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We present a new theoretical model describing gravity–capillary waves in orbitally
shaken cylindrical containers. Our model can account for both one-layer free-surface
and two-layer interfacial wave systems. A set of modal equations for irrotational
waves is formulated that we complement with viscous damping rates to incorporate
energy dissipation. This approach allows us to calculate explicit formulas for the
phase shifts between wave and shaker which are practically important for the mixing
efficiency in orbitally shaken bioreactors. Resonance dynamics is described using
eight dimensionless numbers, revealing a variety of different effects influencing the
forced wave amplitudes. As an unexpected result, the model predicts the formation
of novel spiral wave patterns resulting from a damping-induced symmetry breaking
mechanism. For validation, we compare theoretical amplitudes, fluid velocities and
phase shifts with three different and independent experiments and, when using the
slightly deviating experimental values of the resonance frequencies, find a good
agreement within the theoretical limits.

Key words: wave–structure interactions

1. Introduction
Orbital sloshing experiments provide the opportunity to study a broad range of

physical effects in the field of fluid mechanics with moderate effort. An orbital
shaking device can perform circular trajectories with adjustable shaking diameters ds
and angular frequencies Ω . This motion naturally induces a homogeneous, rotating
centripetal force, which can be exploited to drive rotating gravity or capillary waves
accompanied by a swirling mean flow in partially filled cylindrical tanks.

Although such experiments might appear unsophisticated, we know today that
the evolving wave dynamics can be quite complex. Multiple linear and nonlinear,
harmonic and sub-harmonic, synchronous and non-synchronous wave modes may
arise. These modes can involve linear or nonlinear resonance dynamics subject to a
hysteresis or even wave breaking. Different damping mechanisms require a profound
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understanding of the viscous boundary layers. Additionally, the wave-induced flow
fields can comprise different secondary flow structures as well as a swirling mean
flow. Finally, capillary effects at the surface–sidewall contact line can modify the
entire wave dynamics or cause additional damping. In addition to these basic research
topics, there is a substantial amount of applied research on orbitally shaken bioreactors
(OSBs), the most important current application. In the following, we will give a short
overview of orbital sloshing research.

The first known orbital sloshing apparatus was realised by Ludwig Prandtl around
1940, who intended to understand the origin of the mean swirling flow (Prandtl 1949;
Eckert 2019), a question which is still the subject of research. Mainly motivated
by spacecraft and offshore applications, sloshing dynamics research in the 1950s
concentrated on hydrodynamic loads in moving containers under lateral, rolling or
pitching excitation; see Abramson (1966). In contrast, orbital sloshing, which is
less connected to these practical applications, remained almost unexplored with the
exception of Hutton (1964). Hutton developed analytical expressions for the velocity
field and the surface elevation by applying potential flow theory.

Orbitally excited hydrodynamics came into focus only much later at the beginning
of the 21st century due to the growing interest in orbitally shaken bioreactors.
Modern OSBs can provide mixing, aeration and shear stresses on multiple scales and
are meanwhile used for various applications such as the cultivation of mammalian
stem cells, drug production or fermentation processes (Klöckner & Büchs 2012;
Klöckner, Diederichs & Büchs 2014). While earlier studies had focused mainly on
the gas exchange, mixing or the power consumption (Büchs et al. 2000; Micheletti
et al. 2006; Zhang et al. 2009; Tissot et al. 2010; Klöckner et al. 2012), research
into wave and fluid mechanics has gained importance in recent years. Kim & Kizito
(2009) were the first to experimentally and numerically study the wave-induced flow
fields and found that the swirling mean flow is mainly driven by secondary flow
structures.

Significant experimental progress was then achieved by Weheliye, Yianneskis &
Ducci (2013) and Ducci & Weheliye (2014), who measured velocity fields for a wide
range of parameter combinations. From these measurements they could deduce useful
scaling laws to predict the interface elevation, they managed to characterise different
flow regimes and, perhaps most importantly, they could characterise the transition to
the out-of-phase flow regime that is essential for the bioreactor efficiency in terms of
mixing times (Rodriguez et al. 2014), microcarrier suspension speeds (Pieralisi et al.
2016) or power consumption (Büchs et al. 2000). Complementary, studies by Reclari
(2013) and Reclari et al. (2014) investigated in detail the wave dynamics. Using
inviscid potential flow theory, they developed a weakly nonlinear model to predict
the wave motion and velocity fields. This model is still state-of-the-art and can
characterise and classify many different wave patterns. However, the wave dynamics
under close-to-resonance excitation is out of the scope of this model. There, it
diverges, and waves behave strongly nonlinearly under typical shaking conditions.
This gap was recently filled by Timokha & Raynovskyy (2017) and Raynovskyy
& Timokha (2018b) who have applied the Narimanov–Moiseev multimodal sloshing
theory describing the nonlinear wave dynamics near the first resonance. They have
proven that resonant wave dynamics is of the hard-spring type and could explain
its frequency-dependent hysteresis, observed before by Reclari (2013). Also Prandtl’s
original question about the origin of the mean swirling flow slid back into focus.
Bouvard, Herreman & Moisy (2017) have studied the Lagrangian mean flow in
the weakly nonlinear regime and attributed the mean central rotation primarily to
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the Stokes drift. Thereafter, Faltinsen & Timokha (2019) provided a comprehensive
theoretical description of both the Eulerian and non-Eulerian mean azimuthal mass
transport, pointing out that the Stokes drift can explain the mass transport only in a
small neighbourhood around the tank centre. Moisy, Bouvard & Herreman (2018) have
investigated the mean flow under the influence of a thin layer of foam and explained
the formation of a counter-rotating flow. Beside these fundamental approaches, there
is currently ongoing research on different flow properties of practical relevance for
the design and optimisation of OSBs: wall shear stresses, volumetric mass transfer,
mixing times or wave breaking regimes (Discacciati et al. 2013; Rodriguez et al.
2013; Filipovic et al. 2016; Pieralisi et al. 2016; Thomas et al. 2017; Alpresa et al.
2018a,b; Rodriguez, Micheletti & Ducci 2018; Weheliye et al. 2018; Zhu et al.
2018).

A related magnetohydrodynamic question stimulated our own interest in the topic.
Horstmann, Wylega & Weier (2019) have introduced a novel multi-layer interfacial
sloshing wave experiment, which is physically related to the presented free-surface
sloshing studies. It was designed with the intention to imitate the responding wave
dynamics, as it can be induced by the magnetohydrodynamical metal pad roll
instability, which is a potential limiting factor in aluminium reduction cells and
liquid metal batteries (Bojarevics & Romerio 1994; Weber et al. 2017; Horstmann,
Weber & Weier 2018; Kelley & Weier 2018; Tucs, Bojarevics & Pericleous 2018).

It became apparent that understanding of the effects of viscous damping on
resonance dynamics, particularly for the case of interfacial waves, can be improved.
The frequently applied potential model of Reclari et al. (2014) fails to predict the
wave amplitudes near resonance, the most interesting regime, due to the lack of
any dissipation source term. Likewise, a satisfactory explanation of the overdamped
resonance amplitudes, described by Horstmann et al. (2019), is lacking so far. Also,
the phase lags between shaker and wave are not yet quantitatively understood. There
are at least two different physical mechanisms which are frequently confused: on the
one hand, we have the classical phase jumps of 180◦ emerging around the resonance
frequencies, which are smoothed out by damping forces. These kinds of phase shifts
are, inter alia, discussed by Reclari et al. (2014), Bouvard et al. (2017), Alpresa
et al. (2018a) and Horstmann et al. (2019). We will refer to them henceforth as
linear phase shifts, although they also appear in the weakly nonlinear regime, where
they can be subject to a hysteresis (Raynovskyy & Timokha 2018b). On the other
hand, Weheliye et al. (2013), Klöckner et al. (2014), Ducci & Weheliye (2014) and
Weheliye et al. (2018) investigate strongly nonlinear phase shifts, which are induced
by the interaction of secondary flow structures with the vessel walls. These phase
shifts are essential for the mixing efficiency (Rodriguez et al. 2014) and can arise
long before the first resonance is reached.

In the paper at hand we develop a new damped sloshing model accounting for
both gravity–capillary free-surface and interfacial waves in cylindrical containers.
Consequently, the model can be applied to better understand wave dynamics in many
OSB as well as to study damping mechanisms in multi-layer stratifications such as
liquid metal batteries. Aiming for explicit solutions, we derive at first a set of modal
equations accounting for the irrotational part of the flow only and include linear
damping rates a posteriori. Viscous damping rates of interfacial waves in cylinders
were recently derived by Herreman et al. (2019) and are applied for the two-layer
description. Analogous damping rates of free-surface waves are well known (Miles &
Henderson 1998) and have already been included in the nonlinear resonant sloshing
theory of Raynovskyy & Timokha (2018b). Our analysis is restricted only to linear
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solutions since we found that they already capture several of the aforementioned
phenomena and allow for some predictions in the weakly nonlinear regime as well.

The paper is organised as follows. In § 2, we formulate the sloshing problem and
derive a set of modal equations, which is supplemented by linear damping rates. We
present explicit solutions for the wave amplitudes and phase shifts which depend on
eight independent dimensionless numbers. In § 3, we discuss the resulting wave and
resonance dynamics for the different cases considered. As a special feature, the theory
predicts the occurrence of novel spiral wave patterns, which are analysed for various
damping rates. In § 4, we finally compare theoretical wave amplitudes, phase shifts
and fluid velocities with three recently reported experiments. Section 4.3 contains an
explanation of the wave elevation’s linear scaling with the Froude number that was
found by Weheliye et al. (2013) on an empirical basis. Building on this, a prediction
for the nonlinear out-of-phase transition is also derived by quantifying the waviness
of the free surface.

2. Theory
Analytical solutions to viscous wave dynamics are often difficult if not impossible

to find. Therefore, potential flow theory was frequently applied in many early studies
to approximate the velocity fields. However, potential flow theory introduces drastic
simplifications: the flow is assumed to be inviscid, irrotational and incompressible.
Further, wave amplitudes must remain sufficiently low to allow linear or weakly
nonlinear approaches. Despite all these restrictions, potential approaches have been
quite successful in predicting non-resonant sloshing (Ibrahim 2005).

Studies tackling viscous wave theories and their higher mathematical complexity are
rare. A significant approach for lateral excitation was developed by Bauer & Eidel
(1997, 1999), who performed a modal analysis starting from the Stokes equations.
This approach allows us to calculate responding resonance curves and container forces
in direct dependence of the viscosity; however, the solutions are elusive and remain
implicit. For this reason, we decided to apply a simpler approach based on potential
flow theory. Although potential flow theory can be applied only to irrotational flows,
it is possible to include viscous damping rates a posteriori into the modal equations,
as described by Faltinsen & Timokha (2009, chap. 6). In this way, we neglect the
influence of rotational boundary layers on the flow fields and the wave motion, but we
can include the energy dissipation resulting from the boundary layers. This approach is
valid only if the boundary layers are considerably smaller than the lateral dimensions
of the cylinder. The detailed parameter regime fulfilling this condition is discussed in
§ 2.5.

