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Abstract

Most programming environments for functional languages offer a single tool used to evaluate
programs - either a batch compiler or an interpreter with a read-eval-print loop. This paper
presents a programming environment that supports not only evaluation, but also a range of
other programming activities including transformation. The environment is designed to
encourage working in an incremental and exploratory style, avoiding constraints on the order
in which things must be done yet guarenteeing security. What has already been done towards
the development of a program automatically persists, as does information about what has yet
to be done. For instance, new laws can be introduced as conjectures and used in program
transformation, but full details of proof obligations and dependencies are maintained.

The paper outlines the functional language supported by the environment, and uses an
extended example to illustrate program construction, execution, tracing, modification and
transformation.

1 Introduction

In this paper we describe two interactive functional programming systems: Glide and
Starship. They are complementary systems designed to be used in conjunction, and
can therefore be viewed as providing a single environment. Each supports the same
functional programming language, but the two support different programming
activities.

Glide is an interpreter, written in C to run under Unix. It is used primarily to
formulate and modify collections of definitions (e.g. of types, functions) and to
evaluate expressions. Glide is similar to the interpreters for Turner's languages such
as Miranda (Turner, 1985): for example, evaluation is lazy and proceeds by reduction
of a fixed set of combinators. The novel aspects of Glide have to do with its lazy
incremental processing of programs, its support for an exploratory style of working
comparatively free from constraints on the ordering of programming tasks, and the
means it provides for sharing and re-using components. For example, a fine-grained
incremental type-checking method yields approximate types for those definitions
involving as yet undefined free variables; such types are automatically recomputed on
the (re-)definition of a relevant free variable in a way that significantly alters type
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information. The first version of Glide was developed in 1985, and it has changed
little since 1987. It has been used quite extensively, mainly for teaching at York.

Starship is a transformation support system, written in SICStus Prolog (Carlsson
and Widen, 1988) to run in the same Unix context as Glide. It is used primarily to
reformulate existing definitions so that afterwards some programs will run in less time
or space than before, but the results obtained will be identical in all cases. The basic
paradigm supported is a variant of the fold/unfold system (Burstall and Darlington,
1977), but with means for denning and proving non-primitive laws and for meta-
programming transformational strategies. As in Glide, there are mechanisms to
support an incremental and exploratory style of working without compromising
security: for example, conjectured laws may be stated and used without proof, but
details of proof obligations are maintained and, should a conjecture turn out to be
false, there is automatic roll-back of exactly those derivation steps that depended on
it. Re-use is supported by the persistence of derivation histories and a replay
mechanism. The first version of Starship was built in 1987, and the most recent
significant developments of it took place in 1990. It has been used mainly in research
projects, but also for teaching in conjunction with Glide.

Section 2 describes the programming language of Glide and Starship as compared
with, say, Miranda or Haskell (Hudak and Wadler, 1990). Section 3 presents an
extended programming example, illustrating various aspects of our environment.
Section 4 outlines some important aspects of the environment that were not
illustrated in the previous section. Section 5 discusses related work, and section 6
offers some conclusions and suggestions for future work.

2 Programming language

In the common functional programming language of both Glide and Starship,
programs are written in a recursion equation style with non-strict semantics.
Programs are subject to a polymorphic type discipline with both primitive and
explicitly defined algebraic types. The language does not include any major
innovations: we deliberately followed the lead of languages such as KRC (Meira,
1984) and LML (Augustsson and Johnsson, 1987). The result is similar in many
respects to a large subset of Miranda or Haskell, so rather than describe the language
in detail, we shall only remark on a few design decisions and the reasons for them
- especially in view of the kind of environment we wanted to build.

First note some lexical symbols used with different meanings in other functional
languages. We use :: for the append operator on lists, because it suggests a compound
form of :, the basic list constructor. The @ symbol is used in type declarations to
separate expressions from their types, and also in compound symbols such as @ =
which are type-related to avoid undue overloading of the symbol = . The infix
arithmetic operators / , \ are used to express quotient and remainder, respectively,
when one whole number is divided by another; these symbols suggest the
complementary relationship between the two operations. The operator for primitive
pair construction is A (which we pronounce 'hat') in order to make pairs and lists
notationally (and aurally) distinct. Finally, the symbol used for equality by definition
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is -»• rather than =, because not all defining clauses are true equalities (due to pattern-
matching), and because of the essential left-to-right nature of denning clauses from
an operational point of view.

The expression language does not include special forms such as comprehensions,
nor even a conditional since we are content to apply the if function defined (in a fully
explicit style) as follows

Define if@ bool^ a^-a^-a
with if True x _^-x
and if False _ y->y

Our reason for omitting special forms is that they tend to obscure the basic
applicative nature of expressions and to complicate their manipulation in trans-
formations and proofs. Neither do expressions include lambda abstractions: their
anonymity would be a hindrance when it comes to source-level tracing. Expressions
do include blocks, and the notation of sections for partial applications of primitive
operators - although both these forms of expression proved more troublesome in
Starship than we expected.

