TIME-ISOLATED SINGULARITIES OF TEMPERATURES

NEIL A. WATSON

(Received 21 April 1998)

Communicated by P. C. Fenton

Abstract

We study singularities of solutions of the heat equation, that are not necessarily isolated but occur only in a single characteristic hyperplane. We prove a decomposition theorem for certain solutions on $D_+ = D \cap (\mathbb{R}^n \times]0, \infty[)$, for a suitable open set D, with singularities at a compact subset K of $\mathbb{R}^n \times \{0\}$, in terms of Gauss-Weierstrass integrals. We use this to prove a representation theorem for certain solutions on D_+ , with singularities at K, as the sums of potentials and Dirichlet solutions. We also give conditions under which K is removable for solutions on $D \setminus K$.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 35K05, 35B30, 35B60, 35C05, 31B35.

Keywords and phrases: Temperature, singularity, Gauss-Weierstrass integral, potential, Dirichlet solution.

1. Introduction

Let D be an open subset of $\mathbf{R}^{n+1} = \{(x,t) : x \in \mathbf{R}^n, t \in \mathbf{R}\}$, let $D(0) = \{x \in \mathbf{R}^n : (x,0) \in D\} \neq \emptyset$, let $D_+ = D \cap (\mathbf{R}^n \times]0, \infty[)$ and let $H^{\Delta}(D)$ be the family of all temperatures on D that can be written as a difference of nonnegative temperatures. The central result of this paper, Theorem 2, gives conditions under which an element u of $H^{\Delta}(D_+)$ can be written in the form $u = W\mu + W\psi + w$, where μ is a signed measure supported in a compact subset C of D(0), ψ is a locally integrable function on D(0) such that $W|\psi| < \infty$ on D_+ , and w is a temperature on D_+ that can be extended by zero to a temperature on D. Here

$$W\mu(x,t) = \int_{\text{supp}\,\mu} W(x-y,t)d\mu(y)$$

⁽c) 1998 Australian Mathematical Society 0263-6115/98 A 2.00 + 0.00

and

$$W\psi(x,t) = \int_{\operatorname{supp}\psi} W(x-y,t)\psi(y)dy,$$

with $W(x, t) = (4\pi t)^{-n/2} \exp(-\|x\|^2/4t)$ for all $(x, t) \in \mathbb{R}_+^{n+1}$. Because w tends to zero at $D(0) \times \{0\}$, this decomposition enables us to use theorems on Gauss-Weierstrass integrals to prove results about temperatures in any $H^{\Delta}(D_+)$.

In Section 3, we use the decomposition theorem to prove a representation theorem, which extends one established by Aronson [2] for solutions of a wide class of parabolic partial differential equations on $B(0, \rho) \times [0, T]$ with singularities at (0, 0). Working only with temperatures, we are able to considerably weaken the constraints on the solutions, replace the circular cylinder by an arbitrary D_+ , and replace the point of singularity by an arbitrary compact subset K of $D(0) \times \{0\}$. A representation of the form $u = G_D \mu + h$ is obtained, where $G_D \mu$ is the potential on D of a signed measure supported in K, and h is a Dirichlet solution on D_+ .

In Section 4, we consider temperatures u on $D\setminus (C\times\{0\})$ for an arbitrary compact subset C of D(0), and give a mild constraint which ensures that they can be written as the sum of a temperature on D and the potential of a signed measure supported in $C\times\{0\}$. The idea here is that, because the restriction of u to $D\setminus\overline{D}_+$ has a continuous extension to u^* (say) on $D\setminus D_+$, we can take $\psi=u^*(\cdot,0)$ in the decomposition theorem, so that $W\psi+w$ can be extended to a temperature on D. Given this result, known conditions which imply that μ is null can be converted into conditions for $C\times\{0\}$ to be removable.

Many other papers have been written about removable singularities, including [1,5–7]. Isolated singularities of nonnegative temperatures have been characterized by Widder [16, p. 119], and those of arbitrary temperatures by Chung and Kim [3].

2. The decomposition theorem

If μ and ψ are, respectively, a measure and a function defined on a subset of \mathbf{R}^N , they are assumed to be extended by zero to the whole space. Their restrictions to a set A are denoted by μ_A and ψ_A .

A temperature u on D_{-} is called *initially zero* if $u(x,t) \to 0$ as $(x,t) \to (y,0+)$ for all $y \in D(0)$.

A family \mathscr{F} of closed balls is called an *abundant Vitali covering* of \mathbb{R}^n if, given $x \in \mathbb{R}^n$ and $\epsilon > 0$, \mathscr{F} contains uncountably many balls with centre x and radius less than ϵ . See [13] for a discussion.