Very recently, Herreman et al. (2019) have derived viscous damping rates for
interfacial waves in cylindrical tanks using a perturbative description of Stokes
boundary layers. This result finally allows us to derive explicit viscosity-dependent
formulas for the resonance curves and phase shifts, which are comparatively easy to
handle and simple to apply for further analysis.

2.1. Statement of the problem
Figure 1 shows the set-up for our theoretical framework, analogous to the description
given by Reclari (2013). We define an ideal cylinder of radius R, containing two liquid
layers (subscripts i= 1, 2) of heights h1, h2, kinematic viscosities ν1, ν2 and densities
ρ1, ρ2, where ρ1<ρ2 must be fulfilled to ensure a stable vertical stratification. Gravity
g acts in the negative z-direction. In cylindrical coordinates (r, ϕ, z) the interface is
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FIGURE 1. Sketch of the theoretical set-up. A cylinder of radius R undergoes a harmonic
circular translation of diameter ds with a constant angular frequency Ω . The cylinder
contains two fluids i= 1, 2 of densities ρi, kinematic viscosities νi and layer heights hi,
which are stably stratified due to gravity g. The interface with interfacial tension γ is
placed at z = η(r, ϕ, t) in the frame of reference moving with the cylinder O(r, ϕ, z).
The inertial frame of reference is indexed by O′(r′, ϕ′, z′). The orange arrows mark the
decompositions of the orbital translation into Cartesian coordinates (ex, ey).

located at z = η(r, ϕ, t). Interfacial tension γ is considered along the liquid–liquid
interface but capillary forces acting on the contact line are neglected; we assume
that the interface may slide freely along the cylinder wall while maintaining a static
contact angle of 90◦ (no meniscus). The coordinate origin of the moving cylinder,
the moving frame of reference O(r, ϕ, z), is defined in the centre of the unperturbed
interface η. In addition, we define the inertial frame of reference O′(r′, ϕ′, z′) to
describe the circulatory trajectories of the shaking table. The shaker is horizontally
translated with a constant angular frequency Ω along a circular path ϕ′(t) = Ωt of
shaking diameter ds.

This formulation is characterised by eleven physical variables and three physical
dimensions. Following the Buckingham π theorem, the system can be uniquely
described by eight independent dimensionless parameters. We define the following
set of dimensionless numbers for our analysis:

Fr=
dsΩ

2

2g
, E=

ds

2R
, Rei=

ΩR2

νi
, Hi=

hi

R
, Bo=

(ρ2 − ρ1)gR2

γ
, A=

ρ2 − ρ1

ρ1 + ρ2
. (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.163


891 A22-6 G. M. Horstmann, W. Herreman and T. Weier

The Froude number Fr describes the forcing expressed by the ratio of inertial
force and gravitational acceleration. The normalised shaking diameter determines the
eccentricity E, while Rei are the phase-dependent Reynolds numbers, here weighting
the cylinder radius with the boundary layer thicknesses δi =

√
νi/Ω . The importance

of gravitational forces compared with interfacial tension forces is specified by the
Bond number Bo. Finally, Hi and A are the geometrical aspect ratios and the Atwood
number, respectively. It is the aim of our following analysis to relate these numbers
to the resulting wave amplitudes and phase shifts.

2.2. Modal equations and solutions
The velocity vector V 0(t) describing the orbital container motion can be expressed in
terms of cylindrical unit base vectors in the inertial frame of reference O′(r′, ϕ′, z′)

V 0(t)=

−
dsΩ

2
sin(Ωt− ϕ′)er′

dsΩ

2
cos(Ωt− ϕ′)eϕ′

 . (2.2)

Due to this orbital motion the liquids in the cylinder constantly experience rotary
acceleration in the moving frame of reference O resulting in centripetal forces, which
can be formulated as external volume forces in the equations of motion for the
container-fixed coordinate system. The incompressible Euler equations for O under
the influence of gravity g and subject to V 0 are

∂ui

∂t
+

1
2
∇|u2

i | − ui × (∇× ui)+
1
ρi
∇Pi − g+ V̇ 0 = 0, (2.3)

∇ · ui = 0, (2.4)

(compare with Kochin, Kibel & Roze (1964, chap. 2)), where ui are the relative
velocity fields and Pi the pressures associated with both fluids (i = 1, 2). By
postulating irrotationality (∇ × ui = 0), the potential flow approximation can be
applied stating that the flow fields ui can be uniquely expressed as gradients of scalar
potentials φi

ui =∇φi. (2.5)

By inserting (2.5) into (2.3) and (2.4) and integrating over the cylinder volume, a
complete set of governing equations and boundary conditions for the scalar flow
potentials φi, the pressures Pi and the interface position η can be formulated

Flow fields:
∂φi

∂t
−

dsΩ
2r

2
cos(Ωt− ϕ)+

1
2
(∇φi)

2
+

Pi

ρi
+ gz= ci(t), (2.6a)

Flow fields: 1φi = 0, (2.6b)

Top wall:
∂φ1

∂z
= 0|z=h1, (2.6c)

Bottom wall:
∂φ2

∂z
= 0|z=−h2, (2.6d)

Sidewall:
∂φ1

∂r
=
∂φ2

∂r
= 0|r=R, (2.6e)
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Interface:
∂φ1

∂z
=
∂φ2

∂z
=
∂η

∂t
+∇φi · ∇η|z=η, (2.6f )

Interface: γ∇ ·
∇η√

1+ |∇η|2
= P1 − P2|z=η. (2.6g)

The first two equations (2.6a) and (2.6b) are the instationary Bernoulli equation and
the Laplace equation ensuring energy and mass conservation. Equations (2.6c), (2.6d)
and (2.6e) comprise the kinematic no-outflow boundary conditions at the cylinder
walls. Equation (2.6f ) is an additional kinematic boundary condition achieving the
preservation of the interface. Finally, the formulation is closed by the Young–Laplace
equation (2.6g) relating the pressure discontinuity at the interface to the capillary
pressure.

This formulation represents a class of spectral sloshing problems well known in
the literature. Faltinsen & Timokha (2009) introduce different modal theories to find
approximate analytical solutions for free-surface sloshing problems, mathematically
quite similar to our two-layer formulation. In this study, we want to focus on
first-order linear solutions, which are reasonable approximations as long as the wave
amplitudes remain sufficiently small. In the linear approximation, the flow potentials
φi can be described as superpositions of an infinite number of independent sloshing
modes m ∈N0 and n ∈N1

φ1(r, ϕ, z, t)=−
∞∑

m=0

∞∑
n=1

Φmn(ϕ, t)
cosh

(εmn

R
(z− h1)

)
sinh

(εmn

R
h1

) Jm

(
εmn

r
R

)
, (2.7a)

φ2(r, ϕ, z, t)=
∞∑

m=0

∞∑
n=1

Φmn(ϕ, t)
cosh

(εmn

R
(z+ h2)

)
sinh

(εmn

R
h2

) Jm

(
εmn

r
R

)
, (2.7b)

with Φmn(ϕ, t)= αmn(t) cos(mϕ)+ βmn(t) sin(mϕ),

which fulfil the Laplace equations and the no-outflow boundary conditions on the solid
walls; αmn(t) and βmn(t) are the time-dependent modal functions to be determined, Jm

are the mth-order Bessel functions of the first kind and εmn denote the mode-dependent
wavenumbers, restricted to the n roots of the first derivative of the mth-order Bessel
function (J ′m(εmn)= 0; Abramowitz & Stegun (1972)), needed to satisfy the no-outflow
condition at the sidewalls; εmn are often called the radial wavenumbers since they
determine the number of crests in the radial direction. Accordingly, m denote the
azimuthal wavenumbers.

In order for the flow potentials (2.7) to fulfil (2.6), we have to specify the modal
functions αmn(t) and βmn(t). Linear model theories show that the modal functions
always obey a multidimensional system of ordinary differential equations. Faltinsen
& Timokha (2009, equation (5.155)) have derived the modal equations in the case
of one fluid layer, which are mathematically very similar to our interfacial sloshing
problem. By following their procedures, we find the modal equations

α̈1n(t)+ 2λ1nα̇1n(t)+ω2
1nα1n(t)− ζn sin(Ωt)= 0, (2.8a)

β̈1n(t)+ 2λ1nβ̇1n(t)+ω2
1nβ1n(t)+ ζn cos(Ωt)= 0, (2.8b)
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with

ω2
1n =

(ρ2 − ρ1)g
ε1n

R
+ γ

(ε1n

R

)3

ρ1 coth
(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

) , (2.9)

ζn =
(ρ2 − ρ1)RdsΩ

3(
ρ1 coth

(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

))
(ε2

1n − 1)J1(ε1n)
, (2.10)

to be fulfilled for αmn(t) and βmn(t), where we have included linear damping rates
λ1n expressing the energy dissipation as explained by Faltinsen & Timokha (2009,
chap. 6). Here, ω2

1n are the natural eigenfrequencies of two-layer gravity–capillary
waves in cylindrical tanks, while ζn can be understood as a mode-dependent forcing
parameter describing the strength of excitation. Please note that only non-axisymmetric
wave modes (m = 1) are excited in the linear regime, possessing exactly one nodal
circle. Linear solutions do not exist for m 6= 1.

