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Abstract

We study singularities of solutions of the heat equation, that are not necessarily isolated but occur
only in a single characteristic hyperplane. We prove a decomposition theorem for certain solutions on
D + = £>n(R" x]0. oc[), fora suitable open set D, with singularities at a compact subset K of R" x |0),
in terms of Gauss-Weierstrass integrals. We use this to prove a representation theorem for certain solutions
on D+, with singularities at K. as the sums of potentials and Dirichlet solutions. We also give conditions
under which K is removable for solutions on D\K.
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31B35.
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1. Introduction

Let D be an open subset of R"+l = {(x,t) : x e R",r e R), let D(0) = {x e R" :
(x, 0) e D) ^ 0, let D+ = D n (R" x ]0, oo[) and let HA(D) be the family of all
temperatures on D that can be written as a difference of nonnegative temperatures.
The central result of this paper, Theorem 2, gives conditions under which an element
u of HA(D+) can be written in the form u = W/J. + W\j/ + w, where /J. is a signed
measure supported in a compact subset C of D(0), \j/ is a locally integrable function
on D(0) such that W\\f/\ < oo on D+, and w is a temperature on D+ that can be
extended by zero to a temperature on D. Here

Wfj.(x,t)= W(x - y,t)dfi(y)
J supp/*
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[2] Time-isolated singularities of temperatures 417

and

Wij/(x, t) = / W(x - v, t)xj/(y)dy\
*) SLlpp t/'

with W(.x.t) = (Ajity" 2exp(-| | ,v| |2/4O for all (x,t) e R++ l . Because w tends to
zero at D(0) x {0}, this decomposition enables us to use theorems on Gauss-Weierstrass
integrals to prove results about temperatures in any HA(D+).

In Section 3, we use the decomposition theorem to prove a representation theorem,
which extends one established by Aronson [2] for solutions of a wide class of parabolic
partial differential equations on B(0, p )x ]0, T[ with singularities at (0, 0). Working
only with temperatures, we are able to considerably weaken the constraints on the
solutions, replace the circular cylinder by an arbitrary D+, and replace the point of
singularity by an arbitrary compact subset K of D(0) x {0). A representation of the
form u = GDn + /; is obtained, where GDn is the potential on D of a signed measure
supported in K, and h is a Dirichlet solution on D+.

In Section 4, we consider temperatures u on D\(C x {0}) for an arbitrary compact
subset C of D(0), and give a mild constraint which ensures that they can be written
as the sum of a temperature on D and the potential of a signed measure supported in
C x {0}. The idea here is that, because the restriction of u to D\D+ has a continuous
extension to u* (say) on D\D+H we can take \jr = M*(- ,0) in the decomposition
theorem, so that W\f/ + w can be extended to a temperature on D. Given this result,
known conditions which imply that \i is null can be converted into conditions for
C x JO) to be removable.

Many other papers have been written about removable singularities, including
[1.5-7]. Isolated singularities of nonnegative temperatures have been characterized
by Widder [ 16, p. 119], and those of arbitrary temperatures by Chung and Kim [3].

2. The decomposition theorem

If ix and i/f are, respectively, a measure and a function defined on a subset of Rw,
they are assumed to be extended by zero to the whole space. Their restrictions to a set
A are denoted by /j.A and \j/A.

A temperature u on £L is called initially zero if u(x, t) -> 0 as (x, t) —*• (y, 0+)
for all v € £>(0).

A family & of closed balls is called an abundant Vitali covering of R" if, given
x € R" and e > 0, J5" contains uncountably many balls with centre x and radius less
than e. See [13] for a discussion.

The proof of the decomposition theorem requires a preliminary theorem.

THEOREM 1. Suppose that u = Wix + v on D+, where v is an initially zero
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418 Neil A. Watson [3]

temperature, and n is a signed measure concentrated on D(0) such that W\fi\ < oc
on D+. Let & be an abundant Vitali covering o/R". If there is a signed measure v
concentrated on D(0) such that

(1) lim / u(x,t)dx = v(A(~) V)
'-*0+JAnv

whenever A , V e # j c D(0), and A n V ^ &, then \x = v.

