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Abstract

We distribute the points and lines of PG(2, 2"+1) according to a special structure that we call the daisy
structure. This distribution is intimately related to a special block design which turns out to be isomorphic
to PG(n, 2).

We show a blocking set of 1q points in P G(2, 2"+1) that intersects each line in at least two points and
we apply this to find a lower bound for the heterochromatic number of the projective plane.
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1. Introduction

1.1. Basic objectives In this paper we distribute the points and lines of the Desar-
guesian projective plane of order 2 n + \ denoted PG(2, 2"+1), according to a special
structure that we call the daisy structure. The daisy structure distributes the points in
three sets, using a family of hyperovals, and allows us to distribute the lines on a dual
structure whose combinatorial scheme is controled by a special block design which
turns out to be isomorphic to the projective space of dimension n over 22, denoted

We use the daisy structure to prove two applications, the first one related to the
blocking sets in PG(2, q) ([7]). In the second one, we see PG(2, q) as a (q + 1)-
hypergraph and prove that the heterochromatic number of P G(2, q) is greater than or
equal to q2 - 2q + 5 ([3]).
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1.2. Basic notation and definitions Let (P, .if) be a projective plane of order q,
with point set P and line set S£. It is well known that (P, S£) has q2 + q + 1 points
and that S£ has q2 + q + 1 lines with q + 1 points on every line. An oval of P is a
nonempty set G of points no three of which are collinear such that through any point
of G there is precisely one tangent (a line that intersects 6 in only one point). A
hyperoval of P is a nonempty set 3V of points such that any line intersects 3tf in 0 or
exactly 2 points. It is easy to see that any oval in P has exactly q + 1 points and any
hyperoval has exactly q + 2 points [8].

It is well known that if G is any oval in a projective plane of order even all tangents
(one for each point) pass through a common point, the nucleus of G [9]. In particular
the theorem of Quist [12] states that any oval in a projective plane of even order can
be extended to a hyperoval, if we take the oval plus its nucleus [8].

We work with the projective planes of order q constructed over finite fields and
denoted by PG(2, q). Recall that given a vector space V of dimension 3 over the finite
field GF(q) of order q, we can construct the projective plane PG(2, q) whose points
are the 1-dimensional subspaces of V and whose lines are the 2-dimensional subspaces
of V, moreover, it is well known that PG(2, q) is Desarguesian [8]. Examples of
ovals in Desarguesian planes are provided by nondegenerate quadrics (conies). The
theorem of Segre [8] states that in projective planes of odd order there are no other
ovals. The conclusion of Segre's theorem does not remain true if the plane has even
order. In this paper we work with the Desarguesian projective planes of order q for
q = 2"+1 and n > 0.

Recall that the projective space of dimension n over Z2, denoted PG(n,2), is
constructed in a similar way, that is, if V is the vector space over Z2 of dimension
n + 1, then PG(n, 2), is the set of subspaces of V. Moreover, the hyperplanes of
PG(n, 2) are the subspaces of dimension n — 1. It is well known, that PG(n, 2) is
a symmetric and cyclic (q — 1, q/2 — 1, q/4 — l)-block design (Singer [1938]), for
q = 2n+1, where the elements of the design are the points of PG(n, 2) and the blocks
are the hyperplanes.

2. The daisy structure in PG(2, q)

2.1. The daisy structure of points Our first goal is to distribute the points in
PG(2, q) in a structure that resembles a daisy; we call it the daisy structure.

Since GF?(q) = GF(q) - {0} is a cyclic group [10] we can see GF{q) like
(0, a0,... , aq~2}. It is easy to prove that there exist {q—2)/2 different decompositions
of the unit 1 = a"' +a° ' + / , with i € {1 , . . . , (q -2 ) /2) and a, € {1 , . . . , 9 - 2 } ([2]).

Now, let us consider the following set of hyperovals in PG(2, q)

& = U*. y, z] 6 P : z2 = a'xy] U {[1, 0, 0]}, for each j e {0,... , q - 2}.
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FIGURE 1. Daisy structure of points in PG(2,16).

Equivalently, we can define Jtf as

J% = {[1, 0, 0], [0, 1, 0], [0, 0, 1]} U {[1, a2/a1, a]\ae GF*(q)}.

The daisy's centre is the set <g = {[1,0, 0], [0, 1,0], [0,0, 1]}, and we call it simply
the centre.

It is easy to prove that two different hyperovals ^ and J^j for / ^ j intersect
exactly in the centre, it is ^ n 3^j = c€.