The proof of the decomposition theorem requires a preliminary theorem.

Theorem 1. Suppose that $u = W\mu + v$ on D_+ , where v is an initially zero

temperature, and μ is a signed measure concentrated on D(0) such that $W|\mu| < \infty$ on D_+ . Let \mathscr{F} be an abundant Vitali covering of \mathbf{R}^n . If there is a signed measure ν concentrated on D(0) such that

(1)
$$\lim_{t \to 0+} \int_{A \cap V} u(x, t) dx = \nu(A \cap V)$$

whenever $A, V \in \mathcal{F}, V \subseteq D(0)$, and $A \cap V \neq \emptyset$, then $\mu = \nu$.

PROOF. By [13, Theorem 7.3(i)], there is an abundant Vitali covering $\mathscr{F}_0 \subseteq \mathscr{F}$ such that $|\mu|(\partial A) = 0$ for all $A \in \mathscr{F}_0$. Given $V \in \mathscr{F}_0$ such that $V \subseteq D(0)$, put $w_V = W\mu_V$ and $w_{D\setminus V} = W\mu_{D(0)\setminus V}$. Then $w_V = u - v - w_{D\setminus V}$ on D_+ .

If $A \in \mathscr{F}_0$ and $A \cap V \neq \emptyset$, then $A \cap V$ is a compact subset of D(0), so that

(2)
$$\lim_{t \to 0+} \int_{A \cap V} v(x, t) dx = 0.$$

Furthermore, because the boundaries of $A \cap V$ and $A \setminus V$ are both μ -null, it follows from [13, Theorem 7.2(i)] that

(3)
$$\lim_{t \to 0+} \int_{A \cap V} w_{D \setminus V}(x,t) dx = 0 = \lim_{t \to 0+} \int_{A \setminus V} w_{V}(x,t) dx.$$

Combining (1), (2) and (3), we obtain

$$\lim_{t \to 0+} \int_A w_V(x,t) dx = \lim_{t \to 0+} \int_{A \cap V} w_V(x,t) = \nu_V(A).$$

On the other hand, if $A \in \mathscr{F}_0$ and $A \cap V = \emptyset$, then it follows from [13, Theorem 7.2(i)] that

$$\lim_{t\to 0+}\int_A w_V(x,t)dx=0=\nu_V(A).$$

Therefore $\mu_V = \nu_V$, by [13, Theorem 7.3(ii)].

Given any open subset U of D(0), choose a sequence of sets $\{V_k\}$ in \mathscr{F}_0 with union U, and put $X_1 = V_1$, $X_i = V_i \setminus \bigcup_{k=1}^{j-1} V_k$ for all $j \ge 2$. Then, by the above,

$$\mu(U) = \sum_{i=1}^{\infty} \mu(X_i) = \sum_{i=1}^{\infty} \mu_{V_i}(X_i) = \sum_{i=1}^{\infty} \nu_{V_i}(X_i) = \nu(U).$$

The result now follows from the regularity of Radon measures.

NOTE. If, in Theorem 1, u(x, 0+) is finite whenever $x \in D(0)$ and the limit exists, then the same is true of $W\mu(x, 0+)$, and the two are equal. Therefore $d\mu(x) = u(x, 0+)dx$, by [12, Theorem 1], so that $u(\cdot, 0+)$ is locally integrable, and

$$\lim_{t \to 0+} \int_{B} u(x,t)dx = \int_{B} u(x,0+)dx$$

for each bounded Borel subset B of D(0) such that $m_n(\partial B) = 0$, by [13, Theorem 7.2].

THEOREM 2. Suppose that $u \in H^{\Delta}(D_+)$, that C is a compact subset of D(0), that \mathscr{F} is an abundant Vitali covering of \mathbb{R}^n , and that ψ is a locally m_n -integrable function on D(0) such that $W|\psi| < \infty$ on D_+ . If

$$\lim_{t \to 0+} \int_{A \cap V} u(x, t) dx = \int_{A \cap V} \psi(x) dx$$

whenever $A, V \in \mathcal{F}, V \subseteq D(0) \setminus C$, and $A \cap V \neq \emptyset$, then there exist a unique signed measure μ , supported in C and with finite total variation, and a unique initially zero temperature w on D_+ , such that $u = W\mu + W\psi + w$ on D_+ .

