those

appearing at other cusps in Section 6.6 below.

For the parabolic diagrams, we follow Vinberg’s conventions [46]: the D̃n diagram has

two forks, B̃n has one, and C̃n is a chain without forks.

6.5 Quotients by ±1 in the torus.

We first consider the Enriques involution on an ADE anticanonical surface X = {z2+
f(x,y) = 0} that is given by the same formula ιEn : (x,y,z)→ (−x,−y,−z) as in Section 2.1.

The pairs (X,D) of this type appear very naturally in Horikawa’s construction, when P1×P1

degenerates to a stable surface Y =∪(Yi,Di). As in Section 2.1, let Z2
ev = {(a,b) | a+b∈ 2Z}.

We have 2Z2 � Z2
ev � Z2.

Let Q be one of the ADE polytopes of Sections 6.1 and 6.3 above and assume that the

monomials of f(x,y) lie in Z2
ev. This means that the bold blue edges are long, the Dynkin

diagram ends in odd vertices on the boundary, and there are no minus or prime decorations.

We then have four surfaces as in Diagram (6.2). Our notation for the covers will be

α : 2 = 2β ⊂ γ, where α is the ADE type of X → Y , γ is the ADE type of Z ′ →W , and 2β

is the ABCDE type of the index-2 cover Z →W ; or simply α : 2 = 2β if β = γ.

Lemma 6.2. There exist diagrams of the following types:

1. A4n−1 : 2 = 2A2n−1 and A4n+1 : 2 = 2
−A−

2n−1,

2. A4n+1 : 2 = 2A
−
2n and A4n+1 : 2 = 2A

−
2n,

3. D4n : 2 = 2
′B−

2n ⊂ ′D−
2n+1 and D4n+2 : 2 = 2

′B−
2n+1 ⊂ ′D2n+2,

4. D̃4n : 2 = 2C̃2n ⊂ D̃2n+2,

5. Ẽ7 : 2 = 2B̃3 ⊂ D̃4,

6. Ã4n−1 : 2 = 2Ã2n−1.

Proof. The conditions of Proposition 6.1 are immediate to check. Let Q be the polytope

corresponding to the toric surface Y. The surface (W,CW ) is toric for the same polytope

Q and the lattice Z2
ev, so its ADE type is easy to find. In case (1) we get An and −An. In

case (2) it is the ′D type, as can be seen in [6, Figure 9]. The other three cases are checked

similarly, with the aid of [6, Tables 2, 3].

Thus, we describe the index-2 anticanonical surface (Z,DZ) in two ways:

1. as the quotient of (X,D) by ιEn, and

2. as an index-2 cover of a del Pezzo ADE surface (W,CW ).

The first way presents Z as a hypersurface in the toric variety VP for the same polytope P

as X but for a new lattice Z3
ev = {(a,b,c) | a+ b+ c ∈ 2Z}.

The branch locus of ϕ : Y →W consists of:

1. The torus-fixed points corresponding to the vertices of Q. Let us denote the distinguished

vertex of Q by c and the adjacent corners of Q by vi.

2. The boundary divisors corresponding to the sides (c,vi) of Q which are long with respect

to the lattice Z2
ev. We number them by i with i≡ 0(mod 4).
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By Proposition 6.1, ρ : Z →W is branched at the point for the distinguished vertex c and

in the boundary divisors for the sides Ci = (c,vi) with i ≡ 0(mod 4). There are two A1

singularities over each point in Ci∩BW . Also, ρ is unramified over the points for vi with

i≡ 2(mod 4).

Example 6.3. In Figure 1, consider the square Q with the vertices (0,0), (2,0), (0,2),

(2,2). Let Y be the corresponding toric variety, and and let C1, C2 be the boundary curves

for the two sides passing through the central point (2,2). Then Y = P1×P1, C =C1+C2 are

the fibers of two P1-fibrations, and B ∈ |O(2,2)|. Both Y and W = Y/τ are toric varieties

corresponding to the square Q but for different lattices: Z2 and Z2
ev, as in Section 2.1. W

has four A1 singularities at the torus-fixed points corresponding to the corners of Q.

The surface (Y,C+ 1+ε
2 B) is a del Pezzo ADE surface of type D4, and (W,CW ) is a del

Pezzo ADE surface of type ′D−
3 . The index-2 cover corresponds to the B2 diagram and we

denote it 2
′B−

2 .

The index-2 cover Z →W is branched in BW and at the two torus-fixed points where

KX +CW is Cartier. The corresponding index-1 is branched at BW and at the other two

torus-fixed points.

Example 6.4. In Figure 1, let Q be the triangle with vertices (0,0), (2,0), (2,2) and

C =C1+C2 be the boundary curves passing through the sides through (2,2). Then Y = P2

and B ∈ O(2). The surface W is the quadratic cone P(1,1,2). The ADE-type of (Y,C) is

A1 and the ADE-type of (W,CW ) is A−
0 .