The daisy's petals are the q — 1 sets of points ^ = Jtfj — 'tf for i e {0, . . . , qr — 2},
and we call them simply the petals. Observe that any petal has q — 1 points and that
the intersection of any two different petals is empty. The q — 1 points of a petal &{

are p\ = [1, a2j/a', a'] for j e {0, . . . , q — 2}. Thus, we have q1 — 2q + 1 points
in the petals.

The daisy's stems are the points in the lines generated by "tf without the set c€.
Thus, we have three stems with q — 1 points in each one. Obviously two different
stems have empty intersection, therefore we have 3(q — 1) points of PG{2, q) in the
stems.

If we add the points in the centre, the petals and the stems we obtain all the points
inPG(2,<7).

2.2. The daisy structure of lines In this section we distribute the lines of P G(2, q)
in a daisy structure of lines, dual to the daisy structure of points. We can observe that,
by duality, an hyperoval (of lines) of j£f is a nonempty set Jif* of lines such that any
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point in a line in 3>!f* has exactly two lines in 3V*. In the following, we only use the
words centre, petal and stem when we speak about these sets in the daisy structure of
points and we shall be more specific otherwise.

We can observe that the daisy structure of points induce a natural partition of the
lines in P G(2, q) into three sets: the lines that meet the centre in two points, that meet
the centre in one point and that do not meet the centre. In the following we construct
with these sets the centre, the petals and the stems of the daisy structure of lines.

The daisy's centre of lines is the set of lines that meet two points in the centre. In
other words it is *£*.

The daisy's petals of lines are formed by the lines that do not meet the centre.
Moreover, we have q — 1 petals of lines &>* for i e {0 , . . . , q — 2} and any &* has
q — 1 lines l\ such that l\ = [1, a2J/a', aj]. Thus, we have q2 — 2q + 1 lines in the
petals, it is easy to see that the lines of the petals of lines meet each line of *€* in one
point and that this point is not part of the centre; therefore it is on the stem. Thus, we
have that any line of the petals of lines has a point in each stem and the remaining q — 2
points are in the petals. In this form any line of the petals of lines meets (q — 2)/2
petals in two points at each one.

The daisy's stems of lines are formed for the lines that meet the centre in only one
point. Thus, by definition of hyperoval, any line in the stems of lines meets the q - 1
petals in one point in each one, therefore the other point in these lines is in the stems.

We distribute these lines in three packets or stems of lines. Two lines are in the
same stem if they meet the same point of the centre. Remember that in any point of
the centre are q + 1 lines, thus two of them are in *£* and the rest forms a stem of
lines. It is easy to see that if c e *€ and Tc is the stem that does not meet c, then the
q — 1 lines in the stem of lines for c meet each one of the points in Tc and do not meet
points in the others stems. Then we can identify the 3(q — 1) lines in the stem of lines
with the 3 (q — 1) points in the stems.

3. The daisy block design

We say that a line / € Jf jumps k in the petal ^ , if it meet the points p\ and p\+k

fory € {0, . . . , q - 2}, for a fixed k e { 1 , . . . , (q - 2)/2). We denote by Sf the set
of these lines.

Let [au ... , a((7_2)/2} be the exponents of the (q — 2)/2 decompositions of unity
1 = of" + aak+k introduced in the Section 2.1. We have the following.

PROPOSITION 3.1. Forafixedk e [I ( ^ -2 ) /2} , wehavethatSf = <0"!1-_2at_f

PROOF. The line in &* that meets the points p\ and p\ for i,j,s € {0, . . . , q — 2}
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and; jL s is [ai+s, a', aJ + as] and there is the cross product p\ x p\ with

p\ = [ l , av/a', aj] and p\ = [l, o^ /o ' , a 1 ] .

If we fix jk € {1, . . . , (q - 2)/2}, the lines in Sk meet the points p-+at and p\+ak+k

for i 6 { 1 , . . . . q - 2}, therefore the lines in 5* are [a2s+2at+k, a', as+at + as+ak+k],
for s e (0, . . . , q — 2). The decomposition of unity 1 = a"k + a"k+k induce a
decomposition of as

as+at+k.

Therefore the lines in Sk are

[ -2s-4at-2k "I

1, .o" 1 " 2 *-* .
a-i-2ak-k

Thus S* = ^! ,_2 a t_ t . D

In the next part we construct, via the daisy structure and Proposition 1, a symmetric
and cyclic (q — 1, q/2 — 1, q/A — l)-design that we call daisy block design and denote
as QlSSS). The elements of S)SS& are the petals of lines and its blocks are the petals.