Only the natural numbers are provided as a primitive numeric type. This avoids the
need for special rules (e.g. for integer patterns) and simplifies numeric induction. At
one point we even considered making the successor construction non-strict like all
other functional constructors: although this has some advantages (Runciman, 1989),
efficient evaluation would be harder to achieve, familiar properties such as
commutativity of addition would be at risk, and numeric induction would be more
tricky. The form of definition for algebraic data types is fairly standard, except that
projection functions may be defined along with their complementary constructors:
the following example defines name @ person -»• [char] and age @ person -*• num
along with Person @ [char]-*• num^-person:

Data person @ = Person (name @ > [char]) (age @ > num)

This facility has often proved convenient, particularly as it avoids the need to generate
artificial names in some transformations.

The definition language includes constructor-based pattern-matching but not
guards. This is because guards would complicate the folding and unfolding of
applications quite considerably. Even sequential pattern-matching alone poses all
kinds of subtle problems (Firth, 1990).

Finally, there is no notation for modules in the language. Rather, using Glide and
Starship as illustrated in the next section, programmers create and maintain flocks
which serve a similar purpose. This arrangement fits well with the aims of incremental
working and an exploratory style. We mention in passing that Glide could be
modified to generate conventional module notation including suitable import and
export lists.

3 Programming example: enumerating the amicable pairs

The proper factors of a positive integer i are the factors less than i itself. Two distinct
positive integers i and./ are said to form an amicable pair if the proper factors of i sum
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toy and the proper factors of j sum to i. For example, the pair (284,220) is amicable
because

1 + 2 + 4 + 5 + 10+11 + 20+22 + 44 + 55 + 110 = 284 and 1 + 2 + 4 + 71 + 142 = 220.

In this major section of the paper we shall use the development of a program to
enumerate the amicable pairs as an illustrative running example, as we discuss first
Glide and then Starship.

3.1 Constructing programs in Glide
Flocks, definitions and types

Typically the development of each application program begins with a Glide session
to create a new flock within which the top-level definitions for that program are made.
A flock is a named collection of definitions forming a natural unit of work.

$ glide
University of York Glider (built 26 Oct 1989)

Towing... releasing tow rope...

glide > NewFlock amicPairs

Here we have used the convention of bold font for user input and bold italic font for
computer output. Note the simple 'teletype' interface with prompts, command lines
and responses: our reasons for restricting ourselves to such an interface, and some
alternatives to it, will be discussed in section 4.

At the Unix level, flocks are implemented as directories, with definition sources
held in files. Some files in a flock are shared - for example, constructor definitions are
links to the definition of the parent data type. Programmers do not store or load
definition files explicitly, however: these transactions are carried out by Glide so that
persistent definition and lazy loading are automatic. We make the first definition for
the amicable pairs program as follows:

glide > Define main -> filter amicable (pairs positives)

Alternatively, the command Edit main would have allowed the definition to be
formulated using a standard text editor. In either case, the definition persists
automatically in the amicPairs flock until such time as it is explicitly removed - for
example, by using an UnDefine command.

Polymorphic types are maintained incrementally, using a fine-grained algorithm
described in detail in an earlier paper (Toyn et al., 1987). So far, none of the names
used on the right-hand side of the definition of main has a definition that is available
within the amicPairs flock: for example, nothing is yet recorded about any possible
bindings for filter. The interim type recorded for main is therefore completely
polymorphic. We can use the Detail and Type commands to show the state of play

glide > Detail filter
glide > Type main
a
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By convention, single letter identifiers are used for universal variables in type
formulae, and such variables are named a,b,c... in order of their first occurrence.

Search sets and Library flocks

Every flock has an associated search set containing the names of other flocks whose
definitions it may also use. An identifier may be overloaded with several definitions,
each belonging to a different flock in the search set. Glide determines the intended
binding for each use of an identifer by the type of its context: this type must unify with
the type of exactly one candidate definition. Ambiguities are resolved if possible by
forward binding - binding other identifiers in a way that refines the context type for
the overloaded identifier. This search set mechanism with type-based overload
resolution is intended to make it easy to share definitions between programs and,
perhaps, between programmers. It is important that we have search sets, and not
ordered search lists or paths: binding to the first definition on a path would fail to
exploit polymorphic type information; binding to the first definition of suitable type
would risk results that depend on the sequence in which bindings are made (Toyn,
1987).

When a flock such as amicPairs is first created, its search set is empty

glide > Search

Some flocks are provided as part of the system, forming libraries of components. The
most commonly used of these is the flock (standard} which may be compared to the
prelude of other functional programming systems. An Edit command is used to edit
either programmed definitions or search sets. The environment passes control to an
ordinary text-editor of the user's choice, post-processing the resulting file. It
determines the path-name(s) of the file where the text should be stored for future
reference, providing a simple form of automatic persistence.

The filter function is a (standard) higher-order auxiliary. Still within the flock
amicPairs we therefore edit its search set as follows:

glide > Edit Search

the initial text

Search [ ]

is altered to

Search /(standard)/

Such alteration of the amicPairs search set does not by itself cause any loading of
definitions from the secondary storage representation of (standard} into primary
memory: definitions are loaded only to satisfy a specific need; hence the term lazy
loading. The programmer is rarely aware of lazy loading taking place because it
happens automatically. However, type inference is performed only as definitions are
loaded, and does not itself force further loading. In consequence, lazy loading may
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refine existing types. Repeating our earlier request for details of filter is enough to
force its definition (but no others) to be loaded from (standard)

glide > Detail filter

Flock: (standard}
Type: (a -> bool) -*• [a] -*• [a]
Source:
— The items from a list that satisfy a predicate.