The index-2 cover Z →W is branched in BW and the long side of C1,W of Q in Z2
ev. It

has two A1 singularities above C1,W ∩BW and two more above the apex of P(1,1,2). The

corresponding index-1 cover of W instead is branched in BW and at the apex of P(1,1,2),

and is isomorphic to P2.

6.6 Quotients by polytope involutions.

Now consider an ADE polytope Q which has an involution that in some coordinates can

be written as τ : (x,y)→ (x−1,−y). For the anticanonical ADE surface X = {z2+f(x,y) =

0} we choose the involution ιEn : (x,y,z)→ (x−1,−y,−z).

In the Ã2n−1 case, the involution that is centered at 0 ∈ Z4n is ιEn : (x,y,z) →
(qx−1,−y,−z). This sends θi to θ4n−i, and z2 + f is ιEn-invariant iff ci = c−i. Similarly,

one can define involutions centered at any i with 4|i.

Lemma 6.5. There exist diagrams of the following types:

1. A4n−1 : 2 = 2
′′B2n ⊂ ′′D2n+2 and −A−

4n−3 : 2 = 2
′′B−

2n−1 ⊂ ′′D−
2n+1,

2. ′A′
4n−1 : 2 = 2

′′B′
2n ⊂ ′′D′

2n+2,

3. D̃4n : 2 = 2B̃2n ⊂ D̃′′
2n+2,

4. Ã4n−1 : 2 = 2C̃2n ⊂ D̃′′′′
2n+4.

Proof. The conditions of Proposition 6.1 are immediate to check. The ADE types

are easily found by locating the singularities in the nonklt locus of (W,CW ) in [6,

Tables 2, 3].

Example 6.6. Consider the case A4n−1 : 2 = 2
′B2n. Then Y = P(1,1,2n) with the

minimal resolution Ỹ = F2n. The induced involution on Ỹ has four fixed points, two on the

(−2n)-section and two on a (+2n)-section. On the quotient of Ỹ by the induced involution
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this gives four A1 singularities. It follows that W has three singularities, one on CW whose

resolution graph is a chain of curves with −E2
i equal (2,n+1,2) and two outside of CW .

From [6, Table 2] we read off that the ADE type of (W,CW ) is ′′D′
2n+2.

The simplest form of the equation of X is z2+f , where

f = y2+x−2n+
2n−1∑
i=1

aix
−2n+i+a2n+

2n−1∑
i=1

a4n−ix
2n−i

with the involution ιEn : (x,y,z)→ (x−1,−y,−z). This equation is symmetric iff ai = a4n−i

for i = 1, . . . ,2n− 1, giving 2n free parameters. In alternative coordinates u = y+
√
−1z,

v = y−
√
−1z, the equation is uv+f = 0 so that the variable v =−fu−1 can be eliminated,

and the involution is (x,u)→ (x−1,−u). We note that for A4n−3 a similar involution has a

curve in the fixed locus, so it is not of Enriques type.

§7. KSBA stable degenerations of Enriques surfaces.

7.1 Type III stable models of K3 surfaces.

The Type III and Type II degenerations of K3 surfaces in F (2,2,0), that is, of degree 4

K3 surfaces with a del Pezzo involution are described in detail in the last section of [2]. We

briefly recall it, beginning with the Type III degenerations. There are two 0-cusps with the

lattices e⊥/e= (18,2,0)1 and (18,0,0)1 which were shown in Figure 5. At each of these cusps

there is a unique maximal degeneration. These are shown in Figure 17. Note the uncanny

resemblance to the Coxeter diagrams, shown in Figure 5. The similarities between the two

figures become even more pronounced when describing the non-maximal degenerations.

For the (18,2,0)1-cusp, the maximal degeneration is a union of 16 surfaces of A−
0 type,

which is P2 with a del Pezzo involution such that the quotient is the quadratic cone P(1,1,2).

We may symbolically write it as (A−
0

−A0)
8. This degeneration corresponds to the empty

subdiagram of Gr(18,2,0).

For an elliptic subdiagram G ⊂ Gr(18,2,0), each relevant component (i.e., not lying

entirely in the interior of the square) gives an ADE surface. Then the corresponding KSBA

degeneration is their union glued along double curves. The ADE surfaces are obtained by

smoothing some of the double curves in the maximal degeneration; these edges correspond

to the vertices in G. All of the degenerations are of the “pumpkin type”, see [2, Figure 2].

There is however a caveat: the C3 diagram in the third row of Figure 19 should be treated

instead as an ′A′
3 diagram. This is because the diagrams G are supposed to be subdiagrams

of G2, for the reflection group generated by the (−2)-roots, and Gr is the Coxeter diagram

for the full reflection group, which includes both (−2) and (−4)-roots. There is a simple

dictionary to translate from one to another, see [2, Figure 15].