Equations (2.8a) and (2.8b) have the following stationary solutions:

α1n(t) =
ζn(ω

2
1n −Ω

2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
sin(Ωt)−

2λ1nζnΩ

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
cos(Ωt), (2.11a)

β1n(t) = −
ζn(ω

2
1n −Ω

2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
cos(Ωt)−

2λ1nζnΩ

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
sin(Ωt). (2.11b)

Introducing these solutions (2.11a) and (2.11b) into (2.7a) and (2.7b) we can finally
derive the flow potentials

φ1(r, ϕ, z, t)=
∞∑

n=1

(ρ2 − ρ1)RdsΩ
3(

ρ1 coth
(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

)) cosh
(ε1n

R
(z− h1)

)
sinh

(ε1n

R
h1

) J1

(
ε1n

r
R

)
(ε2

1n − 1)J1(ε1n)

×

[
(ω2

1n −Ω
2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
sin(Ωt− ϕ)−

2λ1nΩ

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
cos(Ωt− ϕ)

]
, (2.12a)

φ2(r, ϕ, z, t)=
∞∑

n=1

−(ρ2 − ρ1)RdsΩ
3(

ρ1 coth
(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

)) cosh
(ε1n

R
(z+ h2)

)
sinh

(ε1n

R
h2

) J1

(
ε1n

r
R

)
(ε2

1n − 1)J1(ε1n)

×

[
(ω2

1n −Ω
2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
sin(Ωt− ϕ)−

2λ1nΩ

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
cos(Ωt− ϕ)

]
. (2.12b)

The velocity fields in the moving reference frame of the cylinder can be calculated
using (2.5). The interface elevation η is determined by linearising (2.6f ). It can be
expressed as

η(r, ϕ, t)=
∞∑

n=1

(ρ2 − ρ1)dsRΩ2[
(ρ2 − ρ1)g+

(ε1n

R

)2
γ

] J1

(
ε1n

r
R

)
(ε2

1n − 1)J1(ε1n)

×

[
ω2

1n(ω
2
1n −Ω

2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
cos(Ωt− ϕ)+

2λ1nΩω
2
1n

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
sin(Ωt− ϕ)

]
. (2.13)
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As a main difference from the previous inviscid theories, the azimuthal part of our
solution is composed of both a symmetric ∼ cos(Ωt − ϕ) and an antisymmetric
∼ sin(Ωt − ϕ) contribution, whereas inviscid solutions are always symmetric. In the
limit ρ2, λ1n, γ 7→ 0 this solution is equivalent to the inviscid one-layer theory by
Reclari et al. (2014), as we prove in appendix B. From (2.13) we can deduce the
resonance frequencies ωR,n of the wave modes which are modified by damping. Close
to resonance (Ω ≈ω1n) the interface elevation is described only by the antisymmetric
part of the solution. Therefore

η(r, ϕ =Ωt−π/2, t)|Ω≈ω1n = A
2λ1nΩ

3ω2
1n

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
, (2.14)

where A contains the frequency-independent prefactors of (2.13). The shaking
frequency causing the highest amplitude (Ω ≡ωR,n) is calculated by solving

∂η(r, ϕ =Ωt−π/2, t)
∂Ω

= 0 (2.15)

giving a resonance frequency of

ω2
R,n = 2

√
(ω2

1n − λ
2
1n)

2 + λ2
1nω

2
1n −ω

2
1n + 2λ2

1n >ω
2
1n. (2.16)

Thus, high damping rates always increase the resonance frequency. This behaviour
might appear counterintuitive and is contrary to that of the classical driven harmonic
oscillator. It is caused by differences of the external forcing. The forcing amplitude
itself depends on the driving frequency and scales with ∼Ω3 (see (2.10)), introducing
the tendency that the wave is generally amplified for higher shaking frequencies
independently of the resonant amplifications. This effect overcompensates the
common frequency drop observed in systems underlying a constant driving force
(ζn independent of Ω). However, in practical applications, as with OSBs, a noticeable
increase of the eigenfrequency will not be observable for the first modes due to
their weak dependency on λ1n in (2.16) for common damping rates λ1n . 1. An
increase of ωR,n would be observable only in highly overdamped set-ups. For weakly
damped systems we identify ωR,n ≈ ω1n (at least for the first important large-scale
wave modes).

2.3. Viscous damping
Equation (2.13) is the final result of the modal analysis containing the responding
resonance dynamics of the interface. In contrast to previous inviscid theories (Reclari
et al. 2014; Bouvard et al. 2017), our solution does not contain any singularities at the
resonance frequencies. Those are resolved by the damping parameters λ1n determining
the maximum amplitudes at resonance Ω ≈ ω1n. However, using an irrotational
approach, the damping rates cannot be further deduced since viscous dissipation is
caused by the rotational part of the flow manifested in the boundary layers. Therefore,
damping rates must be determined a priori, i.e. by fitting the exponential decay of
resonant waves after the shaker is switched off. Then, equation (2.13) can predict
the wave amplitudes (within its limits) for all shaking frequencies Ω around the
considered resonance frequency.

However, to allow for further analysis and a better understanding of how viscous
damping can affect the resonance dynamics, it is desirable to describe the wave
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891 A22-10 G. M. Horstmann, W. Herreman and T. Weier

elevation in direct dependence of the viscosities νi. For that purpose, we exploit some
of the recent results given by Herreman et al. (2019), who applied a perturbation
approach to study interfacial wave damping. They derived viscous damping rates
of free gravity–capillary waves by explicitly calculating Stokes boundary layers for
the same two-layer geometry that we are considering in the present paper. It was
found in this study that viscous damping rates of free-surface and interfacial waves
are inherently different, so that we must carefully distinguish between the one- and
two-layer limit of viscous damping rates in the following.

In the first order, the two-layer damping rate λ2L
1n is composed of three different

contributions
λ2L

1n = λ
BL
1n + λ

IL
1n + λ

Int
1n , (2.17)

with

λBL
1n =

∑
i=1,2

ρi

√
νiΩ

8R2

ε1n

(
1−

hi

R

)
sinh−2

(ε1n

R
hi

)
+

(
ε2

1n + 1
ε2

1n − 1

)
coth

(ε1n

R
hi

)
ρ1 coth

(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

)
, (2.18)

λIL
1n =

ε1n(
1
ρ1

√
8R2

Ων1
+

1
ρ2

√
8R2

Ων2

)

(

coth
(ε1n

R
h1

)
+ coth

(ε1n

R
h2

))2

ρ1 coth
(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

)
, (2.19)

λInt
1n =

2ε2
1n

(ρ2ν2

R2
−
ρ1ν1

R2

)
(

1
ρ1
√
ν1
+

1
ρ2
√
ν2

)


1
ρ1
√
ν1

coth
(ε1n

R
h2

)
−

1
ρ2
√
ν2

coth
(ε1n

R
h1

)
(
ρ1 coth

(ε1n

R
h1

)
+ ρ2 coth

(ε1n

R
h2

))
. (2.20)

The first contribution λBL
1n involves viscous dissipation arising at the solid tank

boundary layers including the side, top and bottom walls. The second term λIL
1n

describes the dissipation rate in the interfacial boundary layers above and below the
interface. Finally, λInt

1n is the interior damping rate which can be destabilising. Please
note that this damping rate is fundamentally different from the well-known damping
rates of free-surface waves in upright cylinders calculated by Case & Parkinson
(1956) and Miles & Henderson (1998). The first solid boundary layer term λBL

1n is
physically the same as for one-layer systems. The one-layer limit ρ1 7→ 0 of λBL

1n is
equivalent to the boundary layer term derived by Case & Parkinson (1956). However,
the interfacial layer contribution λIL

1n does not exist in free-surface waves in the
leading order. The reason is that the flow field under free surfaces is to a good
approximation irrotational, which is not the case around moving interfaces, where
viscous boundary layers evolve to balance the strong tangential shear flows between
the liquids. Indeed, we find λIL

1n 7→ 0 for ρ1 7→ 0. For liquids with similar densities
and viscosities λBL

1n and λIL
1n can have comparable magnitudes and should always both

be considered. In contrast, the interior damping rate λInt
1n is completely negligible

for liquids with densities of the same order. However, this term cannot be ignored
anymore when we approach the free-surface limit ρ1 7→ 0. Then, the interior damping
is increased by orders of magnitude until it reaches the limit λInt

1n 7→ 2ν2ε
2
1n/R

2, the
familiar interior damping rate of free-surface waves that is generally not negligible.
This is the only remaining dissipation term for irrotational surface waves, while
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interfacial wave damping is always manifested in rotational boundary layers. All in
all, leading-order interfacial damping is well described by

λ2L
1n = λ

BL
1n + λ

IL
1n. (2.21)

In contrast, free-surface damping must be calculated using the contributions

λ1L
1n = λ

BL
1n + λ̃

Int
1n , (2.22)

with

λBL
1n =

√
ν2Ω

8R2

ε2
1n + 1
ε2

1n − 1
+

2ε1n

(
1−

h2

R

)
sinh

(
2
ε1n

R
h2

)
, (2.23)

λ̃Int
1n =

ν2

R2

2ε2
1n −

1
ε2

1n − 1

1+
2ε1nh2

R sinh
(

2
ε1n

R
h2

)

. (2.24)

The boundary layer damping (2.23) is the one-layer limit of (2.18), whereas the
interior damping rate λ̃Int

1n was supplemented by an additional sidewall contribution
calculated by Miles & Henderson (1998) in order to describe damping with the best
known accuracy. This contribution is entirely negligible for interfacial waves and still
small for typical free-surface cylinders such as OSBs. In this form, the damping rate
(2.22) is fully equivalent to the formulation recently used by Raynovskyy & Timokha
(2018a) to study resonant sloshing. In the shallow water limit, the damping rate is
further consistent with the Stokes wall shear stress model presented by Alpresa et al.
(2018b), predicting a spiral-like shape of the horizontal velocity profile in the bottom
boundary layer.

Technically, both damping rates λ2L
1n and λ1L

1n are only valid for free gravity–capillary
waves; dissipation rates of forced wave motion are generally more complex. However,
damping affects linear waves mainly in a small window around the eigenfrequencies
Ω ≈ω1n, as we will show in § 2.4. In this frequency range, the interfacial motions are
very similar to free wave motions and dissipation rates can be well approximated by
(2.17) and (2.22). This is not generally the case for frequencies far below or above
the resonance frequency, but there, damping is of no importance except for a largely
overdamped system.

Finally, it is important to note that the damping rates do not involve any dissipation
mechanism associated with the contact line (contact line hysteresis, meniscus
dynamics) or surface contamination. Hence, (2.17) and (2.22) are always expected to
slightly underestimate viscous damping rates and should be considered as conservative
estimations to predict maximum expectable interface elevations. While it is often
difficult to realise two-layer stratifications involving free-sliding contact lines and
negligible menisci (Horstmann et al. 2019), these idealised boundary conditions apply
for most mid- and large-size free-surface systems, including typical commercial OSBs.