— e.g. filter (2 < ) [2,4,1,3] -> [4,3]
Define filter @ (a -+ bool) -> [a] -> [a]

with filter p [ ]^-[ ]
and filter p (x:xs)->-if(p x) (x:) id (filter p xs)

Note the extended application of if. This concise applicative style would be inhibited
by a special form for conditionals.

The loading of filter also causes an incremental refinement of the type for main, and
this is further refined by the introduction of a definition for the amicable function

glide > Type main

[a]
glide > Define amicable (iA j) -> ami i j & ami j i

glide > Define ami i j -*• sum (factors i) = j

glide > Type main

[a-bl

The auxiliary filter is just one of the list-processing functions in (standard) that
seem to find a use in most programs. Others include,/©/*/, map and take which we shall
now use to complete the definition of amicable

glide > Define sum -> fold ( + ) 0

glide > Type fold

(a->b->b)->b-> [a] -> b
glide > Define factors i -» filter (factorof i) (take (i - 1 ) positives)

glide > Define factorof i j -> i \ j = 0

glide > Type take

num -*• [a] -*• [a]

glide > Define positives ->• 1: map (1 +) positives

glide > Type map

Expression evaluation and snapshots

As in many functional programming systems, the basic nature of a computation in
Glide is the evaluation of an expression in the context of some definitions. The
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environment provides the time-honoured read-eval-print loop that has proved so
convenient for the simple testing of fresh definitions

glide > factors 12
[1,2,3,4,6]
glide > amicable (23A45)
False

The policy of lazy loading continues to apply during evaluation. The obvious
benefit is avoidance of unnecessary loading costs; but lazy loading also means we may
successfully test the completed parts of incompletely developed programs (in which
some definitions have yet to be made, or some type-errors have yet to be resolved) by
running the program as a whole with suitably restricted input.

The evaluation strategy is lazy, and the reduction mechanism is based on a fixed set
of combinators very similar to those used by Turner (1979) in his seminal
implementation of SASL. Computations can be interrupted and examined. This can
be done as often as one likes, but only the most recently interrupted computation can
be resumed. For example, the definition of positives can be tested as follows:

glide > positives
[1,2,3, 4,5, 6, 7,8, 9,10,11,12,13,14,15,
16,17,18,19, 20,21,22, 23, 24, 25, 26, 27, 28,
29,30,31,32,33,34,35, 36, 37,38,39, 40, 41,
42, 43,44, 45,46,47, 48,49, 50,51,52, 53,54,
55, 56,57,58,59,60, 61,62,63 interrupt

At this point, a source-level 'snapshot' of the remaining computation may be
requested. For historical reasons, this request is made by a Trace command

glide > Trace

map ((+) 1) (63: (positives > > 63))

Snapshots are made possible by introducing at abstraction time (when the source
program is translated to combinatory form) special combinators to maintain source-
level annotations as an integral part of the program graph. This incurs an overhead
of about 50 % in both space and time. Even with annotations, a partially-reduced
combinator graph is somewhat removed from the original source program, so the
process of generating a snapshot includes a form of partial evaluation eliminating
compiled combinators as far as possible. We gave details of the method in an earlier
paper (Toyn and Runciman, 1986).

After a computation has been interrupted, normal reduction can be resumed.
Moreover, if a snapshot has been produced, it is the partially evaluated graph that is
used for the continuing computation: the snapshot-time reductions do not have to be
repeated under a different strategy

glide > Ok
,64,65,66,...
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Binding and type errors

Returning to the overall aim of developing a program to enumerate the amicable
pairs, we have yet to define the pairs function, as we may discover by trying to
compute main

glide > main

Undefined variable: pairs

Used by: anticPairs I main

Context type: [num] -*• [num A num]

To provide a context for a discussion of type errors, we shall now make a deliberately
erroneous definition

glide > Edit pairs
text editor used to create

Define pairs [ ] -*• [ ]

and pairs (x: xs) -> map x A xs pairs xs

Although this is clearly type-incorrect (e.g. xs cannot be both a list and a function),
the only response is a change of prompt to include E (for error) as a warning

glide E >

Think of this warning signal as an approximation, on a dumb ASCII terminal, to a
small amber light in one corner of the screen.

Sources in which type-errors are detected are annotated with the details, and placed
by the system in an internal list of definitions with unresolved errors. Experience has
taught us that some such muted or delayed response to errors is an important
ingredient in an incremental system, because an error detected in one definition is
often corrected by a change to another definition which the user already had in mind.
If errors are resolved, the warning signal is turned off and the relevant definitions are
taken out of the error list with error annotations removed.

Requesting Edit with no argument yields an editor applied to some definition in the
error list. Each problematic expression has a simple label (a capital letter): this is used
in comment lines, both to delimit the expression and to introduce a footnote giving
details of the problem

glide E > Edit

the annotated text looks like this

Define pairs []->[]

and pairs (x:xs) -+map x A xs pairs xs

—?A BB A

— ?A..A @ [a]^b*c but context @ [d]-+[e]

—?B. .B@ [a] but context @f^g^c

This particular format for type error messages was by no means the first we
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implemented. At one time, for example, the system used sophisticated pretty-printing
of definitions to allow embedded messages: we hoped that this would be particularly
helpful in revealing the true structure of expressions where mistaken operator
associations or precedences lay at the root of type errors, but users (beginners
especially) only protested that they could no longer recognise their own definitions!
Pretty-printing of definitions is now applied only on explicit request.

