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1. Introduction

This paper concludes a series of papers (1) on a group of axisymmetric
boundary value problems in potential and diffraction theory by considering
some potential problems for a circular annulus. The Dirichlet problem for
an annulus has recently been considered by Gubenko and Mossakovskil (2),
who, by a somewhat complicated method, show it to be governed by either
one of two Fredholm integral equations of the second kind. The purpose
of the present paper is to show how the method developed in previous papers,
by which certain integral representations of the potentials in problems for
circular disks arid spherical caps are used to reduce such problems to the
solutions of either single Abel integral equations or Abel and Fredholm
equations, can be applied to both the Dirichlet and Neumann problems for
the annulus to give reasonably straightforward derivations of the governing
Fredholm equations.

We first show in Section 2 that the Dirichlet problem for the annulus is
essentially identical with the Neumann problem for a plane screen containing
a circular aperture coplanar with a concentric circular disk, whose radius
is less than that of the aperture. We then construct an integral representation
of the potential for this latter problem by means of previous results and,
using this, derive a Fredholm equation governing the problem. This equation
is suitable for iteration when the inner radius of the annulus is small compared
with the outer radius, that is, when the annulus is approximately a circular
disk with a small concentric aperture. Next, in Section 3 we consider the
indentation of an elastic half-space by a flat-ended annular punch, a problem
which reduces to the Dirichlet problem for an annulus, the annulus being
maintained at a constant potential, and obtain the iterative solution of the
Fredholm equation of Section 2 for this case. Finally, in Section 4 we give
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Grant No. G 19671. Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

t On leave of absence from The University, Manchester, England.

https://doi.org/10.1017/S0013091500010889 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010889


236 W. D. COLLINS

corresponding results to those of Section 2 for the Neumann problem for the
annulus.

2. The Dirichlet Problem for a Circular Annulus

We consider a thin, circular annulus of inner and outer radii a and b
respectively and use cylindrical polar coordinates (w, 6, z) with the centre
and axis of the annulus as origin and z-axis respectively. The annulus is thus
given by z = 0(a<m<b). In the axisymmetric Dirichlet problem we require
a potential V(m, z) which takes given values f(m) on the annulus, so that

V(w, 0) =f(w), z = 0(a<w<b), (2.1)

f(m) being a continuously differentiable function. Further, V(w, z) is con-
tinuously differentiable at all points except those on the annulus, while V
and dVJdz are continuous for approach to the annulus except that for points
on either rim (z = 0, w = a, b) dV\dz tends to infinity as the inverse square
root of the distance from the rim. Finally, V(m, z) is 0(r ~*) at a large distance r
from the origin.

Since V(w, z) is symmetric about the plane z = 0, it follows that

— = o, z = 0(0^xa<a, b<m), (2.2)
dz

and hence we can regard the problem as that of determining a function V(rn, z)
in the half-space z>0 given the conditions (2.1) and (2.2) on z = 0, V(m, z)
being equal to V(w, — z) for z<0.

Since/(tu) is continuously differentiable for (a<m<b), we follow Gubenko
and Mossakovskil (2) in expanding it as

/(m)= £ ajar
n — — oo

and define

/0(m)= £ annf, fl{w)= £ anvf,
n = 0 n — —oo

so that

This decomposition of/(tn) is unique and the definitions of/0(n7) and fi(rn)
may be extended to all w in the intervals (0^m<b) and (a<m< oo) respectively.

We now write V(w, z) as the sum of four potentials

V{m, z) = V0(w, Z)+V1(UJ, z)+V2(m, z)+U(tu, z) (2.3)

where we define V^m, z), (/ = 0, 1, 2), as the potentials in the half-space z > 0,
which on z = 0 satisfy the conditions

-^=0 {b<w\ (2.4)
dz

^ 0 (O r̂o <a), V^Mm) (a<m), (2.5)
oz
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rlV PIV
V2 = 0 (Ogm<b), -^ = - -^ (b<m) (2.6)

dz dz

The potential U(m, z) denned for z > 0 thus satisfies the conditions

T (Vo + V2), 0 ( 0 ^ t n ) , (2.7)
dz dz

% »3 r j

t/ = 0, z = 0(a<m<b), — = 0, z = 0(b<ro) (2.8)
dz

For z>0 the functions Vo and Kj are identical with the Dirichlet potentials
for a disk of radius b and a plane screen containing a circular aperture of
radius a respectively. Further, for z>0 the function (V2 + U) is identical with
the Neumann potential for a screen containing a circular aperture of radius b
concentric with a coplanar disk of radius a, d\dz(V2 + U) taking given non-zero
values on the screen and the disk. We write this function (V2 + U) as the sum
of two functions, V2 and U, where V2 is identical for z>0 with the Neumann
potential for a screen containing an aperture of radius b and is introduced
in order that, for z>0, U be identical with the Neumann potential for the
screen and the concentric disk with dUjdz equal to zero on the screen. This
function U is now the potential to be determined.