2.4. Dimensionless prediction of resonance dynamics
In this section we want to relate the wave solutions (2.12b) and (2.13) to the eight
dimensionless parameters introduced in § 2.1 in order to discuss the damped wave
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891 A22-12 G. M. Horstmann, W. Herreman and T. Weier

dynamics predicted by our model. We can write the solutions in dimensionless forms
by introducing the dimensionless variables r̃= r/R, z̃= z/R and t̃=Ωt. This way, the
interface elevation η (2.13) can be expressed as

η(r̃, ϕ, t̃)
R

=

∞∑
n=1

2Fr(
1+

ε2
1n

Bo

) J1(ε1nr̃)
(ε2

1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

sin( t̃− ϕ)+
Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

cos( t̃− ϕ)

, (2.25)

where Γω1n(Fr,E,Bo,Hi,A)=ω1n/Ω and Λ1n(Rei,Hi,A)= 2λ1n/Ω . Full formulas for
these dimensionless frequencies and damping rates as well as for the dimensionless
potentials and velocities are given in appendix A. Equation (2.25) is the final result
of our theoretical work, allowing analysis of the wave elevation as a function of
all eight dimensionless input parameters. The physics contained within this solution
is very rich, although it may be difficult to recognise in the presented form. By
analysing the different wave contributions and the asymptotics, we can further deduce
various wave properties. One main difference between this damped wave solution
in comparison with the previous inviscid description (Reclari et al. 2014) is the
existence of an antisymmetric part ∼ sin( t̃ − ϕ), not present in the inviscid solution.
The superposition of the symmetric and antisymmetric solutions captures the phase
shift 1ϕ between the shaking table and the responding wave. The phase ϕ∗ of the
maximum wave elevation can be calculated by solving

∂η(r̃, ϕ∗, t̃)
R∂ϕ∗

= 0. (2.26)

From this, we find a phase difference of

1ϕ(r̃)= arctan


∞∑

n=1

1(
Bo+ ε2

1n

) J1(ε1nr̃)
(ε2

1n − 1)J1(ε1n)

Λ1nΓ
2
ω1n

(Γ 2
ω1n
− 1)2 +Λ2

1n

∞∑
n=1

1(
Bo+ ε2

1n

) J1(ε1nr̃)
(ε2

1n − 1)J1(ε1n)

Γ 2
ω1n
(Γ 2

ω1n
− 1)(

Γ 2
ω1n
− 1
)2
+Λ2

1n

 . (2.27)

The phase difference depends on the radial coordinate r̃ since the crests of the
individual nodal cycles n, which are located at different radial positions, can be
shifted differently by the mode-dependent damping rates (2.17). Considering only the
phase shift of the first mode (n= 1), equation (2.27) simplifies to

1ϕ|n=1 = arctan
(

Λ11

Γ 2
ω11
− 1

)
= arctan

(
2λ11Ω

ω2
11 −Ω

2

)
, (2.28)

exactly reproducing the well-known phase shift of the driven harmonic oscillator, even
though we found a different resonance frequency (see (2.16)). Equation (2.28) can be
exploited to estimate the linear out-of-phase flow. By defining an expedient critical
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small phase shift 1ϕ > 1ϕc as an out-of-phase threshold, a corresponding critical
shaking frequency Ωc for out-of-phase flow can be calculated as

Ωc

ω11
>

√
1

Λ11 cot(1ϕc)+ 1
. (2.29)

It becomes apparent that the linear phase shift is primarily specified by the damping
forces.

Likewise, the maximum achievable interface elevation for given system parameters
can be estimated from (2.25). Close to resonance the wave elevation is determined
only by the antisymmetric part of the solution (2.25). Here, we can locate the
maximum elevation η0/R of the first dominant mode at r̃ = 1, ϕ = t̃ − π/2 and
Ω =ω11, yielding

η0

R
=

2Fr(
1+

ε2
1n

Bo

) 1
ε2

11 − 1
Γ 2
ω11

Λ11
. (2.30)

This expression is only valid for finite amplitudes. Nonlinear effects and wave
breaking cause additional dissipation, effectively reducing the maximal elevation, an
effect not captured by the theory. However, equation (2.30) is a good measure for the
maximum attainable wave elevation. As pointed out by Reclari (2013) and Alpresa
et al. (2018a), linear potential theory can adequately predict free-surface motions up
to a critical amplitude, where breaking is expected. This usually happens if the wave
steepness exceeds a critical value beyond which gravity waves become unstable. For
the first and practically most important wave mode ε11, the critical wave steepness
η0/R& 0.44 has been well established as a wave breaking criterion in orbitally shaken
cylinders with deep fluid layers (Reclari 2013). Up to this wave slope, equation (2.30)
is expected to predict the resonant interfacial displacement with sufficient accuracy.
However, this criterion is not valid for shallow layers, where the vicinity of the
bottom leads to additional effects including a partially uncovered bottom. For these
cases Alpresa et al. (2018a) verified the shallow breaking criterion η0/R & 0.7H. By
combining these criteria as upper thresholds and by modifying (2.30) according to
(A 4) and (A 5), we can derive the following relations for the resonant wave slope
within the one-layer limit as relevant for OSBs:

η0

R
= χ
√

ReE if


η0

R
< 0.44 for H & 0.63,

η0

R
< 0.7H for H . 0.63,

η0

R
6 χ
√

ReE if


η0

R
> 0.44 for H & 0.63,

η0

R
> 0.7H for H . 0.63,

(2.31)

with the form factors

χ =

√
8ε11 sinh2(ε11H)

ε11(ε
2
11 − 1)(1−H)+ sinh(ε11H) cosh(ε11H)(ε2

11 + 1)
.

Here, the index i = 2 was omitted for better readability. In line with a conservative
estimation, the interior damping distribution ∼Re in (2.22) was ignored since it is, in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.163


891 A22-14 G. M. Horstmann, W. Herreman and T. Weier

comparison with boundary layer damping, negligibly small for lower wave modes in
OSB-size cylinders (R∼ 10 cm). The maximum wave displacement is independent of
the gravity force and surface tension. It is solely determined by the balance of driving
and viscous forces. We can determine the relation

√
ReE= ds/(2δ), showing that the

maximum slope scales approximately with the length ratio between the shaking radius
ds/2 and the typical boundary layer thickness δ. This scaling is precisely valid for
interfacial waves, where interior damping is always negligible. The implied scaling law
η0/R∼ Reκ with κ = 0.5 can generally be considered as an upper threshold also for
non-resonant excitations since, at resonance, the impact of damping forces is always
at a maximum. We finally conclude that an upper value of the scaling coefficient of
κ 6 0.5 can be expected for most OSBs and all two-layer systems depending on the
shaking frequency Ω and on nonlinearities.

Lastly, we want to analyse the wave character of the elevated free surface. For low
shaking frequencies Ω sufficiently below the first eigenfrequency ω11 the displaced
free surface has the form of a tilted disk rather than a wavy shape (Reclari 2013;
Weheliye et al. 2013; Ducci & Weheliye 2014). The transition from the flat disk
shape to the waveform is important for OSBs since the mixing dynamics is changed
considerably: as soon as the surface becomes wavy, the nonlinear out-of-phase flow
regime starts to develop (Weheliye et al. 2013).

As shown in appendix B, the symmetric part of solution (2.25) can be transformed
into the following form:

η(r̃, ϕ, t̃)
R

= 2Fr

[
r̃
2
+

∞∑
n=1

(Γ 2
ω1n
− 1)−Λ2

1n

(Γ 2
ω1n
− 1)2 +Λ2

1n

J1(ε1nr̃)
(ε2

1n − 1)J1(ε1n)

]
cos( t̃− ϕ), (2.32)

when surface tension is neglected (Bo� 1). The radial part of (2.32) is composed
of a linear contribution ∼r̃ representing the disk and a wavy contribution ∼J1(ε1nr̃)
resulting from the superposition of free gravity wave modes. We can now compare the
linear contribution with the wave-like contributions. We consider a fixed time point
t̃ = 0 and the radial position r̃ = 1, where both the disc and the first wave mode
are of maximum elevation. Further restricting ourselves to small shaking frequencies
Ω below the first resonance frequency ω11 allows us to keep only the first wave
mode (n = 1). We can then compare the wavy parts (mode n = 1 in (2.32) and the
antisymmetric part of (2.25)) with the disc component and calculate the point where
the sum of the wavy components matches a certain percentage Υ of the disc solution

Υ

2
=
(Γ 2

ω11
− 1)−Λ2

11

(Γ 2
ω11
− 1)2 +Λ2

11

1
(ε2

11 − 1)
−

Λ11Γ
2
ω11

(Γ 2
ω11
− 1)2 +Λ2

11

1
(ε2

11 − 1)
tan(ϕ∗). (2.33)

The phase ϕ∗ of maximum wave elevation can be calculated in analogy to (2.27) and
is given by

ϕ∗ = arctan
(
−

Λ11

Γ 2
ω11
− 1

)
. (2.34)

By inserting (2.34) into (2.33) the wave percentage simplifies to

Υ =
2

(ε2
11 − 1)

1
(Γ 2

ω11
− 1)

. (2.35)

The damping parameter Λ11 does not occur in (2.35) and thus the wave fraction Υ is
independent of the system’s damping. This somewhat surprising result implies that the
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disc and the first wave mode are equally damped. Hence, damping will not influence
the plane-wave transition. Equation (2.35) can be derived as well by directly using the
inviscid solution (equation (2.32) with Λ11 = 0). Any possible influence of viscosity
to the transition would be manifested in the rotational part of the flow confined to the
boundary layers.

By including the dimensionless frequency (A 4) in (2.35) we can derive the critical
Froude number Frwave needed to induce a certain waviness Υ

Frwave(Υ )=
Eε11 tanh(ε11H)

2(ε2
11 − 1)−1Υ −1 + 1

. (2.36)

This formula can be used to predict the limits of the linear scaling law η0/R ∼ Fr
proposed by Weheliye et al. (2013) and Ducci & Weheliye (2014) as well as the
nonlinear out-of-phase flow regime in OSBs, as we will discuss in § 4.3.

2.5. Limits of applicability
Two of the initial assumptions are mainly responsible for the limits of our theoretical
model: irrotationality and linearity. Even though the dissipative effect of rotational
boundary layers is incorporated in our model by means of the damping rate formula
(2.17), we neglect the influences of the boundary layers on the wave shapes and
the velocity fields in the bulk since the flow solutions violate the no-slip boundary
conditions. Hence, the wave modes (2.25) can describe the bulk flow only adequately
if the boundary layer thicknesses δi are far smaller than the internal dimensions

δi ∼

√
νi

Ω
=

R
√

Rei
� R. (2.37)

This estimate directly leads to the condition
√

Rei� 1, (2.38)

which is no serious limitation in practice. Even small-scale bioreactors rarely operate
at Re . 102 (Alpresa et al. 2018a) since the fluid-driving wave would otherwise be
too small to generate sufficient mixing.

A more serious restriction is the linearisation limiting our model to fairly small
amplitude waves. Nonlinear effects such as subharmonic wave modes (Reclari et al.
2014), the mean flow (Bouvard et al. 2017) and turbulent wave dynamics are not
captured. As discussed before, the wave breaking conditions

η0

R
.

{
0.44, for min(H1,H2)& 0.63,
0.7 min(H1,H2), for min(H1,H2). 0.63,

(2.39)

are good estimates for linearity since good agreement with the inviscid potential model
was found for the single-crested n= 1 mode in this amplitude regime. For OSBs we
can use (2.31) to derive an upper threshold for the Reynolds number

√
Re .


