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and

l | 7 > , | | = 2 \y,(J)\ for i = l,...,n. (5)
yfin+l

By (4) there exist i0, j \ , j2 such that 1 < j 0 < n, 1 < / , <y2 s n + 1 and y,-0(/fc) * 0 for jfc = 1,
2. On the other hand, there exists/ e £* such that | | / | | E . = 1 a n d / ( 7 > J = ||7>,-o||. So (5)
implies that |/(xy)| = 1 or yio(j) = 0. But by the definition of xy, |/(jty,)| < 1 or |/(jty2)| < 1.
This contradicts (5). •

3. Proof of Theorem 2. Without losing generality, we assume that | • |2 = || • ||2.
Then | | - | | £ < | | • | | 2 < | | • ||E.. By John's theorem (see [8]), there exist JC,, . . . ,xNeK" and
positive numbers ku...,kN, where N<n(n + l)/2 in the real case, N^n2 in the
complex case, such that | |*, | |E= ||x,-||2 = ||JC,-||£. = 1, *, is not a multiple of any other xh

and

IS/V

It is clear that there exist 6, such that 0 < b, < 1 for i = 1,. . . , N and,

if ||/||2 < 1 and |(JC,,/)| > bit then |(JC,,/)| s b, for all ; # i.

The main step of the proof is the following claim.

CLAIM. N = n and *,, . . . , xn form an orthogonal basis in l\.

We want to show that A, > 1 for all i such that 1 < i < N. Suppose that one can find an
t'o ^ N such that 0 < A,o < 1. Choose p large enough such that

Fix such p and choose a positive number c satisfying

Now we are in the position to estimate a lower bound of np(i2E) by using the N + 1
elements CJC,0, Aj/pjc,,. . . , A^pjtN. Denote them by yx,. . . ,yN+x.

Some simple computations show

In

in /?. Meanwhile
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0. Introduction. The previous results on isometrically characterizing 11 in
terms of operator ideal norms can be summarized as follows.

Let E be an n-dimensional Banach space.
(1) If A(£) = 1, then E^H (see [3], [5], [6]), where A(£) is the projection constant

of E (see [4]).
(2) If n(E) = n, then E -12, (see [1], [2]).
(3) If A2(E) = Vw, then E —11 (see [8]), where A2(£) is the 2-dominated constant of

E (see [4]).
(4) If for any linear operator T: ln

x
+l-^E, vx(T) = v\n)(T), then £ = /£ (see [7]),

where V! is the 1-nuclear norm (see [4]).
In this paper we have the following theorems.

THEOREM 1. Let E = (Kn, \\ • \\E) be an n-dimensional Banach space and let M be a
positive integer. If po^2 is such that jrp(E)^MVp for all p^p0, then E embeds
isometrically into /£f.

COROLLARY. / / np{E) = nVp for all p >p0, then E = 11.

THEOREM 2. If jzp(i2E) = nVp for allp>p0, then E=-H, where i2£:(/Cn, | • |2)-»(K",
|| • || £) is the John operator.

Since n1/p< Jrp(i2£)< JZP(E) for all E with dim(£) = n, the Corollary also follows
immediately from Theorem 2.

THEOREM 3. If for any linear operator TJ1+l^>E we have nx(T) = 7t["\T), then
E = ll.

This can be regarded as a dual result to (4).

1. Preliminaries. Let E = (K", || • ||E) be an n-dimensional Banach space, where
K = U o r C . Let £ = (*", || • | | p ) , where ||*||P = ( E | * ( 0 I T " (for l < p < « ) , \\x\\x =

max I x(i) \ We say that E = (K",\\- \\E) and F = {K",\\- \\F) are isometric and write

E = F if there exists a linear operator T from £ to F such that | |T| | IIT^H = 1. The John
operator is the identity map i2E:(KN, | • | 2 )-*(A:n , | | • | | £ ) , where (K",\-\2) is the
Euclidean space whose unit ball has maximum volume among all ellipsoids contained in
the unit ball of £.

For a linear operator T: £ - » F , the p-summing norms (p s 1) are denned by

np
k)(T) = s u p ( ( S 117X11") ":xu ...,xkeE, pp(xu . . . ,xk) =

and
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where

\f(xt) \")Vp:feE*

If E is finite dimensional, np(E) : = ^(id^).

2. Proofs of Theorem 1 and Theorem 3. It is well known that any separable
Banach space is isometric to a subspace of /„. Let m eJVU {°°} be minimal with the
property that there exists an isometric embedding i:E—*l™. Our aim is to show that
m < M ( t o prove Theorem 1) and m = n (to prove Theorem 3).

Let el,. . . ,e*m be the standard dual basis of /", and for l < / < m let fi = i*(e*).
Then we have \\x\\E = max{\fj(x) |: 1 < ; < m} for every x e E. By the minimality of m, it
is clear that none of the functionals fi is a multiple of any other (in the case m = °°, we
choose a subsequence of (̂ -)7=i s u c n ^ a t ^ ^s a minimal norming set), and that, for each;,
there exists a unit vector x, such that fi is its unique supporting functional.

Proof of Theorem 1. Now suppose that <*>>m>M. By a simple compactness
argument, there exists a such that 0 < a < 1 and /(*,•) > a =̂> /(.Xy) < a for / e £* such that
| | / | | £ . = 1 and for 1 < i < m, 1 < / < m, i =̂y.