PROOF. By [15, Theorem 1], there is a unique signed measure v on D(0) with the following property. Given any bounded open set E such that $\overline{E} \subseteq D$ and $E(0) \neq \emptyset$, there is a unique initially zero temperature v on E_+ such that $u = Wv_E + v$ on E_+ .

Choose E such that $C \subseteq E(0)$. Applying Theorem 1 on $E \setminus (C \times \{0\})$, we obtain $dv_{E \setminus C}(y) = \psi_{E \setminus C}(y) dy$. Since C is compact $|v|(C) < \infty$, so that $W|v_E| \le W|v_C| + W|\psi| < \infty$ on D_+ . It follows that $W|v| < \infty$ on D_+ , so that there is a unique initially zero temperature w on D_+ such that u = Wv + w on D_+ , by [15, Theorem 1]. Putting $d\mu(y) = dv_C(y) - \psi_C(y) dy$, we obtain

$$u = Wv + w = Wv_C + W\psi_{D \setminus C} + w = W\mu + W\psi + w$$

on D_+ , as asserted.

REMARK. The measure ν , associated with $u \in H^{\Delta}(D_+)$ by [15, Theorem 1] and described in the first paragraph of the above proof, is called the *initial measure* of u.

If the initial measure of u is absolutely continuous with respect to m_n , then the following corollary may be easier to use than the theorem. Note that, for any $u \in H^{\Delta}(D_+)$, the limit u(x, 0+) exists and is finite for m_n -almost every $x \in D(0)$, by [15, Theorem 2].

COROLLARY. Suppose that $u \in H^{\Delta}(D_+)$, that C is a compact subset of D(0), that u(x, 0+) is finite whenever $x \in D(0) \setminus C$ and the limit exists, and that $W|u(\cdot, 0+)| < \infty$ on D_+ . Then there exist a unique signed measure μ , supported in C and with finite total variation, and a unique initially zero temperature w on D_+ , such that $u = W\mu + Wu(\cdot, 0+) + w$ on D_+ .

PROOF. Let v be the initial measure of u, and let \mathscr{F} be an abundant Vitali covering of \mathbf{R}^n . Given $A, V \in \mathscr{F}$ such that $V \subseteq D(0) \setminus C$ and $A \cap V \neq \emptyset$, choose a bounded open set E such that $\overline{E} \subseteq D$ and $A \cap V \subseteq E(0)$. If $F = E \setminus (C \times \{0\})$, then $u = Wv_F + v$ on F_+ for some initially zero temperature v, and $u(\cdot, 0+)$ is finite whenever $x \in F(0)$ and the limit exists. Therefore, by the note following Theorem 1,

$$\lim_{t\to 0+} \int_{A\cap V} u(x,t)dx = \int_{A\cap V} u(x,0+)dx.$$

Since $W|u(\cdot, 0+)| < \infty$ on D_+ , $u(\cdot, 0+)$ is locally integrable on D(0), and the result follows from Theorem 2.

REMARK. If $C = \bigcup_{i=1}^{k} \{x_k\}$ in Theorem 2, then

$$u(x,t) = \sum_{j=1}^{k} \alpha_{j} W(x - x_{j}, t) + W \psi(x, t) + w(x, t),$$

where $\alpha_j = \mu(\{x_j\})$ for all j. We can show that

$$\alpha_j = \lim_{t \to 0+} \int_{B(x_j, r)} (u(x, t) - \psi(x)) dx$$

for any r such that $\overline{B}(x_j, r) \subseteq D(0)$ and $\overline{B}(x_j, r) \cap C = \{x_j\}$. Given such an r, we have $|\mu|(\partial B(x_j, r)) = 0$, so that [13, Theorem 7.2(i)] implies that

$$\lim_{t \to 0+} \int_{B(x_j, r)} u(x, t) dx = \lim_{t \to 0+} \int_{B(x_j, r)} (W\mu(x, t) + W\psi(x, t)) dx$$
$$= \mu(B(x_j, r)) + \int_{B(x_j, r)} \psi(x) dx$$
$$= \alpha_j + \int_{B(x_j, r)} \psi(x) dx,$$

as asserted. Compare [2, Theorem 3].

3. The representation theorem

In this section, we prove an extension of Aronson's representation theorem [2, Theorem 3]. This requires a hypothesis of Dirichlet regularity, which is to be understood in the sense of [10], as that allows us a much wider class of open sets than does the usual potential-theoretic sense in [4]. We therefore recall the necessary definitions.