0.44
χE

, for H & 0.63,

0.7H
χE

, for H . 0.63.
(2.40)
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Consequently, a critical eccentricity E can be estimated beyond which nonlinear waves
might evolve for excitation frequencies lower than or equal to the resonance frequency.
In practice, condition (2.40) is fulfilled for small-scale OSBs of order R ∼ 1 cm as
used for protein degradation. But it is violated for large-scale bioreactors of orders
R ∼ 10 up to R ∼ 100 cm, as commonly used, e.g. for mammalian cell cultivation
(Klöckner et al. 2012, 2014). However, equation (2.40) is a conservative limit for the
maximum attainable amplitudes at resonance. For excitation frequencies sufficiently
below or above the resonance frequency, amplitudes are considerably lower and our
theory can predict wave amplitudes up to a critical Froude number, as previously
shown for the inviscid model (Reclari et al. 2014). Some of the results, such as the
prediction of the waviness (2.36), are of practical relevance for large-scale OSBs as
well; see § 4.3 for details.

An inequality similar to (2.39) applies for the two-layer case, albeit with different
wave breaking limits, which can depend on the density difference. Even so, an
application to two-layer systems extends the valid parameter range of our model in
comparison with equivalent one-layer waves (Horstmann et al. 2019). Here, the model
performs best. This is mainly due to the density differences, which are considerably
lower for most liquid–liquid interfaces compared with gas–liquid free-surfaces. Typical
oil–water combinations possess up to an order of magnitude lower eigenfrequencies
compared with free surfaces. In consequence, the wave amplitudes for frequencies
near the resonance frequency, where the elevation scales with ∼Ωω2

1n (cf. (2.13)), are
much smaller.

Concluding this section, we have to emphasise again that our theory cannot describe
contact line dynamics. The theory is valid only for idealised boundary conditions
(free-sliding contact line with a static contact angle of 90◦). This condition is in
good approximation fulfilled for many mid- and large-scale surface-wave systems but
harder to realise for interfacial waves (cf. Horstmann et al. 2019). For the latter case,
contact line hysteresis and dynamic menisci can frequently be observed and pose great
challenges to modelling. For the idealised case of a perfectly fixed contact line there
are some wave theories in the literature (Miles 1991; Henderson & Miles 1994). Very
recently, Viola & Gallaire (2018) succeeded in developing a mathematical framework
which incorporates a dynamic contact angle model. Formulating these approaches
under orbital excitation is a promising task that we have to leave for future studies.

3. Numerical results

The theory introduced in the preceding paragraphs contains a rich wave dynamics
which we present in this section using illustrative examples. Wave shapes depending
on mode number and damping rate are discussed first and then related to forcing
frequency and radial position. The section concludes with an overview of the influence
of the dimensionless parameters on the wave amplitudes around the first resonance
frequency.

We use the paraffin oil–silicon oil experiment described in Horstmann et al.
(2019) as a default case around which we modify different parameters to study
the damped wave dynamics. A cylinder of equal height and diameter of 10 cm was
used and excited with shaking frequencies ranging from 20 up to 90 revolutions per
minute (r.p.m.) with a default shaking diameter of ds = 2.5 cm. All relevant physical
parameters and corresponding dimensionless numbers are listed in table 1.

First, we analyse how damping forces influence the shapes of different wave modes.
The interfacial elevation is given by (2.13) and changes with the driving frequency Ω .
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Property ds (cm) ρi (g cm−3) γ (mN m−1) νi (m2 s−1) hi (cm) R (cm)

Layer 1 2.5 846 ≈20 ≈ 36 5 5
Layer 2 2.5 955 ≈20 ≈ 35 5 5

Number Fr E Rei Hi Bo A

Layer 1 0.027 0.25 320 1 134 0.06
Layer 2 0.027 0.25 330 1 134 0.06

TABLE 1. Default parameters and physical properties of the Paraffinum Perliquidum
|Wackerr silicone oil AK 35 interfacial wave experiment described in Horstmann et al.
(2019). The resulting dimensionless numbers, calculated for the first eigenfrequency Ω =
ω11 ≈ 44 r.p.m., are shown in addition.

This solution is composed of a linear contribution (flat disc) and the n wave solutions
reflected by the wavenumbers ε1n, which are most prominent at the eigenfrequencies
ω1n. Figure 2 shows the normalised interface elevations calculated at the first four
eigenfrequencies Ω = (ω11, ω12, ω13, ω14) for four different damping parameters λ1n =

(0, 0.5, 1, 2.5) s−1. The left column displays the inviscid solutions of the first four
modes already presented in Reclari (2013). It can be seen how the number of crests
and troughs increases with the radial wavenumber and the maximum wave elevations
become more and more concentrated in the centre of the cylinder.

The three other columns display wave modes under the influence of damping
forces. As visible in the second (λ1n = 0.5 s−1) and third (λ1n = 1 s−1) columns,
damping causes a twisting of the n nodal circles such that spiral wave structures
evolve, clearly visible in the higher modes n > 2. The effect of damping is weak
for the first mode n= 1, where the crest–trough symmetry is almost kept intact. But
for higher modes the initially separated crests and troughs begin to merge under
the influence of damping until only one clearly distinguishable crest–trough pair
survives for λ1n= 1 s−1, appearing as a coherent spiral. With increasing damping, the
maximum elevations move towards the cylinder wall until the wave is completely
damped out in the cell centre for λ1n= 2.5 s−1 (n= 3, 4). For λ1n= 2.5 s−1 the wave
is already completely overdamped and condition (2.38) might no longer be fulfilled.
In such cases, the boundary layers begin to grow into the bulk and would suppress
interfacial displacements near the sidewalls, making it unlikely that these waveforms
can be observed in experiments.

The transition to a spiral wave can also be understood mathematically. It is due to
the mode-dependent phase lags which are governed by (2.27). This equation predicts
that all nodal cycles underlie individual phase lags with regard to the shaking table,
causing phase shifts between the single modes. These individual phase shifts result in
mutual twists of the n nodal cycles, finally forming the coherent spirals.

Now, we want to graphically study the resonance dynamics covering the predicted
maximum attainable wave amplitudes η0 in dependence of the shaking frequencies
Ω . At first, we compare the interfacial elevations of the first two wave modes at
different interfacial locations. Figure 3 shows the maximum dimensionless interface
elevation η0/R in dependence of the dimensionless shaking frequency Ω/ω11 at two
different radial positions: close to the cell centre r̃= r/R= 0.1 (coloured in blue) and
at the sidewall r̃= 1 (coloured in magenta). In addition, the dashed black curves show
the corresponding inviscid solution for both positions. As expected, the inclusion of
damping forces has closed the resonance curves. Non-physical singularities at the
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FIGURE 2. Normalised interface elevations η(r, ϕ)/η0 for the first four wave modes n=
(1, 2, 3, 4) for four different damping rates λ1n = (0, 0.5, 1, 2.5) s−1. The modes were
calculated at corresponding resonance frequencies Ω =ω1n using (2.13).

0 0.5

r = 0.1

r = 1
Ò1n = 0

1.0 1.5
Ø/ø11

2.0 2.5
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˙ 0
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(÷ 10-1)
¡

¡

FIGURE 3. Predicted maximum interface elevation η0/R for the default parameters given
in table 1 as a function of the forcing frequency Ω/ω11 evaluated near the centre r̃ =
0.1 (blue) and at the sidewall r̃ = 1 (magenta). The dashed black curves show the
corresponding inviscid solutions given by Reclari et al. (2014).
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eigenfrequencies are avoided and the evolution of (linear) resonant wave amplitudes
can now be predicted. The resonant amplitudes at the sidewall are considerably
decreased for the second mode, while the peak amplitudes at r̃ = 0.1 remain almost
constant. This behaviour underlines the tendency for the highest wave crests to
become more and more concentrated near the centre for increasing wave modes,
a phenomenon completely missing in the inviscid models. In addition, the inviscid
model predicts zero amplitudes for r̃= 1 at a singular point between both resonance
peaks. This is another non-physical artefact caused by the disregard of damping. The
inclusion of damping has markedly improved the predictive power of the model. Both
theories coincide for non-resonant frequencies around the first eigenfrequency, while
only the damped model can properly describe the linear wave dynamics close to
resonance and close to the turnover frequencies between two modes. Both models
entirely disagree around the second resonance, because for this example the system
is already overdamped such that non-resonant frequencies are also affected.

We now look at the dependence of the resonance dynamics on the different
dimensionless numbers (2.1), whereby we focus on the first peak, most relevant in
practice. Figure 4 shows the maximum dimensionless wave amplitude η0/R at the
sidewall r̃ = 1 versus the Froude number Fr for six different parameter variations
around the magenta coloured default case (table 1). The lower layer height h2 was
varied in figure 4(a) to modify the aspect ratio H2. Two trends can be identified
in this plot: the peak amplitudes decrease with decreasing H2 and concurrently the
eigenfrequencies are reduced. The first phenomenon reflects the strong aspect ratio
dependency of the damping rate (A 6). When the interface is located at the centre of
the cylinder sufficiently far away from the top and the bottom walls, viscous damping
mainly arises at the sidewall. Whereas, when the interface approaches the bottom
wall, shearing there causes higher dissipation, which results in lower peak amplitudes.
The second effect is easily explained by the dispersion relation (2.9), revealing that
gravity waves oscillate slower in shallow layers, a well-known result.

Figure 4(b) shows the resonance curves under variation of the viscosity ν2 to modify
the Reynolds number Re2. The peak amplitudes are reduced similar to figure 4(a)
with decreasing Re2 since the damping (here caused near the sidewalls) grows with
∼Re−0.5

2 . In contrast, the resonance frequencies are almost unaffected. All curves
match for the smallest Fr and the Reynolds number affects only a window around
resonance. This window is slightly expanded on lowering Re2 until the overdamped
regime is approached for Re2 = 10. Here, damping affects the amplitudes also at
non-resonant frequencies. However, for Re2 . 10 we start to violate condition (2.40)
and the wave elevation at the tank wall is expected to be even more suppressed by
ingrowing boundary layers.

The Bond number Bo is modified in figure 4(c) by varying the interfacial tension γ .
This figure captures the transition from gravity to gravity–capillary waves manifested
mainly in increasing resonance frequencies. Moreover, both the height and width of
the resonance peak are enlarged due to the coefficient 2Fr(1+ ε2

11/Bo)−1 from (2.25).
In figure 4(d) we have varied the density ρ2 to modify the Atwood number A (Bo

is weakly affected as well). The Atwood number has a large impact on both the
eigenfrequency and the maximum amplitude. It can be understood as a measure of
the influence of the upper layer on the wave dynamics. In other words, it describes
the transition from one-layer surface waves to two-layer interfacial waves, the latter
experiencing a weaker gravity force ∼(ρ2 − ρ1)g. The plot underlines again that our
model is best suited to interfacial waves (cf. Horstmann et al. 2019). In practice,
A is small for most common two-layer stratifications and a small A reduces the
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FIGURE 4. Predicted wave amplitude responses around the first resonance frequency at
r̃ = 1 in dependence of the Froude number with different varying parameters around the
default case given in table 1. The parameters h2 (a), ν2 (b), γ (c), ρ2 (d), ds (e) and R ( f )
were varied in each plot to modify the dimensionless numbers H2 (a), Re2 (b), Bo (c),
A (d), E(e) and E ( f ) while keeping constant all other parameters.

wave amplitudes, so that even resonant waves are likely to remain linear for typical
shaking conditions. Free-surface waves imply A = 1, a magnitude that would cause
wave breaking in this case long before the eigenfrequency, around which damping
has an impact, could be reached.
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The influence of applying different shaking diameters ds is shown in figure 4(e),
both the eccentricity E as well as the Froude number Fr are affected. Peak amplitudes
increase linearly with E, as predicted by (2.31). A general linear dependence of E on
the wave amplitudes and velocities was already reported by Bouvard et al. (2017). The
Fr shifts are linear as well simply due to the scaling Fr∼ ds in (2.1).