The above definition of pairs becomes well-formed with the addition of a couple of
brackets and an append operator

Define pairs []-+[]

and pairs (x:xs) -*• map (xA) xs :: pairs xs

However, this is not quite what we want for the amicable pairs program. It works well
for finite lists

glide > pairs "socks"
\{'s'*'o'), ('s'*'c'), ('s'A'k'), ('s'*'s'), ('o'*'c'),

but it is not much use for infinite ones

glide > pairs positives

[(1*2), (1*3), (1*4), (1*5), (1*6), (1*7), (1*8),...

If we think of the pairs (x,y) as occupying an infinite x—y co-ordinate grid, tfeen in
this order of enumeration we never get beyond the first column in which x = 1 in
every pair. What is required is a diagonalised enumeration

glide > Edit pairs

we amend the definition to the following

Define pairs -»-

( pairs' [ ] where

pairs' xs (y:ys)->map (y* ) xs :: pairs' (y:xs)ys )

glide > pairs positives
1(2*1), (3*2), (3*1), (4*3), (4*2), (4*1), (5*4),...

This completes our prototype program to enumerate the amicable pairs.

Type declaration

We have formulated all the definitions for the program without any explicit type
declarations, but could have included these had we wished. In other functional
programming systems that allow polymorphic type declarations, declared types must
be instances of inferred types. In Glide, because of the incremental nature of type-
checking, we require rather that declared types should unify with inferred types: the
actual type of a definition is taken to be the result of that unification. The system can
be requested to annotate definitions with type declarations that reflect all that can be
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inferred about their type at that stage of development. If we now do this for the
amicable pairs program

glide > TypeAnnotate main

the result obtained is shown in Fig. 1.

Define ami @ num -» num -> bool
with ami ij-^-sum (factors i) = j

Define amicable @ num"num-»bool
with amicable (i"j) -*• ami ij & ami} i

Define factor of @ num -> num -*• bool
withfactorofij->i \j = 0

Define factors @ num-* [num]
with factors i'-»

filter (factor of i) (take (i—1) positives)
Define main @ [num'"num]

with main -*filter amicable (pairs positives)
Define pairs @ [a]^- [aAa]

with pairs-*
(pairs'[]
where pairs' xs (y:yx) -+

map (yh) xs :: pairs' (y : xs) ys)
Define positives @ [num]

with positives -*• 1: map(l -+) positives
Define sum @ [num] -»• num

with sum ̂ fold ( + ) 0

Fig. 1. Initial amicPairs definitions after type annotation.

Running the program

To run the program, we simply evaluate the expression main. The example amicable
pair given earlier is the first encountered in the enumeration order of pairs positives

glide > main

[(284,220)...

It is rather a long wait for each pair! This has a lot to do with the specification-like
programming style we have adopted, but it is also true that the Glide interpreter is
quite slow. Speed of execution was never a major aim. However, the system does
provide a handle for alternative methods of implementing evaluation: FLIC
intermediate code (Peyton Jones, 1988) can be generated on request, and we have
separate tools to compile this via G-machine (Johnsson, 1984) or TIM (Fairbairn and
Wray, 1987) code, for example.
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With our initial version of the amicable pairs program now complete, we quit
Glide in the terse Unix style, by keying end-of-file

glide > AD

The amicPairs flock, its search set, and the definitions it contains, all persist for use
in another Glide session or, as we are about to see, in Starship.

3.2 Transforming programs in Starship

As we said in the introduction, Glide and Starship are separate programs, written in
different languages. They communicate only by the creation and modification of
textual source files in which programmed definitions persist. Each system also
maintains files of private information: Starship needs these to check, for example,
that no other program (such as Glide) has been used to alter a definition which is the
subject of a proof or transformation only partially completed in a previous session.

To apply Starship to the amicable pairs program, we begin by locating the
appropriate flock

$ starship
University of York Starship

Version 0.2 launched22 January 1990

Beaming up... welcome aboard...

> Flock amicPairs

Simple in-lining

Let us begin with a minor transformation to unfold an application in-line. Recall that
the function factor of is used only in the definition of factors: the relevant definitions
can be listed as follows:

> List factors factorof

factor of @ num -> num -*• bool

1. factorof ij-^-i \j = 0

factors @ num -> [num]

1. factors i-+filter (factorof i) (take (i—1) positives)

The suppression of keywords such as with, Define and and in favour of clause numbers
reflects the different nature of programming in Starship as compared with Glide. No
Edit command is provided: it would hardly be safe! Yet we must manipulate
expressions and clauses: expressions are specified mainly by patterns they match, and
clauses by the name of what is defined, qualified by a number if necessary. There are
sensible defaults.