Let $(y, s) \in \partial D$. We call (y, s) an abnormal boundary point, and write $(y, s) \in ab(\partial D)$, if there is an open ball B centred at (y, s) such that $B \cap (\mathbb{R}^n \times]-\infty, s[) \subseteq D$. If B can be found such that $B \cap (\mathbb{R}^n \times]-\infty, s[) = B \cap D$, then (y, s) is of the first kind, and so belongs to $ab_1(\partial D)$; otherwise, it is of the second kind, and belongs to $ab_2(\partial D)$. The essential boundary $ess(\partial D)$ consists of all boundary points that are not in $ab_1(\partial D)$. If $(y, s) \in ess(\partial D)$, we put $D(y, s) = D \cap (\mathbb{R}^n \times]s, \infty[)$ if $(y, s) \in ab_2(\partial D)$, and D(y, s) = D otherwise.

If D is bounded, then every continuous function $f : ess(\partial D) \to \mathbf{R}$ is resolutive. A point $(v, s) \in ess(\partial D)$ is called *regular* if

$$\lim_{\substack{(x,t)\to(y,s)\\(x,t)\in D(y,s)}} S_f^D(x,t) = f(y,s)$$

for every continuous $f: \operatorname{ess}(\partial D) \to \mathbf{R}$, where S_f^D denotes the generalized solution to the Dirichlet problem for f on D. The set D is called *regular* if every $(y, s) \in \operatorname{ess}(\partial D)$ is regular.

We now give conditions which ensure that a temperature u on D_+ belongs to $H^{\Delta}(D_+)$. These will be used in the representation theorem. We write D(t) for $\{x:(x,t)\in D\}$.

THEOREM 3. Suppose that D_+ is bounded and Dirichlet regular, that u is a temperature on D_+ , and that there is a continuous function $\psi: \operatorname{ess}(\partial D_+) \to \mathbf{R}$ such that

(4)
$$\lim_{\substack{(x,t)\to(y,s)\\(x,t)\in D_+(y,s)}} u(x,t) = \psi(y,s)$$

whenever $(y, s) \in \text{ess } (\partial D_+) \backslash D$. Then u can be extended to $\widetilde{D}_+ = D_+ \cup ab(\partial D_+)$ by putting

(5)
$$u(y,s) = \lim_{(x,t)\to(y,s-)} u(x,t),$$

and if

(6)
$$\liminf_{t\to 0+} \int_{\widetilde{D}_{+}(t)} u^{+}(x,t) dx < \infty,$$

then $u \in H^{\Delta}(D_+)$ and the function

$$t \mapsto \int_{\widetilde{D}_+(t)} u^+(x,t) dx$$

is bounded.

PROOF. Let $a = \sup\{t : D_+(t) \neq \emptyset\}$. Whenever 0 < c < a, u is bounded on the set $E_c = D_+ \cap (\mathbb{R}^n \times]c, a[$). For suppose that $\{x_j\}$ is a sequence in D(c) such that $(x_j, c) \to (y_0, c) \in \partial D_+$. Then $(y_0, c) \in \operatorname{ess}(\partial D_+)$, so that $u(x_j, c) \to \psi(y_0, c)$ by (4). Therefore $u(\cdot, c)$ is bounded, so that u is bounded on E_c , by (4) and the maximum principle [10, Theorem 2]. For any $(y, s) \in ab(\partial D_+)$, the boundedness of u on $E_{\frac{1}{2}s}$ implies that the limit in (5) exists and is finite [4, p. 274].

By [10, Theorem 32], ψ is resolutive for D_+ . Let $h = S_{\psi}^{D_+}$, and let g = u - h. Then (4) and the regularity of D_+ imply that

(7)
$$\lim_{\substack{(x,t)\to(y,s)\\(x,t)\in D_+(y,s)}} g(x,t) = 0$$

whenever $(y, s) \in \text{ess } (\partial D_+) \setminus D$. Since h is bounded, g is bounded on E_c whenever 0 < c < a, and therefore g can be extended to \widetilde{D}_+ as u was. Since D_+ is bounded, it now follows from (6) that

$$\liminf_{t\to 0+}\int_{\widetilde{D}_+(t)}g^+(x,t)dx<\infty.$$

Put $w = g^+$ on \widetilde{D}_+ , and w = 0 elsewhere on \mathbb{R}_+^{n+1} . Then w is continuous on $\mathbb{R}_+^{n+1} \setminus \partial D_+$, and also on $n(\partial D_+)$ because of (7). Furthermore, w is upper semicontinuous on $ab_1(\partial D_+)$, and also on $ab_2(\partial D_+)$ in view of (7). On $\mathbb{R}_+^{n+1} \setminus ab(\partial D_+)$, w satisfies locally the mean value inequality characteristic of subtemperatures. An application of Fatou's lemma shows that w also satisfies locally the mean value inequality at points of $ab(\partial D_+)$. Hence w is a subtemperature, by [8, Theorem 15].