Finally, the cylinder radius R was varied in figure 4( f ), influencing multiple
numbers E, Re1, Re2, H1, H2 and Bo. Here, the wave slopes are reduced for increasing
R and shifted to smaller Fr, which might appear somewhat counterintuitive since
damping rates are smaller in large containers. However, the eigenfrequencies are
also reduced in larger tanks by which the driving force is effectively alleviated at
resonance. This is an effect that overcompensates the diminished damping rates. This
example shows that our linear approach can also be potentially relevant for large-size
applications.

4. Comparisons with experiments
We compare our theory in this section with three different and independent

experiments: (i) the linear wave amplitudes and phase shifts of the multi-layer
interfacial wave experiment by Horstmann et al. (2019); (ii) the weakly nonlinear
velocity measurements conducted by Bouvard et al. (2017); and (iii) the scaling laws
and the nonlinear phase transition presented by Weheliye et al. (2013), Ducci &
Weheliye (2014) and Weheliye et al. (2018).

4.1. Two-layer wave elevation comparisons with Horstmann et al. (2019)
The multi-layer orbital sloshing experiment by Horstmann et al. (2019) was designed
with the intention to imitate the wave dynamics excited by the metal pad roll
instability in liquid metal batteries (Weber et al. 2017; Horstmann et al. 2018).
Controlling the contact line dynamics was the major experimental difficulty. For
most liquid combinations Horstmann et al. (2019) observed entirely or partially
fixed contact lines, with the latter additionally subject to a contact angle hysteresis.
Complex contact line dynamics affects both the wave modes and the damping
rates and is not covered in our model, however, recently, Viola & Gallaire (2018)
developed a theoretical framework treating all these effects. However, the particular
combination of Paraffinum Perliquidum (PP) (ρ1 = 846 g cm−3, ν1 = 36 mm2 s−1)
overlaying Wackerr AK 35 silicone oil (ρ2= 955 g cm−3, ν2= 35 mm2 s−1) fulfilled
the idealised boundary condition we have used in this study: no meniscus was visible
and the contact line slid almost freely along the sidewalls. Hence, these oils are a
promising choice for comparisons.

Horstmann et al. (2019) observed that the measured resonance frequencies differed
from the theoretical natural eigenfrequencies (2.9) in many stratifications. The inviscid
resonance curves appeared shifted relative to the measured ones. The reason for these
deviations were, on the one hand, the fixed contact lines in oil|water stratifications that
increased the peak frequency with respect to (2.9). On the other hand, a similar shift
was also observable in many oil|oil combinations as for PP|AK 35, caused by partial
mixing at the interface. Partial mixing led to a temporally increasing reduction of the
effective density difference ρ2− ρ1, eventually lowering the measured peak frequency
with respect to (2.9).

We can nevertheless compare the theory with the experiments when using the
measured resonance frequency in (2.25) instead of the theoretical frequency (2.9). In
figure 5(a), resonance curves calculated accordingly are compared with the PP|AK 35
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FIGURE 5. (a) Experimental resonance curves (circular markers) of paraffin oil|silicon
oil interface elevations at the position r̃ = 0.84 presented in Horstmann et al. (2019) for
four chosen values of H2 in comparison with the theoretical prediction (2.25). Resonance
curves are depicted by the dimensionless local wave amplitudes as a function of the
shaking frequency f =Ω/2π. (b) Phase shift 1ϕ between wave and shaker for the same
measurements. The theoretical phase shifts were calculated using (2.27).

measurements of Horstmann et al. (2019) for four representatively selected values
of H2. A small cylinder of radius R= 5 cm and a shaking diameter of ds = 2.5 cm
were used, and the interface elevation was measured at a fixed position r = 4.2 cm.
The theoretical prediction coincides well with the experimental data around the
first resonance f . 60 r.p.m.; only the amplitudes close to the peaks are slightly
overestimated for the shallow cases. This was expected since additional dissipation
mechanisms (e.g. based on interface contamination or the contact line dynamics) are
not covered by the theoretical damping rate (2.17). They are, however, unavoidable
in the experiments. The direct comparison between measurements and theory in
Herreman et al. (2019) demonstrates that the theory slightly underpredicts the
measured damping rates. Nevertheless, the first peak is fairly well captured even
for the highly damped case H2 = 0.3, where, for f & 38 r.p.m., the existing inviscid
theory largely fails. The second peak is completely damped out in our experiments.
This behaviour is reflected in the theory, although there is a disagreement in the
range 60 r.p.m. . f . 80 r.p.m. We observed in the experiment that high excitation
frequencies f & 60 r.p.m. lead to interface ripples, probably causing substantial
increase of the system’s dissipation and explaining the mismatch here. Qualitatively,
the theory can describe how amplitude saturations can result from the superposition
of higher overdamped wave modes.

Complementarily, figure 5(b) shows the theoretical and experimental phase shifts
1ϕ for the same measurements. As for the amplitudes, the phase shifts around the
first resonance are well described by our model, while the experimentally observed
phase jumps for H2 = 0.4 and H2 = 0.3 are somewhat smoother than predicted due
to the slightly underestimated damping discussed before. For higher frequencies, the
theoretical phase shifts overshoot the measured curves. However, here, the theory
(2.27) qualitatively reveals why a phase shift of 1ϕ = 180 ◦ is never reached. It
predicts individual phase shifts for every eigenfrequency which are progressively
smoothed out by increased damping. If the damping is strong enough, as in the
present case, the second mode causes a reversed phase shift before a full out-of-phase
flow can be developed. Eventually, the superposition of strongly smoothed phase
transitions at higher modes yields the nearly linear growth we observe in 5(b) at the
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highest frequencies. Hence, our comparisons show that the model captures all the
relevant physics causing this damped resonance dynamics. Because it is challenging
to control the experimental conditions, the experimental damping rates are always
slightly underestimated by the theory. However, all measured resonance and phase
curves shown here can be almost perfectly reproduced by the theory, if fitted values
of the damping rates instead of analytical values (2.21) are used. Following this
procedure, our model can also be employed to determine linear damping rates
by measuring only wave amplitudes or phase shifts. This is particularly useful
when damping is high and the exponential decay happens too rapidly for a precise
calculation of the decay rates.

4.2. Velocity comparisons with Bouvard et al. (2017)
Bouvard et al. (2017) created an orbital sloshing experiment with the aim to
investigate the wave-induced mean mass transport in the weakly nonlinear regime.
They conducted a series of measurements in a glass cylinder of radius R= 5.12 cm
and height h2 = 11.1 cm. Silicon oils with a kinematic viscosity of either ν = 50 or
500 mm2 s−1 and surface tension of γ = 21 × 10−3 N m−1 were used as working
fluids. Velocity fields were measured by particle imaging velocimetry at different
vertical and horizontal light sheet positions. While the study focuses on the mean
flow, which is not covered in our approach, other fundamental flow properties such as
the wave fields and phase shifts are reported as well. Bouvard et al. (2017) defined
the norm of the horizontal velocity at the cell centre r = 0 and height z = z0 as a
measure of the wave amplitude

|u⊥|(r= 0, z= z0)=

√
u2

r + u2
ϕ. (4.1)

Figure 6(a) shows the normalised wave amplitude as a function of the normalised
shaking frequency Ω/ω11 at z0 = −0.23R under excitation with E = 0.057 for both
silicon oils. The theoretical curves were calculated by the potential solution (A 1b)
together with (2.5) in the one-layer limit ρ1 = 0. It becomes clear that our approach
does not provide an advantage for ν = 50 mm2 s−1. The damped solution mainly
coincides with the inviscid theory and highly overestimates the peak velocities. This
is not unexpected since Bouvard et al. (2017) report a hysteresis of the resonant
wave dynamics and thus clearly nonlinear behaviour. Here, we exceed the limits of
our approach. The nonlinear multimodal theory by Faltinsen, Lukovsky & Timokha
(2016) was recently adapted to orbital sloshing (Raynovskyy & Timokha 2018b) and
allows the first predictions of steady-state sloshing dynamics in this resonant regime.
An advantage of our model is visible for ν = 500 mm2 s−1. Here, our theory tends
to overestimate the resonant velocities as well. This might be due to the influence
of ingrowing boundary layers or additional experimental damping mechanisms not
captured by our theory (surface contamination, slight contact line hysteresis). However,
for frequencies higher than the resonance frequency, the measured wave velocities
agree better with our theory than with the inviscid model.

Generally, it is known that potential models can more accurately predict interface
elevations (especially for higher amplitudes) than velocity fields. The latter are
influenced to a larger degree by boundary layers and secondary flow structures not
captured in potential approaches (Ibrahim 2005). This observation is supported by
figure 6(b), showing the corresponding phase shifts for both oils. Our model (2.28)
can predict the frequency-dependent shift well even for ν = 50 mm2 s−1, although
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FIGURE 6. (a) Normalised velocity amplitude measured at r = 0, z0 = −0.23R as a
function of the dimensionless shaking frequency Ω/ω11 for both silicon oils and E=0.057.
The markers show the measurements conducted by Bouvard et al. (2017), the black line
our theoretical prediction due to the potential solution (2.12b) and the dashed line the
inviscid prediction by Reclari et al. (2014). (b) Phase shifts as a function of Ω/ω11 for the
same measurements. (c) Normalised velocity amplitude as a function of E of the viscous
silicon oil (ν2 = 500 mm2 s−1) for three different shaking frequencies.

it failed to predict the resonant velocities. The phase shift of the centre velocity
coincides with the phase shift of the surface elevation, which seems to be much more
robust towards effects of (weakly) nonlinear waves and secondary rotational flows.

Bouvard et al.’s (2017) measurements of the horizontal centre velocity obtained
with the viscous silicon oil ν = 50 mm2 s−1 for varying shaking diameters E at three
different shaking frequencies are shown in figure 6(c). A linear scaling between the
velocity and E becomes apparent. For the two measurement series Ω/ω11 = 0.67 and
0.78 conducted at frequencies sufficiently below the resonance, Bouvard et al. (2017)
found a good agreement with the inviscid theory. The damped predictions scarcely
deviate from the inviscid ones and the effect of damping is weak as discussed
before. But for the measurement Ω/ω11 = 0.89, which is inside the resonant regime,
our damped model coincides considerably better. The curve fits the first three or
four measurements, until higher forcing parameters E excite a nonlinear dynamics,
manifested in an incipient saturation.