PROOF. By [13, Theorem 7.3(i)], there is an abundant Vitali covering J?Q c &

such that \ix\(c)A) = 0 for all A e J ^ . Given V € <?Q such that V c D(0), put
wv = Wfj.v and wD\V = W/j.Dia)\V. Then wv = u — v — ivD,,v on D+.

If A e ^ o and A fl V ^ 0, then A n V is a compact subset of £>(0), so that

lim /(2) lim / v(x, t)dx = 0.
'^°+JAnv

Furthermore, because the boundaries of A n V and A\V are both /i-null, it follows
from [13, Theorem 7.2(i)] that

(3) lim / wD\V(x, t)dx = 0 = lim / u\(x,t)dx.
'-0+JAnv '-+<>+JA\V

Combining (1), (2) and (3), we obtain

lim / wv(x,t)dx = lim / wv(x, t) = vv(A).
' ^ 0 + JA '^°+ JAM

On the other hand, if A e <^Q and A D V = 0, then it follows from [13, Theorem
7.2(i)] that

lim /
' - 0 +

 JA
wv(x, t)dx = 0 = vv(A).

Therefore ixv = vv, by [13, Theorem 7.3(ii)].
Given any open subset U of £>(0), choose a sequence of sets {V*} in J^o with union

U, and put X, = V,, Xj = Vy-\ u / l j Vk for all 7 > 2. Then, by the above,

H(U) = ^n(Xj) = J^fiv^Xj) = J^vVi(Xj) = v(U).
j = [ j=\ ; = l

The result now follows from the regularity of Radon measures. •
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[4] Time-isolated singularities of temperatures 419

NOTE. If, in Theorem 1, u(x, 0+) is finite whenever x e D(0) and the limit exists,
then the same is true of W n(x,0+), and the two are equal. Therefore d/j.(x) —
u(x, 0 + ) J J C , by [12, Theorem 1], so that u(-, 0+) is locally integrable, and

lim /
'~°+ JB

u(x,t)dx = / u(x,0+)dx

for each bounded Borel subset B of D(0) such that m,,(dB) = 0, by [13, Theorem
7.2].

THEOREM 2. Suppose that u € HA(D+), that C is a compact subset of D(0), that
•j? is an abundant Vitali covering o/R", and that \f/ is a locally mn -integrable function
on £>(0) such that W\\jj\ < oo on D+. If

lim / u(x,t)dx = I
JAnv JAM

whenever A, V € #", V c D(0)\C, and A D V ^ 0, then there exist a unique signed
measure fi, supported in C and with finite total variation, and a unique initially zero
temperature w on D+, such that u — Wfi + Wi/r + w on D+.

PROOF. By [15, Theorem 1], there is a unique signed measure v on D(0) with the
following property. Given any bounded open set E such that E c D and £(0) ^ 0,
there is a unique initially zero temperature v on E+ such that u — WvE + v on E+.

Choose E such that C c £(0). Applying Theorem 1 on E\(C x {0}), we obtain
dvEC(y) = iJfE\c(y)dy- Since C is compact | v|(C) < oo, so that W\vE\ < W\vc\ +
W\}j/\ < oo on D+. It follows that W\v\ < oo on D+, so that there is a unique initially
zero temperature w on D+ such that u = Wv + w on D+, by [15, Theorem 1]. Putting

= dvc(y) — \j/c(y)dy, we obtain

u = Wv + w = Wvc + W\j/D\C + w = Wfi + Wf + w

on D+, as asserted. •

REMARK. The measure v, associated with u e HA(D+) by [15, Theorem 1] and
described in the first paragraph of the above proof, is called the initial measure of u.

If the initial measure of u is absolutely continuous with respect to mn, then the
following corollary may be easier to use than the theorem. Note that, for any u e
HA(D+), the limit u(x, 0+) exists and is finite for mn-almost every x € D(0), by [15,
Theorem 2].
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COROLLARY. Suppose that u € HA(D+), that C is a compact subset of D(0), that
u(x, 0+) is finite whenever x e D(0)\C and the limit exists, and that W\u(-, 0+) | <
oo on D+. Then there exist a unique signed measure /x, supported in C and with
finite total variation, and a unique initially zero temperature w on D^, such that
u = W/j. + Wu(-, 0+) + w on D+.