We may note that, since each potential must be symmetric about z = 0,

Vfin, z) = Vfa, -z), (i = 0, 1, 2), U(w, z) = U(m, -z), z<0,

and thus Vo and Vv are identical with the appropriate Dirichlet potentials
for all z, while V2 and U are identical with the negatives of the appropriate
Neumann potentials for z < 0.

Integral representations of the functions Vh which enable these functions
to be found explicitly by single applications of the known solution of Abel's
integral equation, have been given by Green and Zerna (3) and myself (4).
The potential F0(n7, z) for the Dirichlet problem (2.4) for a circular disk of
radius b is found as (3)

where
{w2 + (<z-it)2f = pe-u (2.10)

with
for

/ for -a^

The function go(t) is real, even, and satisfies the Abel integral equation

E.M.S.—Q
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the solution of which is

dt J ( r 2 ro2)*

In a previous paper (5) I have shown that the representation (2.9) can be
obtained from the representation of F0(ro, z) as the potential due to a distribu-
tion of charge on the disk. For our present purposes it is, however, more
convenient to regard the function v(w, z; t), denned for z>0 as

v(w, z; i) = (m2 + (z- /02)-* (f>0),

as the potential of a " complex disk charge " associated with the disk of radius t
and centre the origin in the plane z = 0. The sum 2uo(tz7, z; i) of this potential
and the potential

v(m, z; - 0 = (ro2 + (z+i02)~* (z>0)
of the " image disk charge " in the plane z = 0 is such that dvo\dz is zero for
(z = 0, m>i). Hence, if we sum such potentials vo(xn, z; t) with a density
function go(t) for 0<t<b, we obtain

-f
Jo

V0{m,z)= go(t)vo(w, z; t)dt
Jo

as a potential satisfying the second of (2.4). This is, however, exactly the
representation (2.9) provided go(t) is real and even.

The functions Vi(w, z) and F2(ro, z) satisfying (2.5) and (2.6) are found as
(see (4))

i"[ ' ] *
where gt{t) is a real odd function given by

and

where g2(t) is a real even function given by

Thus, since each of the functions gt(t) can be determined, the functions V^m, z),
(/ = 0, 1, 2), are known explicitly.

We now construct a representation of the potential U(m, z). We begin
by determining the potential u(w, z; t) for a " complex disk charge " of radius
t(O<t<a) in the plane z = 0 in the presence of a screen z = 0(b<w), dujdz
being zero on the screen. By combining this with the image potential
«(ro, z; — t) we obtain a function satisfying conditions (2.8), and hence by
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suitably summing such functions for 0<t<a we obtain a representation of
U(w, z).

We write the potential u(tn, z; t) for z>0 as

u(m, z; t) = v(rn, z; 0 + "i(w, z; t) (0<t<a),

where as before v(w, z; t) is equal to (w2 + (z—it)2)~i, and require u^m, z; i)
to satify the conditions

U l = 0 , z = 0(0^rn<fc), ^ i = - - , z = O(b<m),
dz dz

«! being the potential of a Neumann problem for a screen with an aperture
of radius b. Hence (see (4)) we can represent u^m, Z; i) as

=*r
J 6and find that the second condition on z = 0 is satisfied provided (4)

sh(s)ds _ itf -w2)i {w2-t2?
The solution of this Abel equation is

his) = —2—(r
so that

1 it [™ 1
" ^ ' Z ' > (m

2+(z-it)2)* + n)b (s*-t*

(2.14)

Similarly, we find the corresponding potential u(m, z; —t) for the "image
disk charge " is given by

1 it f" 1 f 1

2 / 2[ ), (2.15)
(ro2+(z + w)2)*J

so that
M(TCT, Z ; - 0 = ti(m, z; t),

the bar denoting complex conjugate. The integrals in (2.14) and (2.15) can be
evaluated, but, as will be seen later, it is unnecessary to do this.

The potential
ii[u(m,z; t)-u(m, z; -t)]

is thus a real function which vanishes on z = 0(a<w<b) since t<a and which
has its normal derivative zero on the screen z = 0(b<m). Thus it satisfies
conditions (2.8) and hence, if we sum such potentials for 0<t<a with a density
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function g(t), we obtain, as a representation for U(m, z),

1 C"U(m, z) = — g(t)[u(m, z; t)-u(m, z; -t)~\dt
* J 0

1 1

(lJ72 + (Z - iO2)* (T372 + (Z + it)2?