Partial applications, such as that of factorof in factors, cannot be unfolded directly
in the current Starship system. The curried nature of factorof must first be made
explicit by reducing the arity of its definition. The operator-operand form i \j = 0 is
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just a shorthand for the applicative form ( = ) ((\) ij) 0, which can be re-expressed
using (o) the functional composition operator

> Fold (o) in factorof
factor of @ num -»• num -»- bool
*1. factorof ij^ ((= 0) o (i\))j
> Retract

factorof @ num -*• num -*• bool
*1. factorof i^ (=0) o (i\)

Of course, we should like to automate such steps, but we also want source-level
definitions accessible to the user at all times. Simple schemes based on combinatory
coding do not give acceptable results in general. Note the *-markers introducing
clauses after transformation steps: these indicate clauses that have changed as a result
of the last step.

With a reduced arity definition, the unfold step is easy

> Unfold factorof in factors
factors @ num ->• [num]
*1. factors i->filter ((=0) o (i\)) (take (i—1) positives)

We can quit Starship at this point with no outstanding proof obligations; the
system reminds us which definitions have been transformed

> AD

Transformed in amicPairs: factorof factors
End ofSICStus execution, user time 1.820

The new definitions are now in force. Also, the old ones from which they were derived
are retained under the RCS version control system (Tichy, 1985) unless the user has
opted to switch off this mechanism. Use of RCS not only provides a useful record
of developments for the programmer, it also supports an Undo command that really
can undo any previous step.

Specialisation by case analysis

There are many different transformation strategies possible. In their original
fold/unfold paper, Burstall and Darlington emphasised a strategy of specialisation by
considering cases: their method begins with the introduction of new instances of
existing clauses with more specific argument patterns. We have discussed in a
previous paper (Runciman et al., 1990) the necessary adaptation of instantiation, and
related rules, for a language with non-strict constructors and lazy matching.

Using a theory of tabulation

In more recent years, there has been a shift towards the definition and use of
equadonal theories in transformation. These theories are collections of equivalence
laws, some perhaps with side conditions, relating a particular group of functions.
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Bird's (1988) theory of list operators is an outstanding example: we could sensibly
apply filter promotion, for instance, to our amicable pairs program.

We choose instead to illustrate the definition and use in Starship of a single-law
theory of lazy tabulation - an idea originally due to Turner (1981). Given a function
/over the natural numbers we can tabulate (or memoise) its results in an infinite list,
replacing all other applications of/by a linear indexing operation on this table. Since
the spine and items of the table are evaluated lazily, only those parts of it that are
actually needed will be computed. To formalise this idea in Starship, we first define
what we mean by the naturals, a table of results for a function of the naturals, and
the linear indexing operation

> Define naturals -*• 0: map (1 + ) naturals

> Define table f->map f naturals

> Define index (x:_) 0 -»• x

and index (_: xs) (n +1) -»• index xs n

It remains to formulate the law, and in due time to prove it. A law declaration is
similar in form to a single-clause function definition: instead of Define we write Law,
instead of a function name there is a law name, and instead of argument patterns
there may be variables of the law - implicitly, these are universally quantified. On the
right hand side of the -»• symbol is an equivalence between expressions, or the
entailment of an equivalence subject to one or more other equivalences as side-
conditions. The exclusive emphasis on equivalences reflects the intended trans-
formational application of laws. Expressions in laws may involve the undefined
value _L

> Law tabulation f-»f± = ± l - f = index (table f)

For tabulation to apply,/must be strict, because the indexing operation is strict. This
is just the sort of side-condition that is easily overlooked, which is one motivation for
building a transformation support system with a proof-checker.

In keeping with the exploratory style, tabulation can now be applied, even though
it has not yet been proved. Consequent proof obligations and dependencies are
recorded automatically. In the amicable pairs program, sums of factors are computed
infinitely often for each number, suggesting that tabulation might be worthwhile!
Hence we proceed as follows:

> Fold (sum o factors) in ami

*/. ami ij-> (sum o factors) i =j

> Apply tabulation (sum o factors)

*1. ami i j-> index (table (sum o factors)) i =j

The side-condition requiring (sum o factors) to be strict is verified automatically. In
other law applications, it may not be possible to deal with a side-condition
automatically, in which case it is retained for subsequent explicit proof. Starship
incorporates several strictness and finiteness analysis techniques to avoid the
proliferation of such proof obligations.
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As yet, we may appear only to have made things worse, adding the machinery of
table lookup to ami without removing the composite function. To make the intended
gain, it is essential that a single table of results for this function is shared across all
applications of ami. A clever compiler might achieve this for us by lifting the table
application out of ami, recognising it as a constant applicative form (Peyton Jones,
1987); but Glide does not perform such optimisations. We therefore make the sharing
explicit in a final transformation step at source level

> Define factorsums-> table (sum o factors)
> Fold factorsums in ami
*/. ami ij-r index factorsums i =j

Although the necessary transformation of denning clauses is now complete, the
equivalence of the new definition of ami to the original one relies on the tabulation
law, which we have yet to prove. We can request information about all such
outstanding dependencies using a Status command

> Status
antic Pairs I ami: tabulation

Proving laws

When a law is denned, a proof clause is automatically created for it. Initially the proof
clause is just a copy of the law itself

> Proof tabulation
Proof clauses of law tabulation

1. f± = -Lh/= index (table f)

The Starship proof checker supports a backward style of proof in which proof clauses
are transformed to TRUE. Most commands used for transforming clauses of
definitions are also applicable to proof clauses. We begin the proof of tabulation by
exposing a little of its structure

