On certain new connections between Legendre and Bessel Functions

By S. C. MITRA, Dacca, India.

(Received 14th November, 1934. Read 7th December, 1934.)

Let n be a positive integer. Then we know that¹, if m > -1, $\int_{0}^{1} P_{n} (1 - 2y^{2}) y^{2m+1} dy = \frac{1}{2} (-1)^{n} \frac{\{\Gamma(m+1)\}^{2}}{\Gamma(m-n+1) \Gamma(m+n+2)}.$ (1)

Consider the integral

$$I = \int_0^1 P_n (1 - 2y^2) J_0 (2yz) y \, dy,$$

which is equal to²

$$\sum_{m=0}^{\infty} \frac{(-1)^m z^{2m}}{\{\Gamma(m+1)\}^2} \int_0^1 P_n (1-2y^2) y^{2m+1} dy.$$

On integrating term by term, we get

$$I = \frac{1}{2} (-1)^{n} \sum_{m=0}^{\infty} \frac{(-1)^{m} z^{2m}}{\Gamma(m-n+1) \Gamma(m+n+2)}$$

= $\frac{1}{2} \sum_{m=0}^{\infty} \frac{(-1)^{m} z^{2m+2n}}{\Gamma(m+1) \Gamma(m+2n+2)}$
= $(2z)^{-1} J_{2n+1}(2z).$ (2)

In a similar manner, we can prove the following results:

$$\int_{0}^{1} P_{n} (1 - 2y^{4}) J_{0} (2yz) I_{0} (2yz) y^{3} dy$$

= $(8z)^{-1} \frac{d}{dz} \{ J_{2n+1} (2z) I_{2n+1} (2z) \},$ (3)

$$\int_{0}^{1} P_{n} \left(1 - 2y^{4}\right) \frac{d}{dy} \left[y^{2} \left\{ \operatorname{ber}_{1}^{2} \left(2yz\right) + \operatorname{bei}_{1}^{2} \left(2yz\right)\right\} \right] dy$$

= $(-1)^{n} \left\{ \operatorname{ber}_{2n+1}^{2} \left(2z\right) + \operatorname{bei}_{2n+1}^{2} \left(2z\right)\right\},$ (4)

and

$$\int_{0}^{1} P_{n} (1 - 2y^{4}) \frac{d}{dy} \{y^{2} J_{1} (2yz) I_{1} (2yz)\} dy$$

= $J_{2n+1} (2z) I_{2n+1} (2z).$ (5)

¹ Equation (1) follows at once by putting $x = 1 - 2y^2$, using Rodrigues' formula for $P_n(x)$, and integrating *n* times by parts. *Cf.* Cooke, *Proc. London Math. Soc.*, 23 (1924), xix, equ. (3).

² The process of arrangement and term by term integration can be easily justified.