1

+ (z-i7)2)*

^ ] * ] * (z>0)-(216)
where ^(i) is to be chosen so that (2.7) is satisfied. We suppose g(t) is real
and odd. This potential U(m, z) then satisfies all the required conditions.

We now show that (2.7) is satisfied provided g(t) is the solution of a certain
Fredholm integral equation of the second kind. At any point in the half-space
z>0 we have

(z-it) (z + it)

« Jj

(z+w) i ds

and hence, as such a point approaches a point on z = 0(0^tn<a), the limit
of dlfjdz is found using (2.10) as

& = - i-^Uo (^^¥ " Ĵo t9if)h (s2-^2-*2)^]'
(z = 0, 0^

Similarly, from (2.9) and (2.12) we find that

_1 d C" tgo(t)dt ^ dV2_l d f°° tg2(t)dt ^ ( z = Q;

w dm J m (t2 — w2? dz w dm j b (t2—m2?'dz

Thus, if we integrate equation (2.7) with respect to m from 0 to m (0^
and use the expressions just found for the three derivatives, we obtain

(2.17)
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If we regard (2.17) as an Abel equation for g(t) in which the first term on the
left-hand side is equal to a known function, we obtain on solving this equation
the Fredholm equation satisfied by g{t) as

), (2.18)

where

and g2(t) is given by (2.13). Since go(i) is known, A0(f) can be found, and so
the right-hand side of (2.18) is known. We may note that the kernel of (2.18)
is continuous at s = /.

Equation (2.18) is a Fredholm integral equation of the second kind for
g(t), which can be solved numerically. Alternatively, we may note that the
kernel is vanishingly small when b is very much greater than a, and thus for
such a and b the equation can be solved by iteration. The solution so obtained
perturbs on a corresponding solution for a disk of radius a and is that for an
annulus whose inner radius a is small compared with its outer radius b. Once
g{t) is known, the potential U can be found at any point from (2.16).

In order to evaluate U and other quantities of interest it is convenient to
use an alternative representation of U obtained from (2.16) by an interchange
in the order of integration as

"<"•z)" h £ •» [ ( ' ( ' ) ' ) * - c f r ' o y ] *

where

2 p ^ L p gWs
j{t) being an even function. Once g(t) has been found by iteration, j(t) can
be calculated to the same order of approximation, and the integrals in (2.19)
evaluated. This is a more practical method of calculating U than first evaluating
the inner integral in (2.16) and then attempting the evaluation of U. It may
be noted that the two integrals in (2.19) are the appropriate representations
(4) for the Neumann potentials for a disk of radius a and a screen with an
aperture of radius b.

An alternative method of deriving (2.18) is to start with (2.19) and use
the conditions (2.7) and (2.8) on z = 0(0 ̂  in < a) and z = 0(b<w) to obtain
two integral equations for g(i) and j(t), one of which is (2.20). Elimination
of j(t) then leads to (2.18). Alternatively, g(t) can be eliminated to obtain a
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Fredholm equation fory(/) holding over the infinite interval (b<t <oo). The
functions g(i) and j(t) are essentially the functions u'ly(x, 0) and "2*0*. 0)
introduced by Gubenko and Mossakovskil (2), differing from them only by
known functions. Equation (2.18) for g{t) corresponds to the equation for
u'ly(x, 0) obtained by eliminating u'2x(x, 0) between the equations (4.5) given
by Gubenko and Mossakovskil, while the equation for j(t) mentioned above
corresponds to their equation (6.1) used to obtain approximate solutions.
Since this latter equation is over the infinite interval (b, oo), it seems preferable
to use (2.18), which is over the finite interval (0, a).

Equation (2.18) can also be derived by formulating the problem of deter-
mining V(xn, z) in the half-space z>0 as a triple integral equations problem
(6) and treating these equations by a method similar to that given recently
by me for triple series equations (7). Another integral equation method for
this problem has also been given by J. C. Cooke (8).

The method given in this section is essentially one for an annulus which
can be regarded as a circular disk with a small concentric aperture. While
equation (2.18) holds for all values of a and b, approximate solutions can only
readily be obtained when a 4 b. The case of the narrow annulus for which
a and b are approximately equal, however, has been treated by Grinberg and
Kuritsyn (9) using another integral equation method which gives solutions
perturbing on corresponding two-dimensional solutions for an infinitely long
strip.

