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Abstract

Let A' be a complete connected Riemannian manifold with sectional curvatures bounded from below.
Let M be a complete simply connected Riemannian manifold with sectional curvatures KM(a) «£ -a2

(a > 0) and with dimension < 2dim N. Suppose that N is isometrically immersed in M and that its
image lies in a closed ball of radius p. Then sup(KN(,a) — KM(a)) S5 ^ 2 (ap) /p 2 where the function fi
is defined by n(x) = xcoth x for x > 0, ji(0) = 1 and the supremum is taken over all sections tangent
to N.

1980 Mathematics subject classification (Amer. Math. Soc): 53 C 40.

This is a generalisation of previous results by Jacobowitz [4], Moore [6], Baikous-

sis and Koufogiorgos [1] and Ishihara [3]. To prove the main theorem we need the

following

LEMMA 1. Let M be a Riemannian manifold with sectional curvatures < -a2.

Suppose that y: [0,1] -> M is a geodesic and put T = y'(t). Let V be a Jacobi field

along y which is zero to t = 0 and is everywhere perpendicular to y. Then a t t - 1.

where X is the length of y.

PROOF. This can be extracted from the proof of the Rauch Comparison

Theorem given in [2]. On page 32 of this reference the inequality

(V,V) " (V0,V0)

This work was done during the time when the first author was a visitor at the University of
Southampton.
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[21 Isometric immersions 163

occurs where the subscript zero refers to a comparison manifold Mo. Our lemma

follows by choosing an appropriate Jacobi field in the complete simply connected

space of constant sectional curvature -a2.

The following algebraic lemma is proved on pages 28-29 of [5].

LEMMA 2. Let S: R" X R" -> Rp be a symmetric bilinear function such that, for
all X =£ 0, S( X, X) =£ 0. Then ifp<nwe can find non-zero vectors X, Y such that

THEOREM. Let N be a complete connected Riemannian manifold with sectional
curvature bounded from below. Let M be a complete simply connected Riemannian
manifold with sectional curvatures KM(o) < -a2 (a > 0) and with dim M <
2 dim N. Suppose that N is isometrically immersed in M and that its image lies in a
closed ball of radius p. Then

a) - KM(a)) >

PROOF. In order to simplify the notation we shall assume that N is imbedded in
M. The Riemannian connections V and v ' of M and N respectively are related
by the Gauss formula

(2) VXY = V'XY+S(X, Y)

where 5 is the second fundamental form of the immersion. The corresponding
sectional curvatures are related by the Gauss equation

(3) KN(XAY)-KM(XAY)=A(X,Y)

where

, X),S(Y,Y))> -\\S(X,Y)\\2

(4) MX Y) =
A y||

Now let 0 be the centre of the ball in M and consider the function $ defined on
N by $(P) = 2(^(0, P)}2 where d is the distance function on M. Our theorem
follows from an application of Theorem A' in [7] to the function 0 but we have
first to do some calculations.

Consider a unit vector X tangent to N at P and choose a curve /?(«) in N with
/?(0) = P, P'(0) — X. Let a(t, u), 0 < / < 1, be a constant speed parametrisation
of the (unique) geodesic in M from 0 to /?(«) and define vector fields T, X along a
by

- ,
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we have the formulas

(5) <grad$, X)=(T, X)

(6) V'2Q{X, X) = (VTX, X)+ (T, S(X, X)),

where v ' 2 $ is the Hessian of $. The first of these is a straightforward calculation
involving the first variation. The second one can be derived as follows. Put
X = X(l, w) so that A' is a vector field along /? which is tangent to N. Then

V'2®(X, X) = (v^gradfc, X)= X«grad$, X)) - (gradfc, v'xX).

Now use (5), (2) and the fact that, because [T, X] - 0, VXT = VTX to obtain

V'2$(X, X) = X((T, X)) - (T, V'XX)

= (VXT,X)+(T,VXX-V'XX)

= (VTX,X)+(T,S(X,X)).

For our next calculations we restrict the vector fields to the geodesic y: t -»
a(t, 0). Because Xis a Jacobi field it follows that

T2((T, X)) = 0 and consequently (T, X)= kt

where k = (T, X). The vector field

ir-o <T,X)T_<> ktT
x~x ~x~~x IF'

where \ = \\T\\ is the length of y, is thus a Jacobi field which is everywhere
perpendicular to y. A calculation gives the relations

(7) (X, X) =(X,X)+ k2t2/\2

(8) (VTX, X)=(VTX, X)+k2t2/X2.

Choose a point Po on N different from 0 and put Xo = ^(0, Po). According to
Theorem A' of [7], for any e' > 0, s > 0, there exists a point P on N at which

d(0,P)7*\0, flgrad OH < e', v ' 2 $ ( * , X) < e,

where X is any unit vector tangent to iV at P. We will work out the implications of
these inequalities using the notation we have already introduced but restricting
our vector fields to their values at P.

It follows from (7) that

(9) (X,X)=l-k2/\2.

Further, (5) leads to the inequality | k |< llgrad $| | < e' and, as X > Xo,

imi2>i-£'2/;\2o.
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The argument

(VTX, X>= (VTX, X)+ k2/X2

= (vTx,x)+ i - imi2

2*1 + (n(a\)- l)\\X\\2

> 1 + (fi(aX) - 1)(1 - e'2/X2
0)

uses (8), (9), (1) and (10). It then follows from (6) that

e > 1 + (fi(a\) - l)(l - e'2/Xo) + (T, S(X, X)).

Given any positive integer m we can take e = l/m, e'2 = X\/m and the above
inequality implies that, at some point Pm,

(T, S(X, X))+ (1 - 1 / m H a X j < 0

where Xm = d(0, Pm). Consequently

\\S{X,X)\\>(\-\/m)V>{a\m)/\m,

an inequality which we can also express as

(11) \\S(X, X)\\/(X, X)> (1 - \/m)fi(aXm)/Xm

for all non-zero vectors X tangent to N at Pm.
The inequality (11) shows that Lemma 2 is applicable to the function S. Thus,

using (3) and (4), there are non-zero vectors X and Y tangent to N at Pm such that

^ ( ^ A Y)-KJXA Y) = (S(X,X),S{Y,Y))>/\\XA Y\\2.

Because IIX A Y ||2 < IIX | | 21| Y ||2 the inequality (11) gives

The fact that this is true for all m proves the theorem.
We note that the inequality (*) is sharp in the sense that if M is a complete

simply connected space of constant sectional curvature -a1, a ~s* 0 and N
is the boundary of a closed ball of radius p, then we obtain the equality
sup(KN(a) - KM(a)) = ju2(ap)/p2. In fact, we have S(X, X) = (n(ap)/p2)T.
So from (3) and (4) we obtain the above equality.
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