Since g is bounded on each E_c , and D_+ is bounded, given $c \in]0, a[$ there is $\kappa_c < \infty$ such that

$$\int_{\widetilde{D}_{c}(t)} g^{+}(x,t) dx \leq \kappa_{c}$$

whenever c < t < a. Therefore, if 0 < c < t < d < b, then

$$\int_{\mathbb{R}^n} W(x,b-t)w(x,t)dx \leq (4\pi(b-d))^{-\frac{1}{2}n}\kappa_{c}.$$

Thus the function $t \mapsto \int_{\mathbb{R}^n} W(x, b-t)w(x, t)dx$ is locally bounded on]0, b[, for any b > 0. Furthermore,

$$\liminf_{t\to 0+} \int_{\mathbf{R}^n} W(x,b-t)w(x,t)dx \leq (2\pi b)^{-\frac{1}{2}n} \liminf_{t\to 0+} \int_{\widetilde{D}_+(t)} g^+(x,t)dx < \infty.$$

Hence, in the notation of [9, Theorem 19], $w \in \Phi_b$ whenever $0 < b < \infty$, so that there is a temperature v which majorizes w on \mathbb{R}^{n+1}_+ . Now $u - h \le g^+ \le v$ on D_+ , so that

$$u - h = v - (v - u + h) \in H^{\Delta}(D_+).$$

Since h is the generalized Dirichlet solution for ψ , we have $h \in H^{\Delta}(D_+)$, so that $u \in H^{\Delta}(D_+)$ as asserted.

For the last part, choose r such that $D_+(t) \subseteq B(0, r)$ for all $t \in]0, a[$, and choose $b \in]a, \infty[$. Then, whenever 0 < t < a,

$$\int_{\widetilde{D}_{+}(t)} u^{+}(x,t)dx \leq \int_{\widetilde{D}_{+}(t)} (g^{+}(x,t) + h^{+}(x,t))dx$$
$$\leq \int_{\widetilde{D}_{+}(t)} g^{+}(x,t)dx + \sup|h|v_{n}r^{n},$$

where v_n is the volume of the unit ball in \mathbf{R}^n . Furthermore,

$$\int_{\widetilde{D}_{n}(t)} g^{+}(x,t) dx \leq (4\pi b)^{\frac{1}{2}n} \exp\left(\frac{r^{2}}{4(b-a)}\right) \int_{\mathbb{R}^{n}} W(x,b-t) w(x,t) dx,$$

and the integral on the right is bounded as a consequence of [9, Theorem 16].

We can now prove our extension of Aronson's result. Here G_D denotes the Green function for D in the sense of [10], and

$$G_D\mu(x,t) = \int_D G_D(x,t;y,s) d\mu(y,s)$$

for a signed measure μ of finite total variation. If G is G_D with $D = \mathbf{R}^{n+1}$, and $\nu = \lambda \times \delta_0$ with δ_0 the unit mass at 0, then

$$Gv(x,t) = \int_{\mathbf{R}^n \times \{0\}} W(x-y,t) dv(y,0) = W\lambda(x,t)$$

whenever t > 0.

THEOREM 4. Suppose that D_+ is bounded and Dirichlet regular, that C is a compact subset of D(0), that \mathscr{F} is an abundant Vitali covering of \mathbb{R}^n , and that ψ is a continuous real-valued function on ess (∂D_+) . If u is a temperature on D_+ such that

(8)
$$\lim_{\substack{(x,t)\to(y,s)\\(x,t)\in D_{-}(y,s)}} u(x,t) = \psi(y,s)$$

for every $(y, s) \in \text{ess}(\partial D_+) \backslash D$,

$$\liminf_{t\to 0+} \int_{\widetilde{D}_{\epsilon}(t)} u^{+}(x,t) dx < \infty,$$

and

$$\lim_{t \to 0+} \int_{A \cap V} u(x, t) dx = \int_{A \cap V} \psi(x, 0) dx$$

whenever $A, V \in \mathcal{F}, V \subseteq D(0) \backslash C$, and $A \cap V \neq \emptyset$, then

$$u = G_D v + S_{\psi}^{D_{\tau}}$$

on D_+ for some signed measure v of finite total variation supported in $C \times \{0\}$.