Then certainly

M p (x 1 , . . . , ;O<( l + (m- lK) 1 / ' '
and ( S lk,ir)1/p = mVp. So we have

i

which is strictly larger than M if p is large enough. If m = °°, we choose °°> m' > M, and
use * ! , . . . , xm' in the same way as before to show that np

p{E) > M for p large enough.
This contradicts our assumption that np(E) < MVp for p sufficiently large. •

Proof of Theorem 3. If m > n, define T: /£+1-» E by 7e, = xy for ; = 1,. . . , n + 1.
Then ^i(T) = E ||rey|| = S ||JC,-|| = « + 1. Since n1(T) = Jt[n\T), there exist

<+l
>i , . . . ,yne/2,+1 such that

Mi(yi,--- , ^ ) = max{2 |> l ( / ) | : l sys / i + l} = l (1)

and

2 l |7> , l |=n + l. (2)

Hence

2 II7>,ll ^ 2 II 2 ^(/)rey|| ^ 2 |^(/)| <n + 1. (3)

So (2) holds only when

2ly,0")l = l for / = ! , . . . , n + 1 (4)
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and

I |7> ,H= 2 I M ; ) I for i = l , . . . , « . (5)
;==n +1

By (4) there exist i0, / i , j2 such that 1 < i0 < n, 1 <;'! </ 2 — « + 1 and yia{jk) ¥=0 for k = 1,
2. On the other hand, there exists/ e E* such that | | / | | £ , = 1 and/(7>,0) = ||7>J|. So (5)
implies that |/(*y)| = 1 or yio(j) = 0. But by the definition of xh \f(xh)\ < 1 or \f(xh)\ < 1.
This contradicts (5). •

3. Proof of Theorem 2. Without losing generality, we assume that | • |2 = || • ||2.
Then || • ||£ < || • ||2 s || • ||£,. By John's theorem (see [8]), there exist xu . . . , xN e K" and
positive numbers Xx,. . . ,XN, where N<n(« + l)/2 in the real case, N^n2 in the
complex case, such that ||JE,-||£ = | |^,| |2= ll*,ll£- = 1, *i is not a multiple of any other xn

and

It is clear that there exist bt such that 0 < b, < 1 for i — 1,. . . , N and,

if ||/||2 < 1 and |0t,.,/)| > bh then \(Xi,f)\ < b, for all j * i.

The main step of the proof is the following claim.

CLAIM. N = n and x^,. . . ,xn form an orthogonal basis in l\.

We want to show that A, > 1 for all i such that 1 < i < N. Suppose that one can find an
i0 < N such that 0 < A,o < 1. Choose p large enough such that

10 2n "

Fix such p and choose a positive number c satisfying

Now we are in the position to estimate a lower bound of np(i2E) by using the N + 1
elements cxh, ^.\'px1,. . . , k]!fxN. Denote them by y1,. . . ,yN+i.

Some simple computations show

in K. Meanwhile
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Hence (note our choice of c)

JIANG ZHU

cp c"+

The contradiction implies the claim.
Without losing generality we can assume that {xu. . . ,xn) is the unit vector basis

{eu. . . ,en).
By Pietsch's theorem (see [4]), there exists a sequence {//}y™=i £/£ such that for any

xeE

y=i

and

(6)

(7)

In (6) put x = e, for / = 1 , . . . ,« . Then it is easy to see that each fi must have the form
$fek. Put Aj = {fi: fi is of the form /S,e,} for i = 1,. . . , n. From (6) (for x = e,) and (7), one
has

forp s:p0- Hence

= 2\(x,ed\P2 105, */)!' =

for all /? s:/?0. Letting p-*•<*>, we see that | | J C | | £ S ||JC||«,. But since ||e,-||£. = 1, it follows
that |MU = max|Ot>e;)|<max||;c|U||e,.||E. = |MI£- So || • ||£ = || • ||.. •

ACKNOWLEDGEMENT. I wish to thank Dr Jameson for his encouragement and valuable
discussions.

REFERENCES

1. J. P. Deschaseaux, Une caract€risation de certains espaces vectoriels norm6s de dimension
finie par leur constante de Macphail, C. R. Acad. Sci. Paris Ser. A-B 276 (1973), A1349-A1351.

2. D. J. H. Garling, Operators with large trace, and a characterization of /", Proc. Cambridge
Philos. Soc. 76 (1974), 413-414.

3. D. B. Goodner, Projections on normed linear spaces, Trans. Amer. Math. Soc. 69 (1950),
89-108.

4. G. J. O. Jameson, Summing and nuclear norms in Banach space theory (Cambridge
University Press, 1987).

5. J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72
(1952), 323-326.

If E is finite dimensional, np(E) := ^p(id£).

2. Proofs of Theorem 1 and Theorem 3. It is well known that any separable
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argument, there exists a such that 0 < a < 1 and /(*,) > a => /(*,) < a for / e E* such that

. = 1 and for 1 <i<m, l < y < m , / # / .
Then certainly

and (
i

= w1/p. So we have

which is strictly larger than M if p is large enough. If m = °°, we choose °° > m' > M, and
use xt,. . . ,xm' in the same way as before to show that np(E) > M for p large enough.

This contradicts our assumption that KP{E) < MVp for p sufficiently large. •

Proof of Theorem 3. If m > n, define T: ll+' - • E by 7e, = x,: for y = 1,. . . , n + 1.
Then nx{T)= E II^H = E ||*,-|| =n + 1 . Since n^T) = jr(

1")(r), there exist
yrsn + l

y l f . . . , ^ 6 / r 1 such that

and

Hence

So (2) holds only when

= 1 (1)

(2)

1. (3)
jsn + l i,j

2\\Tyi\\=n + l.

= 1 for y = l , . . (4)
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