The tySB® is shown in the following table, whose ij -entry is the petal of lines that
jumps j in ^c.

Jump 1 . . . Jump j . . . Jump ^

It is easy to prove, from many results about ovals [2], that each pair of petals of
lines in P G(2, q) meets together exactly q/A — 1 petals. Moreover, it is easy to see
that this design is cyclic since its incidence matrix is circulant [11]. Observe that the
(n + l)-row in the table is obtained subtracting one (in the subscript) from the n-row.

Now we have the following result.

THEOREM 3.2. There exists an isomorphism between the QlSB^I constructed for
PG(2, q) and PG(n, 2), where the points correspond to the petals of lines and the
hyperplanes correspond to the petals.
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PROOF. Let ^tf be the design isomorphic to $£S$ obtained by changing the signs
of the subscript of the petals of lines in &!%)$. jtf is, by construction, a symmetric
block design with circulant incidence matrix.

Let M be the design isomorphic to M whose elements are T.q and the isomorphism
g : M ->• M is g(&*) = / for all i. Obviously, M is also isomorphic to $S8!& and
it is a cyclic block design.

Now, let c/K be the cyclic block design isomorphic to M whose elements are in
GF*(q), and a : M -> •/K is the isomorphism given by cr(i') = a', where a is
a primitive element in GF*(q) [10]. Again, by construction, Jf is isomorphic to

. Recall that the first block in 93B2) has the petals of lines

Therefore the first block in M is

[2aj+j \j

Thus, the first block in ^/V is

when a is a primitive element of GF*(q).
Now, we will prove that B U {0} is a subgroup of GF(q). Note that afll (1 +a') = 1

and then a2**' = a ' / l + a2'. Also,

a1 a"1'

1 + a2' a-2' + 1

Thus, we have proved that

Recall that, if / 6 {1, . . . , q — 1}, there always exists an s e {1 , . . . , q — 1} such
that a' + as = 1. Therefore, a ' / ( l + a2') = c r ^ l + a""*), because

1+a 2 ' 1 + a ^ + l l/ar2i

Let a ' /( l +a2') andaJ/(l+a2J) be in B, then there exist s and/: e {1 , . . . , q - 1}
such that:

If we add two elements of B we have that

1 + a2' 1 +
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Moreover, we know that a~s + a~k = ap for some p 6 { 1 , . . . , q — 1}, and that
there exists r e {I,... , q — 1} such that ap + ar = 1, therefore

_ .r

a-
s -)- a -*( l + Q;-* + a-*) = a/>(l + a

p) =
2r

a
Thus, B U {0} is a subgroup of order q/2 in GF(q).

Singer's Theorem asserts that PG{n, 2) is a cyclic (q — 1, g/2— 1, q/4 — l)-design.
Using the idea of the proof in the Singer's Theorem:

L e t / : PG(n,2) ->• GF*(q) be such that f[an, «„_,,. . . , oo] = Efl<«' f o r

a, 6 22 and a a primitive element of GF*(q). Obviously, / is one to one and sends
the hyperplanes to subsets in GF*(q), in which the exponents of or form a difference
set [1].

Let PG(n, 2) U {0} be PG(n, 2) U {[an, an_,,... , ao] | a, = 0 V i}. If we define
/ (0) = 0; then/ sends PG(n, 2) U {0} into GF(q).

We know that PG(n, 2) U {0} is the vector space of dimension n + 1 over Z2 and
/ sends the subspaces of dimension q/2 to subgroups of GF(q) of order q/2.

Now, if H is any hyperplane then H U {0} is a subspace of dimension q/2. Thus,
for any H hyperplane of PG{n, 2), the image under/ of H U {0} are the subgroups
of GF{q) of order q/2. Then, B is the image of some hyperplane. Moreover, since
J/ is the block design generated by B, it is isomorphic to P G(n, 2). •

4. Two applications of the daisy structure

In this section we apply the results of the daisy structure and the daisy block design
discussed in the previous sections. First to blocking sets of projective planes and
then we use this application to find a lower bound for the heterochromatic number,
introduced in [3], of the projective planes.

Remember that if (P, S£) is a projective plane, a blocking set of P is a set B of
points such that any line contains a point of B and a point outside B. Moreover, we
know that if B is a blocking set in a projective plane of order q, then

q + Jq+l < \B\ <q2- Jq (Bruen [7, 6]).