PROOF. By Theorem 3, $u \in H^{\Delta}(D_+)$. Therefore, by Theorem 2, there exist a signed measure μ , supported in C and with finite total variation, and an initially zero temperature w on D_+ , such that $u = W\mu + W\psi(\cdot, 0) + w$ on D_+ . Let $v = \mu \times \delta_0$, so that $Gv = W\mu$ on \mathbb{R}_+^{n+1} and Gv = 0 elsewhere. By the Riesz decomposition theorem, $Gv^+ = G_Dv^+ + h_1$ and $Gv^- = G_Dv^- + h_2$ on D, where h_1 and h_2 are the greatest thermic minorants of Gv^+ and Gv^- on D, so that each h_i is initially zero on D_+ . Thus, if $h = w + h_1 - h_2$ then $u - G_Dv = W\psi(\cdot, 0) + h$ on D_+ . It follows from (8) and [11, Theorem 2] that (8) holds with u replaced by $u - G_Dv$. Furthermore, if $v = W\psi(\cdot, 0) + h$ then $v(x, t) \to \psi(y, 0)$ as $(x, t) \to (y, 0+)$ whenever $(y, 0) \in \text{ess}(\partial D_+) \cap D$. The result now follows from [10, Theorem 31].

4. Removable singularities

We now consider the situation where u is a temperature on $D \setminus K$, for some compact set $K = C \times \{0\}$ with $C \subseteq D(0)$. In Theorem 5, under a mild constraint on u, we show that u is the sum of a temperature v on D and the potential Gv of a signed measure supported in K. Thus, if $v = \lambda \times \delta_0$ then $u = W\lambda + v$ on D_+ , and conditions which ensure that $W\lambda = 0$ become conditions for the removability of K. The proofs of Theorems 6, 7 and 8 all use this idea.

A temperature in $H^{\Delta}(D_{+})$ is called *initially nonnegative* if its initial measure is nonnegative. Conditions that imply initial nonnegativity can be found in [15].

THEOREM 5. Let C be a compact subset of D(0), let $K = C \times \{0\}$, and let u be a temperature on $D \setminus K$ such that

(9)
$$\liminf_{t \to 0+} \int_{U} u^{+}(x,t) dx < \infty$$

for some open superset U of C in \mathbb{R}^n . Then u can be written uniquely as the sum of a temperature on D and the potential Gv of a signed measure supported in K.

PROOF. Let $\{V_k\}$ be an exhaustion of $U \cap D(0)$ by bounded open subsets of \mathbb{R}^n which are Dirichlet regular for Laplace's equation. Choose j such that $C \subseteq V_j$, and put $V = V_j$. Then \overline{V} is a compact subset of D(0), so that we can find a > 0 such that the set $E = V \times]-a$, a[has its closure in D. Note that E_+ is Dirichlet regular for the heat equation.

The essential boundary of $V \times]-a$, 0[is a compact subset of $D \setminus K$, so that u is bounded there and hence also on $V \times]-a$, 0[. Therefore we can define a continuous, real-valued function ψ on ess (∂E_+) by putting

$$\psi(y,0) = \lim_{(x,t)\to(y,0-)} u(x,t)$$

for all $y \in V$, and

$$\psi(v,s) = u(v,s)$$

for all $(y,s) \in \partial V \times [0,a]$. Note that $\psi = u$ on $(V \setminus C) \times \{0\}$, and that $u(x,t) \to \psi(y,s)$ as $(x,t) \to (y,s)$ with $(x,t) \in E_+$, whenever $(y,s) \in \text{ess } (\partial E_+) \setminus E$. It follows from (9) and Theorem 3 that $u \in H^{\Delta}(E_+)$. Therefore, by the Corollary to Theorem 2, there exist a unique signed measure μ , supported in C and with finite total variation, and a unique initially zero temperature w on E_+ , such that $u = W\mu + W\psi(\cdot, 0) + w$ on E_+ . If

$$v = \begin{cases} W\psi(\cdot, 0) + w & \text{on } E_+, \\ u & \text{on } E \backslash E_+, \end{cases}$$

then v is continuous on E and a temperature on $E \setminus (V \times \{0\})$, so that v is a temperature on E, by [10, Theorem 5]. If $v = \mu \times \delta_0$, then u = Gv + v on E. Putting v = u - Gv on $D \setminus E$, we extend v to a temperature on D, and complete the proof.

THEOREM 6. Let C be a compact subset of D(0) such that $m_n(C) = 0$, and let u be a temperature on $D\setminus (C \times \{0\})$ such that

$$\liminf_{t\to 0+} \int_{U} u^{+}(x,t)dx < \infty$$

for some open superset U of C in \mathbb{R}^n . If there is an initially nonnegative $h \in H^{\Delta}(D_+)$ such that

(10)
$$\lim_{t \to 0+} \frac{u(x,t)}{h(x,t)} = 0$$

for all $x \in C$ at which the limit exists, then u can be extended to a temperature on D.