Figure 17.

Maximal degenerations of K3 surfaces for (18,2,0)1 and (18,0,0)1 cusps of F(2,2,0).
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At the (18,0,0)1-cusp, the degenerations are of the “smashed pumpkin type”, as in

[2, Figure 2]. It can be understood in the following way. Begin with a union of 18

surfaces of A−
0 type, ∪18

i (Vi,Di), where Vi � P2 with an involution (x,y,z) → (x,y,−z).

The ramification divisor on Vi is a line, and the boundary curves D1, D2 are a line and a

conic. Consider two neighboring Vi, Vi+1 that are glued along a line D1, so that R∩D1 = p

is a point. Blow up this point in each of the surfaces to get V ′
i and V ′

i+1, both isomorphic

to F1. The strict preimage of R′ ∩V ′
i is now a fiber f of F1, and same for V ′

i+1. Contract

by the linear system |f |. Then Vi∪Vi+1 collapses to P1∪P1 and the entire surface ∪18
i=1Vi

which previously was represented by a “pumpkin” is partially collapsed, with the north and

south poles colliding.

For the non-maximal degenerations we begin with a Coxeter diagram Gr(19,1,1) as in

[5, Figure 4.1]. An elliptic subdiagram G of this Coxeter diagram, as in the case above,

corresponds to a union of ADE surfaces. We then perform the move described above to

partially collapse it. The edge between Vi and Vi+1 is always contracted, bringing the north

and south poles of the pumpkin together. The components Vi and Vi+1 are collapsed only

if they are of the A−
0 type, that is, the conic D2 in P2 was not smoothed out.

7.2 Type II stable models of K3 surfaces.

The stable models in this case are very similar to the Type III models described above.

They correspond to maximal parabolic subdiagrams G⊂Gr. After throwing away irrelevant

connected components ofG, each of the remaining components is a ÃD̃Ẽ subdiagram, giving

an ÃD̃Ẽ surface.

7.3 Type III stable models of Enriques surfaces.

By Corollary 4.9 and the proof of Theorem 5.9, the description of the KSBA stable limit

of Enriques pairs (Z,εRZ) are now straightforward: these are simply quotients of KSBA

stable limits of K3 pairs (X,εR) by an Enriques involution. The latter acts in different ways,

depending on the 0-cusp of FEn,2. The action is determined by the folding of the Coxeter

diagram, as in Figures 7 and 8. Let us spell them out, representing the surface (X,εR) by

a sphere S2.

Figure 18.

Max connected elliptic diagrams for 0-cusp 2.
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Figure 19.

Max connected elliptic diagrams for 0-cusps 1, 3, 4, 5.
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(1) At the cusp 1, the action on S2 is antipodal, with the quotient RP2. So all irreducible

components of X = ∪Vi are interchanged in pairs Vi � Vσ(i). Then the normalization of

Vi∪Vσ(i)/ιEn is isomorphic to the normalization of Vi.

(2, 3, 4) At these cusps the action on S2 is a reflection which is different from the

equatorial reflection defined by ιdP. Some of the components Vi of X come in pairs, and

some are fixed by ιEn. The latter ones are the Bn surfaces of Section 6.6.

(5) Here the action of ιEn on S2 is the same as the action of ιdP. Each component Vi is

fixed by ιEn and the quotients are the surfaces described in Section 6.5.

In Figures 18 and 19 we list the maximal connected elliptic subdiagrams in the Coxeter

diagrams, for each of the five 0-cusps of FEn,2. These then describe the largest possible

irreducible components in X and Z =X/ιEn. All other irreducible components correspond

to the subdiagrams of these maximal ones, which are preserved by the folding symmetry.

The surfaces are glued according to the Coxeter diagram.

Example 7.1. Consider the first surface 2−E−
8 : 2 = −E−

8 in Figure 19. The degenerate

Enriques surface is irreducible and its normalization is an ADE surface of type −E−
8 . It is

then glued to itself by an isomorphism D1 →D2 between the two sides.

The Coxeter diagrams in Figures 7 and 8 also describe the ramification divisor RZ on

the Type III degenerations Z. The boundary of each Coxeter diagram for the Cusps 1, 2,

3, 4, 5, that is, the image of the boundary of the square or the triangle, represents the

ramification divisor RZ . Thus, in Cusps 1 and 5, RZ is a cycle, and in the other three cusps

it is a chain.

7.4 Type II stable models of Enriques surfaces.

Similarly, the irreducible components of Type II degenerations are described by the

relevant components of the maximal parabolic subdiagrams in the Coxeter diagrams. We

listed them in Figures 9 and 10. The folded Type II surfaces are described in Sections 6.5

(cusp 5) and 6.6 (cusps 2, 3, 4).
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