PROOF. Let v be the initial measure of u, and let & be an abundant Vitali covering of
R". Given A, V € & such that V c D(0)\C and A n V / 0. choose a bounded open
set E such that £ c D and A n V c £(0). If F = £ \ ( C x {0}), then u = WvF + v
on F+ for some initially zero temperature v, and w(-, 0+) is finite whenever .v e
and the limit exists. Therefore, by the note following Theorem 1,

lim / u(x,t)dx= / u(x,0+)dx.
JAnv JAM

Since W\u(-, 0+) | < oo on D+, u(-, 0+) is locally integrable on D(0), and the result
follows from Theorem 2. •

k

REMARK. If C = (J {xk} in Theorem 2, then

M(.v, /) = y^ctjW(x — xh t) + W\j/(x, t) + w(x. t).

where or,- = /u({x;}) for all y. We can show that

ai = lim / (M(X, 0 — \j/(x))dx
J Bt\ / J')

for any r such that B(xj, r) c D(0) and 5(x ; , r) Pi C = {.v,}. Given such an r, we
have |/x|(3BU;, r)) = 0, so that [13, Theorem 7.2(i)] implies that

lim / u(x,t)dx= lim / (Wix(x,t) + W\f/(x,t))dx
'~* JBi.xt.r) '~* «/fl(.v,.r)

= ix(B(Xj, r)) + I xj/(x)dx
J Bis,.!)

= aj+ I \lr(x)dx,
J m.x,.r)

as asserted. Compare [2, Theorem 3].
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[6] Time-isolated singularities of temperatures 421

3. The representation theorem

In this section, we prove an extension of Aronson's representation theorem [2, The-
orem 3]. This requires a hypothesis of Dirichlet regularity, which is to be understood
in the sense of [10], as that allows us a much wider class of open sets than does the
usual potential-theoretic sense in [4]. We therefore recall the necessary definitions.

Let (>', s) € 3D. We call (y, s) an abnormal boundary point, and write (y, s) e
ai(aD),if thereisanopenballBcentredat(>' , i )suchthatBn(R"x ] - o o , s[) c D.
If B can be found such that B n ( R " x ] - oo, s[) = B D D, then (y, s) is of the
first kind, and so belongs to ab\ (3D); otherwise, it is of the second kind, and belongs
to abjidD). The essential boundary ess(3D) consists of all boundary points that
are not in ab{(dD). I f ( v . s ) e ess (3D), we put D(y, s) = D D (R"x ]s, oo[) if
(>•, s) e ab2{3D), and D( v, s) = D otherwise.

If D is bounded, then every continuous function / : ess (3D) —> R is resolutive.
A point (v, s) e ess (dD) is called regular if

lim Sf(x, t) = /(>•, s)
Lx.t)eD(y.s)

for every continuous / : ess (3D) —> R, where Sf denotes the generalized solution to
the Dirichlet problem f o r / on D. The set D is called regular if every (y, s) e ess(3D)
is regular.

We now give conditions which ensure that a temperature u on D+ belongs to
HA(D+). These will be used in the representation theorem. We write D(t) for
{x : (x,t) e D).

THEOREM 3. Suppose that D+ is bounded and Dirichlet regular, that u is a tem-
perature on D+, and that there is a continuous function \jr : ess(3Z)+) —> R such
that

(4) lim u(x, t) —
u n M )

whenever (y, 5) € ess (3D+)\D. Then u can be extended to D+ = D+ U ab(3D+)
by putting

(5) u(y,s) = lim u(x, t),
(jr.f)-»(.v.J-)

and if

(6) liminf / u+{x,t)dx < 00,
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422 Neil A. Watson [7]

then u € HA(D+) and the function

f u+(x,i
JD+U)

,t)dx

is bounded.

PROOF. Let a = sup{r : £>+(?) ^ 0}. Whenever 0 < c < a, u is bounded on the
set Ec = D+ fl (R" x ]c, a[). For suppose that {XJ} is a sequence in D(c) such that
(x;, c) -* (y0, c) 6 9D+. Then (y0, c) e ess (9£>+), so that w(x7, c) ->• ^ ( j 0 , c) by
(4). Therefore w(-, C) is bounded, so that u is bounded on Et, by (4) and the maximum
principle [10, Theorem 2]. For any (y, .$) e ab(8D+), the boundedness of M on £ ^
implies that the limit in (5) exists and is finite [4, p. 274].