4.3. Scaling law and nonlinear out-of-phase flow prediction in comparison with
Weheliye et al. (2013)

Recently, Weheliye et al. (2013), Ducci & Weheliye (2014) and Weheliye et al. (2018)
have made significant progress in identifying and understanding the fluid mechanics
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of OSBs with a focus on the mixing dynamics. Most OSBs operate in strongly
nonlinear regimes, which precludes comparison of our theoretical findings. However,
these works reported two different physical effects of high practical relevance, which
can be described by our theory under certain assumptions discussed and verified
below.

A main result of Weheliye et al. (2013) is the existence of a linear scaling law

η0

R
= α0Fr, (4.2)

very useful for estimating surface elevations in OSBs. The constant α0 is reported to
depend on the working fluid. Its value is α0= 1.4 for water, while lower values were
measured for silicon oils of higher viscosity (Ducci & Weheliye 2014). The scaling
law was experimentally well verified for small and moderate Froude numbers Fr. 0.3
and frequencies much smaller than the resonance frequency, a regime that our theory
should be able to describe. However, our solution (2.25) does not contain any linear
scaling, except for the asymptotic limit of extremely small shaking frequencies Fr�E.
In this limit, the surface elevation is determined solely by the balance between the
centrifugal acceleration and the gravitational force. Figure 7(a) shows solution (2.25)
(lines) together with the η0/R values (triangles) measured by Weheliye et al. (2013)
versus Fr for different E and H. Weheliye et al. (2013) used two glass cylinders of
radii R = 5 cm and 6.5 cm partially filled with water of different depths. Weheliye
et al.’s (2013) scaling law with α0 = 1.4 is drawn in figure 7(a) as the dashed black
line. Since all E cases can be described by the potential model (except for the highest
Fr, where the wave is becoming nonlinear), there is no linear dependency. Weheliye
et al. (2013) have measured a series of resonance curves (compare with figure 4e)
which appear to be linear in superposition. There is in fact only a linear dependency
for the smallest Fr< 0.05, which can be described by the flat disc solution η0/R=Fr
(dash-dotted black line) contained in (2.32). For the sake of clarity, we have omitted
the H cases in figure 7(a); however, they fit to the potential model as well.

For Weheliye et al.’s (2013) set-up, solution (2.25) is not affected by damping
rates of liquids with ν . 1000 mm2 s−1 because all measurements were conducted in
the non-resonant regime long before the first resonance is reached. As a result,
equation (2.25) predicts the same surface elevations as the inviscid model of
Reclari et al. (2014). This contradicts Ducci & Weheliye’s (2014) assumption that
the proportionality constant α0 depends on the fluid viscosity. Based on η0/R–Fr
measurements with oils of different viscosity, Ducci & Weheliye (2014) found the
following scaling law for α0

α0(ν)= α0w

(
ν

νw

)−0.0256

, (4.3)

where α0w and νw denote the proportionality constant and the viscosity of water. The
corresponding fitting curve is plotted in figure 1(b) of Ducci & Weheliye (2014).
In our opinion, this law does not properly describe the underlying physics for two
reasons: first, it predicts a strong dependency on the viscosity for low-viscosity
fluids close to water, while the dependency is very weak for high-viscosity liquids
ν & 100 mm2 s−1. This is the exact opposite of what is predicted by our wave theory.
Second, the decay of α0 is extremely weak in the limit of high ν so that one obtains,
e.g. for bitumen (ν ∼ 1 × 1011 mm2 s−1) a constant of α0 ≈ 0.7. Consequently, for
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FIGURE 7. (a) Replot of the E cases shown in (a) of Weheliye et al. (2013). Normalised
surface elevations are plotted as a function of Fr. The markers show the measurements
and the coloured lines represent the corresponding analytical predictions (2.25). In addition,
the dashed black line marks the linear fit (4.2) with α0 = 1.4 and the dash-dotted black
line shows the disc solution η0/R = Fr. (b) Predictions of critical Fr numbers initiating
the nonlinear out-of-phase flow transition as a function of E for H = 1 due to our wave
theory-based prediction (4.6) (blue line) as well as the empirical law (4.5) presented in
Weheliye et al. (2013) (black line).

bitumen, the law predicts sloshing with half the amplitude of water, an unlikely
result.

In our opinion, the concrete value of α0 is mainly determined by the cutoff points
chosen for the single measured E and H cases. If the highest Fr measurement is
removed for every E case in figure 7(a), one would obtain a considerably lower fitting
constant α0. This can be seen from Ducci & Weheliye’s (2014) figure 1(a) as well,
where only small-Fr cases are included, resulting in a reduced constant of α0 = 1.23.
Ducci & Weheliye (2014) attribute this only to the higher viscosity of the employed
liquid. However, except for the amplitude–viscosity dependency that we deem to be
unphysical, equation (4.3) is a valuable estimate for the design of OSBs, but one has
to know its limits.

Weheliye et al. (2013) explain the deviation of the highest Fr measurements from
the fit with differences in surface waviness. The surface is flat for low Fr, but gets
wavier with increasing Fr. This necessitates the use of an average of the local wave
slopes, thereby introducing errors. Our interpretation of this observation is different.
That the data points start to deviate from the fit as soon as the surface becomes wavy
is in line with our theory of the disc–wave transition. In § 2.4 we have derived an
expression for the critical Fr number necessary to induce a certain waviness Υ

Frwave(Υ )=
Eε11 tanh(ε11H)

2(ε2
11 − 1)−1Υ −1 + 1

. (4.4)

We found that all presented E cases escape as soon as a waviness of Υ = 40 %
is reached. All E cases were conducted with H = 1. Equation (4.4) predicts the
critical Frwave(40 %) = {0.08, 0.12, 0.17, 0.2, 0.25, 0.28} for the plotted cases
E = {0.14, 0.21, 0.3, 0.36, 0.44, 0.5}. Figure 7(a) reveals that these Frwave values
coincide with the intersection points of the linear fit with the resonance curves.
The evolution of a wavy-shaped surface is indeed a good indicator for a slowly
emerging resonance here causing the nonlinear increases of the wave amplitudes.
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Weheliye et al. (2013) concluded correctly that α0 is always greater than unity
because it takes into account an extra inertial force, besides the centrifugal acceleration
introduced by the shaker. This extra force is caused by the movement of the liquid
itself; however, it is not constant and depends on the waviness and therefore also on
Fr. Exactly this point was overlooked in the studies before.

To conclude, equation (4.4) can be used to determine the limits of the scaling law
(4.2). Equation (4.2) provides a good estimate for surface elevations as long as Fr .
Frwave(Υ ). An empirical parameter in form of the waviness Υ remains that depends
on the fit. The smaller we choose the value of Υ the more accurate (4.2) becomes.
But physically there is no linear dependency in the Fr regime considered and we
recommend using (2.25) directly for more precise calculations.

Based on the preceding paragraphs, we can draw some conclusions regarding
the out-of-phase flow frequently observed in OSBs. Such a flow is different from
the linear phase shifts considered, e.g. by Bouvard et al. (2017) and Alpresa et al.
(2018a). The linear phase transition always arises at resonance and is smoothed out
by internal damping forces. The phase transition observed in many OSB studies
(Büchs et al. 2000; Weheliye et al. 2013; Ducci & Weheliye 2014; Klöckner
et al. 2014; Thomas et al. 2017; Rodriguez et al. 2018; Weheliye et al. 2018)
is physically different and caused by nonlinear secondary flows. Weheliye et al.
(2013) demonstrated the existence of two counter-rotating toroidal vortices close to
the free surface, which are not predicted by our linear theory. With increasing Fr,
these vortices move towards the walls and shrink until they disappear. This initiates
the flow transition to the out-of-phase regime. Weheliye et al. (2013) observed that,
simultaneously, the initially flat free surface becomes wavy, exactly the transformation
which we have described using (4.4). Under the proposition that the out-of-phase
transition always arises as soon as the flat disc is destabilised, we can also predict
this nonlinear flow transition since the flat disc is always a linear solution captured by
our theory. Weheliye et al. (2013) found the following empirical law for the critical
Fr number, above which the out-of-phase flow is expected to arise:

Frc =


1

2α0
H
√

E, if H < 2
√

E,

1
α0

E, if H > 2
√

E.
(4.5)

On the basis of (4.4), we propose

Frc =
Eε11 tanh(ε11H)

2(ε2
11 − 1)−1Υ −1 + 1

(4.6)

as an alternative prediction. In direct comparison, it becomes apparent that (4.6)
contains the predicted H scaling of both cases in (4.5) as asymptotic limits: a linear
scaling Frc ∼ H for H � 1 and a saturation Frc = const. for H � 1. Hence, the H
dependence observed by Weheliye et al. (2013) can be, at least partially, explained
by the transition from the shallow water to the deep water wave regime. Both laws
are graphically compared in figure 7(b) as a function of E with a constant aspect
ratio of H = 1. Our criterion (4.6) also involves the empirical waviness Υ (here set
to Υ = 40 %, comparable with α0 = 1.4). It can be seen that (4.6) is very close to
the established empirical law (4.5). Since the out-of-phase transition is not sharp
and proceeds gradually, it can be well explained by the disc-to-wave transition alone.
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However, the ∼
√

E scaling for small H < 2
√

E in (4.5) is not captured by (4.6).
For larger E, equation (4.6) starts to overestimate critical Fr numbers in comparison
with (4.5). In this case, the flow transition is not caused by the motion of the free
surface alone, which drives the toroidal vortices. Weheliye et al. (2013) found that
for 2
√

E>H the vortices are steadily pushed towards the bottom wall. This initiates
the out-of-phase transition in a way similar to the interaction with the sidewalls for
2
√

E < H. In this case, waviness alone is not a sufficient criterion anymore and we
cannot draw any further conclusions from our model. However, we can physically
explain and support all other empirical scalings in (4.5) by relating the linear fitting
constant α0 to the specific waviness of the free surface.