> Unfold table
Proof clauses of law tabulation
*1. f± = l\—f= index (mapf naturals)
> Extend with n
Proof clauses of law tabulation
*/. /J. = L\—fn = index (map f naturals) n

Proof of lemmas

Just as Glide supports top-down program development, so Starship supports top-
down proof by conjecturing other laws as lemmas. One problem-solving strategy we
have often found successful in this context is difference reduction (Ernst and Newell,
1969) - repeatedly introducing and applying lemmas whose application removes a
difference between left and right hand sides in the main equivalence being proved.
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Using this strategy, the first lemma in the tabulation proof raises/to the outermost
position on the right hand side, as on the left

> Law indmap f xs n -»• f-L = _LI—f (index xs n) = index (map f xs) n

> Apply indmap f

Proof clauses of law tabulation

*1. / I = \—fn = f (index naturals n)

As recorded above, the Apply command is ambiguous: in which direction should the
law be applied? What actually happens is a screen-based interaction not easy to show
here: the system highlights each possible expression to which the law could apply in
turn; the user skips over candidates using the space bar and accepts one using the
return key. This simple mechanism is perhaps the most elaborate in our deliberately
modest, terminal-based interface.

The second and final lemma in the tabulation proof just equates arguments in the
left and right hand side applications of /

> Law indnat n -* index naturals n = n

> Apply indnat

Proof clause 1. tabulation is TRUE

Law tabulation is provisionally proved

The proof is only provisional because the lemmas indnat and indmap have yet to be
proved

> Status

Law amicPairs I tabulation: indnat indmap

Proof by induction

The Starship system incorporates a straightforward structural induction scheme
which is generic over almost all data types. The one special case is natural induction,
where finiteness information is used to improve the scheme. Although fixpoint
induction is not directly supported, some useful lemmas whose proofs would require
fixpoint induction are available in a standard library - for example, the take lemma
(Bird and Wadler, 1988).

We can prove indnat by natural induction, and indmap by list induction

> Proof indnat

Proof clauses of law indnat

1. index naturals n = n

> Cases n

Proof clauses of law indnat

*1.1. index naturals L = L

*1.2. index naturals 0 = 0

*1.3. index naturals nl = nl\—

index naturals (nl + 1) = nl + 1
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Since Starship infers the type of n to be natural, the choice of induction scheme in
response to Cases n is automatic. The clause numbering scheme generalises in the
obvious way.

The base cases in this inductive proof are easily dealt with

> Unfold in 1.1 1.2

Proof clause 1.1. indnat is TRUE

Proof clause 1.2. indnat is TRUE

Such an Unfold command with no specific parameters requests exhaustive unfolding,
subject only to the need for termination which is ensured by a variant of pending
analysis (Young and Hudak, 1986). A few basic simplifications, such as equivalence
of identical expressions, are performed automatically after each proof step.

If we try taking the same Unfold approach to clause 1.3:

> Unfold in 1.3

Proof clauses of law indnat

*1.3. index (0: map ( + 1) naturals) nl = nil-

index (0 + 1: map ( + 1) (map ( + 1) naturals)) nl = nl + 1

the effect is excessive. In such circumstances Undo is invaluable. Without a full
implementation of Undo, exploratory use of composite transformation steps would
inevitably be inhibited by the risk of regret

> Undo

Unfold in 1.3. indnat undone

Having backed out of the blanket Unfold approach, we now advance again more
cautiously, requesting a limited unfolding of a selected index application only.
Argument patterns in the command are used to specify which application we intend
to unfold

> Unfold index _ (nl +1) in 1.3

Proof clauses of law indnat

*1.3. index naturals nl = nl\—

index (map (1 + ) naturals) nl = nl + 1

Now we spot an opportunity to apply the other lemma. Fully specific argument
patterns specify the target expression, and once again a strictness side-condition is
dealt with by the system

> Apply indmap (1 + ) naturals nl

Proof clauses of law indnat

*1.3. index naturals nl — nl\—

1 + index naturals nl = nl +1

Since Starship uses AC-matching with respect to primitive operators (Hullot, 1979),
and + is commutative, it only remains to take the inductive step. In general, this
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requires the selection of both an assumption and a target expression; the default
method uses enumeration of candidates by highlighting expressions in place, as
described earlier

> Induce
Proof clause 1.3 .indnat is TRUE
Law indnat is provisionally proved
> Status
Law amicPairs I indnat: indmap
Law antic Pairs I tabulation: indnat indmap

The indmap proof is a little more complex, but the mechanisms involved are very
similar, so we omit the details.

4 Aspects of the environment not illustrated by the example

Choosing to describe the environment by means of an example, as in the previous
section, has the inevitable consequence that not all aspects are illustrated. The fullest
accounts of the Glide and Starship systems, including various implementation details,
can be found in the second and third authors' DPhil theses. However, we should like
to outline here one or two important aspects of each system that we have not yet
discussed.

4.1 More about Glide
Alternative user interface

Despite the simplicity and ease of learning of the teletype command interface of
Glide, it is lacking in some respects. A user trying to resolve a type inconsistency, for
example, may want to inspect the types of sub-expressions near those marked as
inconsistent: this information is held by the underlying system, but cannot be
accessed conveniently by the user. Similarly, Edit gives access to only one definition
at a time, since context is lost from the screen when the editor is invoked.