PROOF. Since $m_n(C) = 0$, there exists a positive temperature f on \mathbb{R}_+^{n+1} such that $f(x, 0+) = \infty$ for all $x \in C$, by [11, Theorem 11]. The addition of f to h does not affect our hypotheses, and so we can assume that $h(x, 0+) = \infty$ for all $x \in C$.

By Theorem 5, there exist a signed measure μ supported in $C \times \{0\}$, and a temperature v on D, such that $u = G\mu + v$. Let $\mu = \lambda \times \delta_0$, and let ν be the initial measure of h. By [14, Theorem 2],

(11)
$$\lim_{t \to 0+} \frac{W\lambda(x,t)}{W\nu(x,t)}$$

exists and is finite for ν -almost all $x \in \mathbb{R}^n$. For each $x \in C$ at which this limit exists, the limit in (10) exists and the two are equal, because $h(x, 0+) = \infty$ for all $x \in C$. Therefore the limit in (11) is zero for ν -almost all $x \in C$, and

$$\liminf_{t\to 0+} \frac{|W\lambda(x,t)|}{W\nu(x,t)} < \infty$$

for all $x \in C$. It now follows from [14, Theorem 6] (with Z = C and $Y = \emptyset$) that λ_C is null. Hence μ is null, and u = v.

For the final two theorems, we denote by m_q the q-dimensional Hausdorff measure on \mathbb{R}^n , where $0 \le q \le n$. We are only concerned that a given set is null, finite, or σ -finite with respect to m_q , so there is no need to distinguish the case q = n from Lebesgue measure.

THEOREM 7. Let C be a compact subset of D(0), and let u be a temperature on $D\setminus (C\times \{0\})$ such that

$$\liminf_{t\to 0+} \int_{U} u^{+}(x,t)dx < \infty$$

for some open superset U of C in \mathbb{R}^n . If either

(i)
$$q \in [0, n], m_q(C) = 0, and$$

(12)
$$\limsup_{t\to 0+} t^{\frac{1}{2}(n-q)}|u(x,t)| < \infty \quad \text{for all } x\in C,$$

or

(ii) $q \in [0, n[, C \text{ is } \sigma \text{-finite with respect to } m_q, \text{ and }$

(13)
$$\lim_{t \to 0+} t^{\frac{1}{2}(n-q)} u(x,t) = 0 \text{ for all } x \in C,$$

then u can be extended to a temperature on D.

PROOF. By Theorem 5, u can be written as the sum of a temperature v on D, and the potential $G\mu$ of a signed measure supported in $C \times \{0\}$. If $\mu = \lambda \times \delta_0$, then $u = W\lambda + v$ on D_+ . For any $x \in C$,

$$\limsup_{t \to 0+} t^{\frac{1}{2}(n-q)} |v(x,t)|$$

is zero if q < n, and is finite if q = n. Therefore conditions (12) and (13) imply similar ones on $W\lambda$. We can now apply [14, Theorem 6] (with Z = Y = C, so that the auxiliary function is superfluous) and conclude that λ_C is null. Hence μ is null, and $\mu = v$.

In our final result we show that, if C has a certain structure, then for sets with finite m_q -measure we can weaken (13) without affecting the conclusion.

THEOREM 8. Let $q \in [0, n[$, let C be a compact subset of D(0) such that $m_q(C) < \infty$ and

(14)
$$\liminf_{r\to 0} r^{-q} m_q(B(x,r)\cap C) > 0$$

for all $x \in C$, and let u be a temperature on $D \setminus (C \times \{0\})$ such that

$$\liminf_{t\to 0+} \int_{U} u^{+}(x,t)dx < \infty$$

for some open superset U of C in \mathbb{R}^n . If

(15)
$$\liminf_{t \to 0+} t^{\frac{1}{2}(n-q)} u(x,t) \le 0 \le \limsup_{t \to 0+} t^{\frac{1}{2}(n-q)} u(x,t) for m_q-almost all x \in C,$$

and

(16)
$$\liminf_{t\to 0+} t^{\frac{1}{2}(n-q)} |u(x,t)| < \infty \quad \text{for all } x \in C,$$

then u can be extended to a temperature on D.