Using the isomorphism between the daisy block design and PG(n, 2) given in the
last section we have the following theorem.

THEOREM 4.1. A Desarguesian projective plane of order q = 2"+i,for n > 1, has
a blocking set ofiq points that intersects each line in at least two points.

PROOF. Let ®3SS>* be the cyclic and symmetric (q-1, q/2 - 1, q/A - l)-design
dual to @3S$ whose elements are the petals of points and the blocks are the petals of
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lines such that an element £* is in ablock &>* if &j = Sf, fork e { 1 , . . . . (q - 2)/2}.
It is easy to prove that <2>S&g>* is isomorphic to 2)8i® ([1, 2]), therefore it is also
isomorphic to PG(n, 2) (Theorem 3.2). L e t / be the isomorphism between 9>S&3l*
and PG(n, 2) and let ^ , &2 and ^ 3 be three petals of points whose images under
/ are three collinear points in PG(n, 2). Since three collinear points in a projective
space are together in exactly q/4 — 1 hyperplanes [1], we claim that &\, £?2 and ^
are together in exactly q/4 - 1 blocks of ®2&2>*.

Moreover, we know that any pair of elements in 3>9SS>* are together in exactly
q/4 — 1 blocks and that any element in Qi3§$)* is exactly in q/2 — 1 blocks then, it
is easy to see that there exist q/4 — 1 blocks with t?\, ^2 and ^*3 and that any other
block in <2lS$2)* is one and only one of the three petals of points &\, £*2 and ^ 3 .

Now, since the petals of lines are the blocks in ®3B2>*, it is easy to see that any line
in the petals of lines (Section 2.2) meets some petal of points ^ , , for i e {1, 2, 3}.

Consider the set of points srf = J^ U &2 U ^ 3 in PG(2, q), and recall that
Jffi = &\ U *)f (Section 2). We claim that J ^ is a blocking set that satisfies the
hypothesis of the theorem. Now, we will prove that any line in PG{2, q) has at least
two points in si'.

Let / e S£. If / is in the centre of lines (Section 2.2) it has two points in Jf\. If /
is a line of the petals of lines we proved that it has two points in at least one of three
sets &\, @*2 or ^ 3 (observe that it is possible that / has two points in each one of this
sets). Now, if / is a line of the stems of lines (Section 2.2) it has two points in J ^ , one
point in <^2 and one point in ^ 3 .

It is clear, (by the definition of £?) that all lines in .Sf have more than one point
outside of s/.

Finally, if we add the points in Jff\, &2 and <^3, we find that \sf\ = 3q. D

Now, we will apply our results to Graph Theory; we see PG(2, q) as a (q + 1)-
hypergraph, H = (V, E), where V = P and E = _£? and prove that the heterochro-
matic number, introduced in [3], is greater than or equal to q2 — 2q + 5.

Recall that, if H = (V; E) is a hypergraph, by a t-coloring of H we mean a
surjective mapping from the vertex set V onto a f-element set. A /-coloring f of H
separates the edge a e E if the images b y / of the vertices in a are all different. We
call / heterochromatic if / separates some edge of H. The heterochromatic number
of H, denoted hc(H), is the maximum t for which there exists a (t — l)-coloring that
is not heterochromatic.

Then we prove the following theorem.

THEOREM 4.2. For q = 2n+1 andn > \wehavethathc{PG(2,q))>q1-2q + 5.

PROOF. We will construct, using Theorem 4.1, a q2 — 2q + 4-coloring that is not
heterochromatic. If we have the sets of points Jtf\, £?2 and ^ as in Theorem 4.1
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and we let / : P -> {1 t) be a f-coloring of PG{2, q) such that / (•#?) = 1,
/ (^2) = 2 and / (^3) = 3 and the rest of the points in P has each one a different
color and also different to 1, 2 and 3 we have a f-coloring that is not heterochromatic
since any line of PG{2, q) has at least two points in any of these three sets. Moreover,
we have that t = 3 + (q2 + q + 1 - 7>q) = q2 - 2q + 4. • D

It is important to point out that we can prove that this bound is exact for P G(2, 4).
We also proved that the heterochromatic number for any projective plane or order q

is greater than or equal toq2 — 2q+4 and it has as upper bound the number q2 — q + 1 .
These results are obtained using the concept of trace in a hypergraph [4] and blocking
sets. Details will appear elsewhere.
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