Therefore, still working only with a terminal rather than a workstation (because
many of our student users did not have workstations), we developed a ' full-screen'
version of Glide. The user can select any sub-expression in a definition by traversing
syntactic structures using the arrow keys and another key meaning 'expand selection
to become the enclosing expression'. The type of any selected expression may be
inspected. If an identifier is selected its definition can be brought onto the screen, so
several related definitions may be viewed at once. The definitions being viewed are
stacked: a fresh request to view a definition pushes it onto the stack (if it is already
in the stack, it moves to the top). The screen displays as many definitions from the
top of the stack downwards as will fit: the small size of a terminal screen is restrictive,
but most definitions are smaller still. Space is left above the stack for responses to
requests for information such as types.

Definitions can be thought of as the nodes, and bindings between them as the links,
of a hypertext system. In such systems, knowing where you are, how you got there,
and how to get to somewhere else, can be tricky problems. In full-screen Glide,
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various menus of definitions are available such as: all definitions with views currently
on the stack; those in which errors have been detected; those that the top definition
uses; those that use the top one (among the definitions loaded so far). Similar menus
are available for flocks. Programming commands too are available in a menu
structure but there are also single key-strokes for most of them. A what_is key
requests information about any menu entry.

Structure editing of a terse, expression-based language is painful, and we therefore
decided to provide a simple text editor within the system. This led to each definition
on the stack being in one of two modes: browsing or editing. To give some idea of
the edit mode, commands available in addition to modeless character insertion
include mark, copy, cut, paste, erase-character, erase-line and match-bracket. Edits to
one definition need not be completed before others can be browsed or edited, but an
edited definition must parse cleanly before it can itself be browsed structurally.

Expression evaluation is the most awkward part of Glide to integrate into the full-
screen system. An expression to be evaluated is formulated in a new top stack frame
as a named definition. One benefit of this is that it persists for repeated use as a test
case. Results (and any tracing information) simply scroll up the screen from the
bottom.

Our experience has been that full-screen Glide is a big improvement for
understanding and re-structuring larger programs: it has much greater power for
these tasks. The twin modes do complicate the dialogue structure, but they seem no
worse than the context-switching of Edit in the teletype interface. For evaluating
expressions, however, it is hard to beat the real-eval-print loop: having to create a
named definition on the display stack for each main expression feels too much like
hard work.

4.2 More about Starship
Higher level transformations

The rules of the fold/unfold system operate at a rather low level. By supporting the
definition and proof of laws relating non-primitive functions we potentially raise this
level significantly. In Starship, any group of laws that forms a convergent rewriting
system (Huet and Oppen, 1980) can also be declared as a named Lawset and
selectively applied as a simplification procedure. Such a simplification procedure for
the primitives is built in as part of the system. But the basic rules, even augmented by
laws and simplification procedures, must still be applied according to some higher
level strategy.

The seminal work on LCF (Gordon et al., 1979) solved this problem in the context
of theorem proving by programming strategies in a meta-language, using higher order
functions to compose steps and a type-checker to guarantee the soundness of
computed proofs. Like others, we have followed this lead.

ASTRAL (A STRAtegy Language) is our transformational meta-language with
primitives corresponding to the interactive commands of the Starship system and
various combining tactics as primitive operators. It is a lazy functional language and
hence supports backtracking (Wadler, 1985). Among the more distinctive features of
ASTRAL are: a comprehension mechanism which abstracts away from associative
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and commutative rearrangements of expressions; a memo-response method and a
continuation-based method for expressing interactive transformations involving both
programmer and machine, without loss of referential transparency; and a system of
abstract data types that supports the convenient expression of transformations
affecting only a small part of a program leaving the rest unchanged. A prototype
implementation is complete apart from continuation-based interaction. We hope to
give a detailed description of ASTRAL and its implementation in a future paper.

Selective undoing and replay

As noted during the example, our experience has confirmed the need for a secure and
convenient way of undoing earlier transformation steps. We stress that the Undo
command in Starship, and accelerated forms of it using Mark and Back commands,
have proved invaluable. However, they amount only to requests for a global retreat
to some earlier point in session history: sometimes this is too indiscriminate, as many
'good' steps may have been interleaved among the 'bad' ones. So in the most recent
version of Starship we introduced two further mechanisms.

First, there is a selective undo mechanism which uses precisely the same dependency
and roll-back scheme as that for laws, law applications and proofs. An arbitrary
name can be declared as an Idea and applied to definition or proof clauses. An idea
is like an unformulated law in the programmer's head. Applying an idea to a clause
has no effect that is immediately apparent, but all subsequent versions of that clause
depend on the validity of the idea. Ideas are 'proved' simply by naming them in a
Confirm command, or 'disproved' by naming them in an Abandon command.

The other provision is that a user has the option not only to record previous
versions of a program but also to record the steps used to transform one version to
another. These recorded derivations can be used in a subsequent Replay command,
applying the same transformation to the same initial definitions but with the
opportunity to omit, insert, replace or systematically modify steps as the trans-
formation proceeds. Moreover, recorded transformations need not necessarily be
re-applied to the same initial definitions, but perhaps to another program with
similar structure. Implementing Replay presented few difficulties - another advantage
of using a simple text-based interface.