3. The Indentation of an Elastic Half-space by an Annular Punch
As an example of a Dirichlet problem for an annulus we consider the

indentation of an elastic half-space z>0 by a rigid flat-ended annular punch
pressed normally against the surface z = 0 of the half-space, the centre of the
annulus being the origin for cylindrical polar coordinates (m, 9, z). If the
shearing stress omz is zero at all points of z = 0, the normal stress azz vanishes
at those points of z — 0 not in contact with the punch, and the z-component
w of the displacement is constant over the region of contact, then on z = 0
we have

w = e (a<m<b), azz = 0 (0^w<a, b<m<oo), awz = 0 (Ogtt7<oo),

(3.1)

where e is the depth of penetration of the punch. Also, all components of
stress and displacement tend to zero at large distances from the origin.

Green and Zerna (3) show that, if the displacement D is taken as

2fiD = (l-2>/) grad <j> + z g r a d ^ -(3-4?/) ^ k,
dz dz

where <j>(w, z) is a potential function, /i the shear modulus, r\ Poisson's ratio,
and k the unit vector in the z-direction, the last of (3.1) is satisfied, while the
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first two conditions give on z = 0

V = e (a<w<b),

— = 0 (0gro<a, b<m<ao), (3.2)
dz

where
v_

H dz

Thus K(ro, z) is a potential in the half-space z>0 which satisfies the boundary
conditions (2.1) and (2.2) of the Dirichlet problem for an annulus, being
identical with the electrostatic potential for the annulus maintained at a
constant potential e. It is thus given by (2.3).

Since f(m) = e, we have

/o(«0 = «. /i(w) = 0;
so the functions Kt and V2 satisfying conditions (2.5) and (2.6) are identically
zero at all points, while Vo is given by (2.9) with

2e

The function (7 is then given by (2.16), g{t) satisfying the integral equation
(2.18) with

When a 4 b, we obtain the iterative solution of (2.18) as

. t2 . 4a3 . t* . 4a3

From (2.20) we then find that

and can thus calculate U(m, z) at any point from (2.19).
The total force P exerted by the punch on the half-space is found as

= -2n\ ro(a«)r =

where a = ajb. This expression agrees with that obtained by a limiting
procedure in a previous paper (7).
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4. The Neumann Problem for a Circular Annulus
We give without proof corresponding results to those of Section 2 for the

Neumann problem for an annulus. Again using cylindrical polar coordinates
(m, 0, z) we require a potential V(m, z), whose normal derivative dV\dz takes
given values/(ro) on the annulus z = 0(a<m<b) and which satisfies continuity
conditions similar to those for the corresponding potential of Section 2.
Further, V(w, z) is 0(r~3) at a large distance r from the origin. Since V(w, z)
is anti-symmetric about z = 0, the problem is that of determining V(w, z)
in the half-space z > 0 subject to the conditions on z = 0

— =/(«") {a<™<b),
dZ (4.1)
V = 0

V(w, z) being equal to — V(m, — z) for z<0.
We assume/(tn) can be expanded as

/ (^) = /ofa) +/i(ro) (a < w < b),
where

oo - 3

/o(w)= £ attw
n, f1(w)= X " / .

n = 0 n — — ao

the definitions of these functions being extended to all w in the intervals
(0^w<b) and (a<ro<oo) respectively.

We now write V{w, z) as the sum of four potentials

V(w, z) = V0(tn, z)+Vl(m, z)+ V2{w, z)+U(m, z),

where we define V{{xn, z), (i = 0, 1, 2), as the potentials in the half-space z>0,
which on z = 0 satisfy the conditions

^r ( 0
oz

dz
par
-± =0(0£m<b), V2=-Vl

dz
These potentials are found as (4)

1 f"
2iJ-*(ro2

where go(t) is a real odd function given by
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where gt(t) is a real even function given by

and

where g2(t) is a real odd function given by

£)* (4.2)
, (t

The potential U(m, z)(z>0) satisfies the conditions on z = 0

U= -(

— = 0
3z

and is identical with the Dirichlet potential for a screen containing a circular
aperture of radius b concentric with a coplanar circular disk of radius a, the
potential being zero on the screen and taking given values on the disk. We
construct a suitable representation of U(m, z) by a method similar to that
employed in Section 2 and obtain

7T?[(^ + (z-fa)y " (m'+J+to)*)*]*]*

(7(07
Jo L1

li

j

(z>0) (4.3)
The conditions on z = 0 are satisfied provided g{t) is the solution of the

Fredholm integral equation

t2Jo('2-.s2)L M> + '/ V̂  + ̂ /J

where
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and g2{t) is given by (4.2). When a4b, this equation can be solved by iteration
to give a solution for an annulus whose inner radius a is small compared with
its outer radius b, this solution perturbing on a corresponding solution for a
disk of radius a.

An alternative representation for U(m, z) is found from (4.3) as

r
\dt>

where

being an even function. The two integrals in this expression are the
appropriate representations (4) of the Dirichlet potentials for a disk of radius a
and a screen with an aperture of radius b.
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