By [10, Theorem 32], f is resolutive for D+. Let h = S^\ and let g = u - h.
Then (4) and the regularity of D+ imply that

(7) lim g(x, 0 = 0
( t ) ( )

whenever (y, s) e ess (dD+)\D. Since h is bounded, g is bounded on Ec whenever
0 < c < a, and therefore g can be extended to D+ as u was. Since D+ is bounded, it
now follows from (6) that

r
liminf / g+(x,t)dx < oo.

i-

Put w = g+ on D + , and if = 0 elsewhere on R^+1. Then w is continuous on
R ^ + I \ 9 D + , and also on n(dD+) because of (7). Furthermore, w is upper semicon-
tinuous on abt(dD+), and also on ab2(dD+) in view of (7). On R"^\ab(dD+), w
satisfies locally the mean value inequality characteristic of subtemperatures. An appli-
cation of Fatou's lemma shows that w also satisfies locally the mean value inequality
at points of ab(dD+). Hence w is a subtemperature, by [8, Theorem 15].

Since g is bounded on each Ec, and D+ is bounded, given c e ]0,a[ there is
KC < oo such that

/ g+(x, t)dx < KC

Jb+(t)

whenever c < t < a. Therefore, if 0 < c < t < d < b, then

W(x, b - t)w(x, t)dx < (4n(b - d)Y±nKc.L
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[8] Time-isolated singularities of temperatures 423

Thus the function t H> jRI, W(x, b — t)w(x, t)dx is locally bounded on ]0, b[, for any
b > 0. Furthermore,

liminf/ W(x, b - t)w(x, t)dx < {2nb)~^n liminf / g+(x, t)dx < oo.
JR" J D+(t)

Hence, in the notation of [9, Theorem 19], w e <t>b whenever 0 < b < oo, so that
there is a temperature v which majorizes if on R^+l. Now u — h < g+ < v on D + , so
that

u - h = v - { v - u + h)e HA(D+).

Since /i is the generalized Dirichlet solution for i/r, we have h e HA(D+), so that
u € HA(D+) as asserted.

For the last part, choose r such that D+(t) c B(0, r) for all ? € ]0, a[, and choose
t e ]a, oo[. Then, whenever 0 < t < a,

' u'(x,t)dx< (g+(x,t)+h+(x,t))dx

< I g+(x,t)dx + sup \h\vnr\
JDAD

where vn is the volume of the unit ball in R". Furthermore,

g+(x,t)dx < (4nb)^e\p(— ) / W(x, b - t)w(x, t)dx,
, \4(b-a)/JR«

and the integral on the right is bounded as a consequence of [9, Theorem 16]. •

We can now prove our extension of Aronson's result. Here GD denotes the Green
function for D in the sense of [10], and

GDn(x,t)= / GD(x,t;y,s)dn(y,s)
JD

for a signed measure /x of finite total variation. If G is GD with D = R"+1, and
v = X x So with <50 the unit mass at 0, then

Gv(x, t) = f W(x - y, t)dv{y, 0) = Wk(x, t)
V/R"X{0|

whenever t > 0.
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THEOREM 4. Suppose that D+ is bounded and Dirichlet regular, that C is a compact
subset ofD(0), that & is an abundant Vitali covering o/R", and that \j/ is a continuous
real-valued function on ess (dD+). Ifu is a temperature on D+ such that

(8)

for every s) ess (3D.

lim i

(.v.ileD.(y.i)

f
liminf / i

l(X, t

t + (x,

) = y/(y, s)

t)dx < oo,

and

lim / u{x,t)dx= I f(x,0)dx
'^0+JAnv JAHV

whenever A, V <s J5", V C D ( 0 ) \ C , and ADV j^0, then

u = GDv + S°'

on D+for some signed measure v of finite total variation supported in C x {0}.