5 Related work

Since the seminal developments in the mid-1970s, represented by BurstalPs (1977)
NPL and Turner's (1976) SASL, there have been many different implementations of
functional programming in the recursion equation style. Higher order functions are
almost universally supported, and in this connection the discipline of polymorphic
typing has gained widespread acceptance. Although other forms of incremental
polymorphic typing have been implemented (Nikhil, 1985), the combination of lazy
loading with fine-grained re-checking is unique to Glide so far as we know. Most
purely functional systems now employ lazy evaluation reflecting a language with non-
strict semantics (Haskell and Miranda are prominent examples), but in systems
implementing a mostly functional language such as standard ML (Milner et al., 1990)
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eager evaluation is preferred because sequential imperatives can be understood in the
context of applicative evaluation order. Whereas sophisticated debugging tools have
been implemented for ML by automatic instrumentation of source code (Tolmach
and Appel, 1990), lazy evaluation makes it difficult to provide a satisfactory
equivalent, but O'Donnell and Hall (1988) describe one approach. Although Glide's
snapshot mechanism is rather limited, at least one variant of it has been developed
(Snyder, 1990).

The few functional language implementations apart from Glide and Starship that
have included support for program transformation have generally been based on
strict languages with applicative order evaluators. For example, Feather (1982)
describes his ZAP system for the fold/unfold transformation of NPL programs, in
which the emphasis is on automated tactics guided by a heuristic meta-program. The
same emphasis is apparent in a series of systems developed by Darlington et al.
(1989), culminating in a transformational programming environment for the Hope +
language that provides several sophisticated algebraic transformations, such as
linearisation and inversion, as primitives of a meta-language. There are many
differences between the Hope+ transformation system and Starship. As to the
programming language, for example, Hope + includes absolute set abstraction (ASA).
This is a powerful special form with no immediate applicative equivalent: programs
involving ASAs can be directly executed only by a specialised search procedure based
on narrowing; a major motivation for the whole environment is to support the
transformation of ASAs into conventional functional programs. However, the
particular difference between the two systems we should like to emphasise again
concerns the exploratory style. In Starship the primary mode of working is
interactive, with conjectured laws, roll-back, and so on; even ASTRAL meta-
programming is strongly biased towards exploratory interaction, and meta-programs
yield lazy lists of alternative results. In Hope + transformations the primary emphasis
is on the application of prepared procedures, and meta-programs yield a single
resulting product of transformation.

6 Conclusions and future work

Sometimes a distinction is made between programming environments that are
rigorous (constraining how the programmer works so that everything can be checked)
and those that are exploratory (leaving the programmer to work free-style but at their
own risk). In the Glide and Starship systems we have tried to achieve rigour in an
exploratory style, and we claim to have succeeded in many respects.

Structuring the environment as a pair of co-operating tools, internally very
different but sharing a common source language for communication, has worked
surprisingly well. Using source-level text files to represent an automatically persisting
state of the environment is straightforward, but hardly efficient: even the most heavily
used definitions in the (standard) flock are processed from source by each user in
each session (subject to lazy loading, of course). Work on a new version of the
environment, with a single definition server shared among all users, is at a preliminary
stage.
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Many aspects of the present environment are linked to the type system, from
overload resolution in Glide to induction schemes in Starship. There are still further
ways of exploiting type information that we have yet to implement fully-for
example, context-based retrieval from libraries (Runciman and Toyn, 1991). Type
information could also be used to automate the validation of a large class of laws
(Wadler, 1989) and further refinements of the complex algorithms used for
incremental type inference are still being discovered (Aditya and Nikhil, 1991).

The problem of how best to observe a lazy functional computation in progress is
still open. Glide's snapshots of partially reduced program graphs provide the
information required for some purposes, but they are too static (and often too large)
to give the programmer an adequate view of what is going on. There is ample scope
for experiment, for example, with presentations of a series of program graphs in some
highly simplified or condensed form, filtering out a mass of information that is
irrelevant for particular purposes: at least one system has been implemented with a
mechanism for producing such representations (Taylor, 1991).

Is it not surprising that so few implementations of functional programming
languages include transformation support, since ease of formal manipulation is so
often claimed? Building the Starship system has been instructive in this respect:
though some things turned out to be easier than we expected, most turned out to be
far more difficult. Starship is a complex program of several thousand lines, and for
many parts of it we have no explicit formalisation other than the program itself. We
share Feather's (1987) goal of achieving a symbiosis between the talents of the user
(who must take some strategic decisions) and the machine (which must carry out
numerous low-level manipulations flawlessly). But in Starship, even extended with
ASTRAL, the communication level between human and system remains low. It is
hard to compensate for the limits in the programmer's ability to understand and work
with a program structure which, as transformation proceeds, changes, and becomes
more complex; the more powerful the mechanical system, the worse this problem is.
We stress the need for near-perfect formatting of programs, clear marking of freshly
transformed expressions, access to previous versions and a comprehensively flexible
way to revise earlier steps; but this can only be the beginning.

Finally, there is no formal guarantee in Starship that a transformed program is
more efficient than its predecessor. There are many reasons why this is so, but the
dominant one is that we do not yet have a suitable model of the space and time costs
of lazy evaluation. A practical consequence is that although transformational
development may eliminate a good deal of empirical testing otherwise necessary to
check program correctness, evaluation under a specific implementation (such as
Glide) is still needed to assess the relative efficiency of semantically equivalent
programs.
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