5. Concluding remarks
By complementing linear sloshing theory with viscous damping rates recently

calculated by Herreman et al. (2019), we have derived analytical formulas for wave
amplitudes, phase shifts and fluid velocities of two- and one-layer gravity–capillary
waves in orbitally shaken cylinders. In contrast to the previous inviscid theory of
Reclari et al. (2014), our model avoids singularities and can predict the evolution
of interface elevations over the different eigenfrequencies, as long as the wave
remains in the linear regime. Resonance dynamics was discussed utilising eight
dimensionless numbers, which revealed multiple different mechanisms that affect the
wave amplitudes. Weak viscous damping reduces only the highest amplitudes around
resonance, while stronger damping affects the amplitudes of all shaking frequencies,
when the system becomes overdamped. The strong amplitude reduction observed by
Horstmann et al. (2019) for interfaces approaching the top or bottom wall could be
adequately quantified. In addition, the theory comprises the transition from gravity
to capillary waves characterised by the Bond number as well as the transition from
one-layer to two-layer systems determined by the Atwood number. As an intriguing
result, our model predicts novel spiral wave patterns in the presence of damping.
They are caused by a relative twisting of the nodal cycles that breaks the symmetry.
Linear spiral wave solutions are rare in physical systems and offer a promising basis
for further research.

For validation, we have compared our theory with three independent experiments
by Horstmann et al. (2019), Bouvard et al. (2017) and Weheliye et al. (2013).
Within the limits of the theory, predictions are in very good agreement with all
experiments, provided that the predicted resonance frequencies are slightly adjusted
to the measured values. The saturation of the amplitude and the phase of the first
eigenfrequency discovered by Horstmann et al. (2019) can be explained by the
superposition of overdamped higher wave modes. The phase shifts measured by
Bouvard et al. (2017) fit to the predictions, despite the fact that some measurements
were conducted in the weakly nonlinear regime. It was further demonstrated that the
linear scaling law η0/R= α0Fr of Weheliye et al. (2013) results from a combination
of disjoint resonance curves. Consequently, the postulated linear dependency is just
an approximation for sufficiently small Froude numbers where free surfaces behave
more like tilted planes than as curved waves. Based on this finding, we derived an
expression for the nonlinear out-of-phase flow transition that is important for the
mixing efficiency in orbitally shaken bioreactors. A comparison with the empirical
law of Weheliye et al. (2013) revealed that an incipient phase shift is triggered solely
by the transformation of the free surface from a plane disc to a curved wave, as long
as the surface is sufficiently far away from the ground wall.
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These findings open different perspectives for further research. Our linear approach
quantifies the resonance dynamics in two-layer interfacial wave systems with good
accuracy. However, one-layer systems, such as shaken bioreactors, typically induce
nonlinear wave dynamics near the resonance frequencies. For those systems, nonlinear
models like the one by Raynovskyy & Timokha (2018b) are needed. A classification
of different phase shift regimes is yet to be done. While the mechanisms of linear
and nonlinear phase transitions are essentially understood, in which parameter ranges
different kinds of phase shifts can be triggered remains to be settled. An experimental
verification and an in-depth study of the spiral waves predicted for highly damped
systems would support the theory and seems worthwhile from the perspective of basic
research.
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Appendix A. Dimensionless wave solutions and damping rates

Flow potentials:

φ1(r̃, ϕ, z̃, t̃)
ΩR2

=

∞∑
n=1

2Fr(
1+

ε2
1n

Bo

) cosh(ε1n(z̃−H1))

sinh(ε1nH1)

J1(ε1nr̃)
ε1n(ε

2
1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

sin( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

cos( t̃− ϕ)

, (A 1a)

φ2(r̃, ϕ, z̃, t̃)
ΩR2

=

∞∑
n=1

−2Fr(
1+

ε2
1n

Bo

) cosh(ε1n(z̃+H2))

sinh(ε1nH2)

J1(ε1nr̃)
ε1n(ε

2
1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

sin( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

cos( t̃− ϕ)

. (A 1b)

Velocity fields:

ur,1(r̃, ϕ, z̃, t̃)
ΩR

=

∞∑
n=1

2ε1nFr(
1+

ε2
1n

Bo

) cosh(ε1n(z̃−H1))

sinh(ε1nH1)

J
′

1(ε1nr̃)
ε1n(ε

2
1n − 1)J1(ε1n)
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×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

sin( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

cos( t̃− ϕ)

, (A 2a)

uϕ,1(r̃, ϕ, z̃, t̃)
ΩR

=

∞∑
n=1

2Fr(
1+

ε2
1n

Bo

) cosh(ε1n(z̃−H1))

sinh(ε1nH1)

J1(ε1nr̃)
ε1nr̃(ε2

1n − 1)J1(ε1n)

×

− Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

cos( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

sin( t̃− ϕ)

,(A 2b)

uz,1(r̃, ϕ, z̃, t̃)
ΩR

=

∞∑
n=1

2ε1nFr(
1+

ε2
1n

Bo

) sinh(ε1n(z̃−H1))

sinh(ε1nH1)

J1(ε1nr̃)
ε1n(ε

2
1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

sin( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

cos( t̃− ϕ)

, (A 2c)

ur,2(r̃, ϕ, z̃, t̃)
ΩR

=

∞∑
n=1

−2ε1nFr(
1+

ε2
1n

Bo

) cosh(ε1n(z̃+H2))

sinh(ε1nH2)

J
′

1(ε1nr̃)
ε1n(ε

2
1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

sin( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

cos( t̃− ϕ)

, (A 3a)

uϕ,2(r̃, ϕ, z̃, t̃)
ΩR

=

∞∑
n=1

2Fr(
1+

ε2
1n

Bo

) cosh(ε1n(z̃+H2))

sinh(ε1nH2)

J1(ε1nr̃)
ε1nr̃(ε2

1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

cos( t̃− ϕ)+
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

sin( t̃− ϕ)

, (A 3b)

uz,2(r̃, ϕ, z̃, t̃)
ΩR

=

∞∑
n=1

−2ε1nFr(
1+

ε2
1n

Bo

) sinh(ε1n(z̃+H2))

sinh(ε1nH2)

J1(ε1nr̃)
ε1n(ε

2
1n − 1)J1(ε1n)

×

 Γ 2
ω1n

(Γ 2
ω1n
− 1)+

Λ2
1n

(Γ 2
ω1n
− 1)

sin( t̃− ϕ)−
Γ 2
ω1n

(Γ 2
ω1n
− 1)2

Λ1n
+Λ1n

cos( t̃− ϕ)

. (A 3c)
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Frequency:

Γω1n =
ω1n

Ω
=

√√√√√ E
Fr

2Aε1n

(
1+

ε2
1n

Bo

)
[(1− A) coth(ε1nH1)+ (1+ A) coth(ε1nH2)]

. (A 4)

One-layer damping rate:

Λ1L
1n =

2λ1L
1n

Ω
=

√
1

2Re2

[
ε2

1n + 1
ε2

1n − 1
+

2ε1n(1−H2)

sinh(2ε1nH2)

]
+

2
Re2

[
2ε2

1n −
1

ε2
1n − 1

(
1+

2ε1nH2

sinh(2ε1nH2)

)]
. (A 5)

Two-layer damping rate:

Λ2L
1n =

2λ2L
1n

Ω
=

∑
i=1,2

√
1

2Rei

[
(i− 1)(1+ A)+ (2− i)(1− A)

[(1− A) coth(ε1nH1)+ (1+ A) coth(ε1nH2)]

]
×

[
(ε1n −Hi) sinh−2(ε1nHi)+

(
ε2

1n + 1
ε2

1n − 1

)
coth(ε1nHi)

]
+

ε1n(√
2Re1

(1− A)
+

√
2Re2

(1+ A)

) [ [coth(ε1nH1)+ coth(ε1nH2)]2

(1− A) coth(ε1nH1)+ (1+ A) coth(ε1nH2)

]

+ 4ε2
1n


(1+ A)

Re2
−
(1− A)

Re1
(1− A)
√

Re1
+
(1+ A)
√

Re2



(1+ A)
√

Re2
coth(ε1nH2)−

(1− A)
√

Re1
coth(ε1nH1)

(1− A) coth(ε1nH1)+ (1+ A) coth(ε1nH2)

. (A 6)

Appendix B. Linking the damped solution to existing inviscid theory

We want to prove in this section that our damped two-layer wave solution

η(r, ϕ, t)=
∞∑

n=1

(ρ2 − ρ1)dsRΩ2[
(ρ2 − ρ1)g+

(ε1n

R

)2
γ

] J1

(
ε1n

r
R

)
(ε2

1n − 1)J1(ε1n)

×

[
ω2

1n(ω
2
1n −Ω

2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
cos(Ωt− ϕ)+

2λ1nΩω
2
1n

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
sin(Ωt− ϕ)

]
(B 1)

includes the existing inviscid one-layer solution

η(r, ϕ, t)=
dsΩ

2

2g
cos(Ωt− ϕ)

r+
∞∑

n=1

2R
(ε2

1n − 1)
Ω2

(ω2
1n −Ω

2)

J1

(
ε1n

r
R

)
J1(ε1n)

 (B 2)
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derived by Reclari et al. (2014) as a limiting case. First, we consider the one-layer
limit (ρ1 = 0) of (B 1) and neglect both damping (λ1n = 0) and surface tension γ = 0.
We find the symmetric solution

η(r, ϕ, t)=
∞∑

n=1

dsRΩ2

g
ω2

1n

(ω2
1n −Ω

2)

J1

(
ε1n

r
R

)
(ε2

1n − 1)J1(ε1n)
cos(Ωt− ϕ). (B 3)

Then, we can apply the transformation

ω2
1n

ω2
1n −Ω

2
= 1+

Ω2

ω2
1n −Ω

2
, (B 4)

giving

η(r, ϕ, t)=
dsΩ

2

2g
cos(Ωt− ϕ)

∞∑
n=1

J1

(
ε1n

r
R

)
J1(ε1n)

[
2R

(ε2
1n − 1)

+
2R

(ε2
1n − 1)

Ω2

(ω2
1n −Ω

2)

]
.

(B 5)
The first term of the sum is independent of the eigenfrequencies ω1n and can now be
transformed using the Fourier–Bessel series (Reclari 2013)

r=
∞∑

n=1

2R
(ε2

1n − 1)

J1

(ε1nr
R

)
J1(ε1n)

, (B 6)

finally yielding the classical solution (B 1). This decomposition clarifies that the
responding elevation of the free surface is always composed of a flat disc solution
and the sum of radial free gravity wave modes. A consideration of non-vanishing
surface tension γ 6= 0 inhibits such a decomposition since the surface tension force
itself depends on the wave modes ε1n. Surface tension can only act on curved
surfaces such that the disc solution cannot exist in the capillary wave regime. It can
be attributed to the balance between centrifugal acceleration and the conservative
gravitational force alone.

The symmetric part of (B 1) can also be decomposed without neglecting linear
damping forces when γ = 0. Then the transformation

ω2
1n(ω

2
1n −Ω

2)

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
= 1+

Ω2(ω2
1n −Ω

2)− 4λ2
1nΩ

2

(ω2
1n −Ω

2)2 + 4λ2
1nΩ

2
(B 7)

can be applied instead of (B 4) to separate the disc solution. This transformation yields
the expression (2.32), which we have used in § 2.4 in order to prove that the disc–
wave transition is independent of linear damping.
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