PROOF. By Theorem 3, u e HA(D+). Therefore, by Theorem 2, there exist a
signed measure /x, supported in C and with finite total variation, and an initially zero
temperature w on D+, such that u = W/x + W\j/(-, 0) + w on D+. Let v = fj. x So,
so that Gv = Wix on R^_+l and Gv = 0 elsewhere. By the Riesz decomposition
theorem, Gv+ = GDv+ + hx and Gv~ = GDv~ + h2 on D, where h\ and h2 are
the greatest thermic minorants of Gv+ and Gv~ on D, so that each h{ is initially
zero on D+. Thus, if h = w + hx - h2 then M - GDv = Wx//(-, 0) + h on D+. It
follows from (8) and [11, Theorem 2] that (8) holds with u replaced by u — GDv.
Furthermore, if v = W\j/(-,0) + h then v{x,t) -> iA(y.O) as (x,t) -> (v,0+)
whenever (y,0) e ess(3D+) n D. The result now follows from [10, Theorem
31]. •

4. Removable singularities

We now consider the situation where u is a temperature on D\K, for some compact
set K = C x {0} with C c Z)(0). In Theorem 5, under a mild constraint on u, we
show that M is the sum of a temperature v on D and the potential Gu of a signed
measure supported in K. Thus, if v = A. x <50 then M = WA. + t> on D+, and conditions
which ensure that Wk = 0 become conditions for the removability of K. The proofs
of Theorems 6, 7 and 8 all use this idea.

A temperature in HA(D+) is called initially nonnegative if its initial measure is
nonnegative. Conditions that imply initial nonnegativity can be found in [15].
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[10] Time-isolated singularities of temperatures 425

THEOREM 5. Let C be a compact subset of D(0), let K = C x {0}, and let u be a
temperature on D\K such that

' f u+(x,,
Ju

(9) liminf / u+(x,t)dx < oo
lu

for some open superset U ofC in R". Then u can be written uniquely as the sum of a
temperature on D and the potential Gv of a signed measure supported in K.

PROOF. Let {Vk} be an exhaustion of U n D(0) by bounded open subsets of R"
which are Dirichlet regular for Laplace's equation. Choose j such that C c V;, and
put V = Vj. Then V is a compact subset of D(0), so that we can find a > 0 such that
the set £ = V x ] — a, a[ has its closure in D. Note that £ + is Dirichlet regular for
the heat equation.

The essential boundary of V x ] — a, 0[ is a compact subset of D\K, so that u is
bounded there and hence also on V x ] — a, 0[. Therefore we can define a continuous,
real-valued function \j/ on ess (3£+) by putting

, 0) = lim u(x, t)
(.v.n-»(v.o-)

for all v e V, and

(>>, s) = u(y,s)

for all (y. s) € dV x [0, «]. Note that f = u on (V\C) x {0}, and that u(x, t) —
yjf(y\s) as U\f) - • (y.v) with (x,t) € £+, whenever (y, s) e ess(3£+)\£. It
follows from (9) and Theorem 3 that u e HA(E+). Therefore, by the Corollary
to Theorem 2, there exist a unique signed measure /A, supported in C and with
finite total variation, and a unique initially zero temperature w on E+, such that
u = Wfi + W\j/(-, 0) + w on E+. If

\Wx//(-,0) + w on E+,

\u on £\£+,

then u is continuous on £ and a temperature on £\( V x {0}), so that v is a temperature
on £, by [10, Theorem 5J. If v = ii x <50, then M = Gv + v on £. Putting u = u — Gv
on D\£, we extend u to a temperature on D, and complete the proof. •

THEOREM 6. Let C be a compact subset of D(0) such that mn(C) = 0, and let u
be a temperature on D\(C x {0}) such that

liminf / u + {x,t)dx < ooliminf / u
' - °+ Ju
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426 Neil A. Watson [11]

for some open superset U ofC inR". If there is an initially nonnegative h €
such that

(10) l i m 0
'^o+ h(x, t)

for all x e C at which the limit exists, then u can be extended to a temperature on D.

PROOF. Since mn(C) = 0, there exists a positive temperature / on R^+l such that
f(x, 0+) = oo for all x e C, by [11, Theorem 11]. The addition of / to h does not
affect our hypotheses, and so we can assume that h(x, 0+) = oo for all x e C.