PROOF. By Theorem 5, $u = v + G(\lambda \times \delta_0)$ for some temperature v on E and signed measure λ supported in C. Since q < n, we have $t^{\frac{1}{2}(n-q)}v(x,t) \to 0$ as $t \to 0+$ for all $x \in C$, so that (15) and (16) imply similar conditions on $W\lambda$.

Suppose that q > 0. Then $m_q(C) < \infty$, (14) holds, $W\lambda(x, 0+) = 0$ for all $x \in \mathbf{R}^n \setminus C$ and m_n -a.e. on \mathbf{R}^n , and (15), (16) hold with $W\lambda$ in place of u, so that [12, Theorem 10] shows that $W\lambda = 0$. Hence u = v.

Now suppose that q=0, so that C is finite. (In this case, (14) and (16) are superfluous.) Given $x_0 \in C$ such that $\lambda(\{x_0\}) > 0$, put $\nu = \lambda_{\{x_0\}}$ and $\omega = \lambda - \nu$. Then [14, Lemma 1] shows that $W\omega(x_0, t) = o(W\nu(x_0, t))$ as $t \to 0+$, so that

$$W\lambda(x_0, t) \sim W\nu(x_0, t) = (4\pi t)^{-\frac{1}{2}n}\lambda(\{x_0\}).$$

Since (15) holds with u replaced by $W\lambda$, it follows that

$$\lambda(\{x_0\}) = \lim_{t \to 0+} (4\pi t)^{\frac{1}{2}n} W \lambda(x_0, t) = 0.$$

a contradiction. Therefore $\lambda(\{x\}) = 0$ for all $x \in C$, so that again u = v.

REMARK. The conclusions of Theorems 7 (ii) and 8 both fail if q = n. For example, let n = 1, $D = [-1, 2]^2$, C = [0, 1], $v(x, t) = e^{x+t} - (e-1)x - 1$ on D, and $u = v - Wv(\cdot, 0)_C$ on D_+ , u = v on $D\setminus (D_+ \cup (C \times \{0\}))$. Then u is a bounded temperature, and because $v(\cdot, 0)$ is continuous on C with v(0, 0) = v(1, 0) = 0, we have u(x, 0+) = 0 for all $x \in C$. Since u(x, 0-) = v(x, 0) < 0 whenever 0 < x < 1, u cannot be extended to a temperature on D.

References

- [1] D. G. Aronson, 'Removable singularities for linear parabolic equations', Arch. Rational Mech. Anal. 17 (1964), 79–84.
- [2] —, 'Isolated singularities of solutions of second order parabolic equations', Arch. Rational Mech. Anal. 19 (1965), 231–238.
- [3] S. Y. Chung and D. Kim, 'Characterization of temperature functions with isolated singularity', Math. Nachr. 168 (1994), 55-60.
- [4] J. L. Doob, Classical potential theory and its probabilistic counterpart (Springer-Verlag, New York, 1984).
- [5] R. Harvey and J. C. Polking, 'A notion of capacity which characterizes removable singularities', Trans. Amer. Math. Soc. 169 (1972), 183-195.
- [6] J. Král, 'Removable singularities in potential theory', Potential Anal. 3 (1994), 119–131.
- [7] I. Netuka and J. Veselý, 'Harmonic continuation and removable singularities in the axiomatic potential theory', *Math. Ann.* **234** (1978), 117–123.
- [8] N. A. Watson, 'A theory of subtemperatures in several variables', Proc. London Math. Soc. 26 (1973), 385-417.

- [9] ——, 'Classes of subtemperatures on infinite strips', *Proc. London Math. Soc.* **27** (1973), 723–746.
- [10] ——, 'Green functions, potentials, and the Dirichlet problem for the heat equation', *Proc. London Math. Soc.* 33 (1976), 251–298.
- [11] ——, 'Thermal capacity', *Proc. London Math. Soc.* **37** (1978), 342–362.
- [12] ——, 'On the representation of solutions of the heat equation and weakly coupled parabolic systems', *J. London Math. Soc.* **34** (1986), 457–472.
- [13] ———, Parabolic equations on an infinite strip (Marcel Dekker, New York, 1989).
- [14] ——, 'Applications of geometric measure theory to the study of Gauss-Weierstrass and Poisson integrals', *Ann. Acad. Sci. Fenn. Ser. A. I. Math.* **19** (1994), 115–132.
- [15] ———, 'Initial limits of temperatures on arbitrary open sets', Ann. Acad. Sci. Fenn. Ser. A. I. Math. to appear.
- [16] D.V. Widder, The heat equation (Academic Press, New York, 1975).

Department of Mathematics and Statistics University of Canterbury Christchurch New Zealand