By Theorem 5, there exist a signed measure n supported in C x {0}, and a temper-
ature v on D, such that u = GIJL + v. Let ii = k x 80, and let v be the initial measure
of h. By [14, Theorem 2],

(11) lim
Wv(x, t)

exists and is finite for v-almost all x € R". For each x e C at which this limit exists,
the limit in (10) exists and the two are equal, because h(x, 0+) = oo for all x e C.
Therefore the limit in (11) is zero for v-almost all x € C, and

.. . . \Wk(x,t)\
hminf < oo
î o+ Wv(x,t)

for all x e C. It now follows from [14, Theorem 6] (with Z = C and Y = 0) that A.c
is null. Hence /J. is null, and u = v. •

For the final two theorems, we denote by mq the ^-dimensional Hausdorff measure
on R", where 0 < q < n. We are only concerned that a given set is null, finite, or
CT-finite with respect to mq, so there is no need to distinguish the case q = n from
Lebesgue measure.

THEOREM 7. Let C be a compact subset of D(0), and let u be a temperature on
D\(C x {0}) such that

Iu+(x,,
Ju

liminf / u+(x, t)dx < oo
° Ju

for some open superset U of C in R". If either

(i) q € [0, n], mq(C) = 0, and

(12) lim sup t^n-q)\u(x,t)\ < oo for all x e C,

or
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(ii) q £ [0, n[, C is a-finite with respect to mq, and

(13) lim t^n-q)u(x,t)=0 for all xeC,

then u can be extended to a temperature on D.

PROOF. By Theorem 5, u can be written as the sum of a temperature v on D, and
the potential G/i of a signed measure supported in C x {0}. If fi = k x <50, then
u = Wk + v on D+. For any x e C,

limsup t^n~q)\v(x,t)\

is zero if q < n, and is finite if q — n. Therefore conditions (12) and (13) imply
similar ones on Wk. We can now apply [14, Theorem 6] (with Z = Y = C, so that
the auxiliary function is superfluous) and conclude that kc is null. Hence /x is null,
and u = v. •

In our final result we show that, if C has a certain structure, then for sets with finite
mq-measure we can weaken (13) without affecting the conclusion.

THEOREM 8. Let q e [0, n[, let C be a compact subset of D(0) such that mq(C) <
oo and

(14) \iminf r-
qmJB(x,r)nC)>0

for all x € C, and let u be a temperature on D\(C x {0}) such that

liminf / u+(x, t)dx < oo

° J
for some open superset UofCinR". If

(15)

liminf t^"~q)u(x,t) < 0 < limsup t^"~q)u(x,t) for mq-almostall x e C,

and

(16) liminf n(n~q) \u{x, t)\ < oo for all x e C,

then u can be extended to a temperature on D.
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PROOF. By Theorem 5, u = v + G(k x 80) for some temperature von E and signed
measure A. supported in C. Since q < n, we have t^{n~q)v{x. t) —*• 0 as t -> 0+ for
all JC € C, so that (15) and (16) imply similar conditions on Wk.

Suppose that q > 0. Then mq(C) < oo, (14) holds, Wk(x,0+) = 0 for all
x e R" \Candm n -a .e . on R \ and (15), (16) hold with Wk in place of u, so that [12,
Theorem 10] shows that Wk = 0. Hence u = v.

Now suppose that q = 0, so that C is finite. (In this case, (14) and (16) are
superfluous.) Given x0 e C such that k({x0}) > 0, put v = k{Xo) and co = k — v. Then
[14, Lemma 1] shows that Wa>(x0, t) = o(Wv(x0, f)) as t -^ 0+, so that

Wk(x0, t) ~ Wv(x0, t) = (4nrr)-^A.({.v0}).

Since (15) holds with u replaced by Wk, it follows that

k({x0}) = lim(4jrty-"Wk(xQ,t) = 0.

a contradiction. Therefore A.({JC}) = 0 for all JC e C, so that again u = v. •

REMARK. The conclusions of Theorems 7 (ii) and 8 both fail if q = n. For
example, let n = 1, D = [ - 1 , 2]2, C = [0, 1], v(x, t) = e^' - (e - l)x - 1 on D,
and M = v — Wv(-, 0 ) c on D+, M = v on D\(D+ U (C x {0})). Then w is a bounded
temperature, and because v(-,0) is continuous on C with u(0, 0) = u(l ,0) = 0,
we have u(x,0+) = 0 for all x e C. Since M(JT,O—) = u(;c,0) < 0 whenever
0 < x < 1, M cannot be extended to a temperature on D.
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