
London Mathematical Society ISSN 1461–1570

PICARD GROUPS AND REFINED DISCRETE LOGARITHMS

W. BLEY and M. ENDRES

Abstract

Let K denote a number field, and G a finite abelian group. The ring
of algebraic integers in K is denoted in this paper by OK , and A
denotes any OK -order in K[G]. The paper describes an algorithm
that explicitly computes the Picard group Pic(A), and solves the cor-
responding (refined) discrete logarithm problem. A tamely ramified
extension L/K of prime degree l of an imaginary quadratic number
fieldK is used as an example; the class of OL in Pic(OK [G]) can be
numerically determined.

1. Introduction

We fix a number field K and a finite abelian group G. For any number field L, we let OL
denote its ring of algebraic integers. If R is any commutative ring (always with identity 1),
we write R[G] for the group ring with coefficients in R.

Let A ⊆ K[G] denote an OK -order. In this paper, we describe a complete algorithm that
explicitly computes the Picard group Pic(A). More precisely, we show how to construct
explicit invertible A-sublattices g1, . . . , gg of K[G] such that

Pic(A) �
g⊕
i=1

(Z/fiZ) [gi]

with integers fi > 1, fi+1 | fi . Here, [gi] denotes the isomorphism class of gi . In addition,
we provide an algorithm that solves the corresponding refined discrete logarithm problem.
By this, we mean the following problem: Given any invertible A-submodule a of K[G],
find integers xi , 0 � xi < fi , and an element λ ∈ K[G] such that a = λg

x1
1 . . . g

xg
g . Note

that this is much finer than just solving the discrete logarithm problem in Pic(A).
Our main motivation originated in the study of the Galois module structure of integer

rings OL in finite abelian extensions L/K with group G. When L/K is at most tamely
ramified, then it is well known, by a theorem of Noether, that OL is OK [G]-projective. So
the natural question arises, as to whether OL is actually a free OK [G]-module or, in other
words: “Does there exist a normal integral basis?” More generally, we could ask for an
explicit description (theoretical or algorithmic) of the class [OL] of OL in Pic(OK [G]).

If we restrict scalars and consider OL as a Z[G]-module, then there is a well-established
and beautiful theory due to Fröhlich and Taylor, which shows that [OL] is always trivial
in Pic(Z[G]). However, if we study OL as an OK [G]-module, the situation is poorly
understood, and there are only partial theoretical results, mainly for abelian extensions
of imaginary quadratic fields K (see [1, 13]).

If we leave the tamely ramified case, the situation is even worse. The prototypical result
in this context is due to Leopoldt, who proved that for any abelian extension L/Q, the ring

Received 18 December 2003, revised 2 November 2004; published 31 January 2005.
2000 Mathematics Subject Classification 11R27, 11R33, 11G15
© 2005, W. Bley and M. Endres

LMS J. Comput. Math. 8 (2005) 1–16https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/8
https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

of integers OL is free over its associated order

AL/Q(OL) := {λ ∈ Q[G] | λOL ⊆ OL}.
In general, however, OL is not even locally free over AL/K(OL) (see, for example, [7]), so
that it is not clear that the concept of associated orders provides the proper framework. On
the other hand, there are deep and interesting results for wildly ramified abelian extensions
L/K of full ray class fields over an imaginary quadratic base field (notably by Schertz [19]
and Cassou-Nogués and Taylor [8]), where in many cases OL can be shown to be free over
AL/K(OL). All of these cases are geometrically motivated, as is the absolutely abelian case,
which is closely connected to the geometry of the multiplicative group Gm.

In [6], Bley has already presented algorithms for computing associated orders. Moreover,
there is a computational criterion due to Fröhlich (see also [3, Lemma 2.7]), which allows
one to decide whether OL is locally free over AL/K(OL). If this is the case, one can use
the algorithms of this paper to compute the class of OL in Pic(AL/K(OL)).

We briefly describe the structure of this paper. In Section 2, we review the basic theoretical
results used in our constructions. Our main reference here is [14]. Section 3 forms the heart
of the paper, and contains a detailed description of the algorithms for computing the Picard
group Pic(A) and the solution of the corresponding refined discrete logarithm problem.
We have actually implemented these algorithms under PARI-GP [2]. In Section 4,tamely
ramified extensions L/K of imaginary quadratic number fields K are used as examples;
the class of OL in Pic(OK [G]) is numerically determined.

2. Class groups and Picard groups

In this section, we recall and slightly adapt the main results of [14].Although our primary
interest is the computation of Picard groups of OK -orders A ⊆ K[G], whereK is a number
field and G a finite abelian group, we will work here in greater generality.

Let A denote a commutative ring (as always, with 1). We write A• for the monoid of
nonzerodivisors, A× for the group of invertible elements, and T (A) for the total quotient
ring. By definition, an A-submodule a ⊆ T (A) is regular if a ∩ T (A)× �= ∅. We call A
a Marot ring if each regular ideal of A is generated by its set of regular elements.

We write J(A) for the group of invertible A-submodules a ⊆ T (A), and H(A) :=
{λA | λ ∈ T (A)×} for the subgroup of invertible principal ideals. The quotient group
C(A) := J(A)/H(A) is called the ideal class group of A (or, in the terminology of [12],
the Cartier divisor group of A). If A is noetherian, then C(A) is canonically isomorphic
to Pic(A) by [12, Corollary 11.7]. For a ∈ J(A), we write [a] ∈ C(A) for the class of a.

We let Ã denote the integral closure of A in T (A). Following [14], we say that a Marot
ring A is an order, if the following conditions are satisfied.

1. Each regular prime ideal of A is finitely generated.

2. Each regular prime ideal of A is maximal.

3. Ã is a finitely generated A-module.

Let m ⊆ A denote a regular ideal. An invertible A-ideal c ∈ J(A) is said to be prime
to m, if c = ab−1 with regular ideals a, b ⊆ A such that a + m = b + m = A. We let
Jm(A) ⊆ J(A) denote the subgroup of invertible A-ideals that are prime to m.

Henceforth we assume that A is an order, and we write f := {λ ∈ Ã | λÃ ⊆ A} for
the conductor of A. Note that Ã is a Dedekind ring in the sense of [14, Section 2]. An
element λ ∈ T (Ã)× is called multiplicatively congruent to 1 modulo f, if λ = λ1/λ2 with

2https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

λ1, λ2 ∈ Ã•, such that λ1Ã + f = λ2Ã + f = Ã and λ1 ≡ λ2 (mod f). In this case, we
write λ ≡ 1 (mod× f). We set

Sf(Ã) := {λÃ | λ ∈ T (Ã)×, λ ≡ 1 (mod× f)},
and we define the (generalized) ray class group modulo f by

Cf(Ã) := Jf(Ã)/Sf(Ã).

For ã ∈ Jf(Ã), we write [ã]f ∈ Cf(Ã) for the corresponding class.
We consider the following diagram.

A× −−−−→ (A/f)× σ−−−−→ Cf(Ã)
ψ−−−−→ C(A) −→ 0� � ∥∥∥ ε

�
Ã× −−−−→ (Ã/f)× σ̃−−−−→ Cf(Ã)

ψ̃−−−−→ C(Ã) −→ 0

(1)

All unlabelled arrows are defined in the natural way. For an element λ + f ∈ (A/f)×,
we set σ(λ + f) := [λÃ]f. For the definition of ψ , we recall from [14, Satz 11(i)] that in
each class c ∈ Cf(Ã), we may choose an invertible ideal ã ⊆ Ã with ã + f = Ã. Then one
defines ψ(c) := [ã ∩ A] ∈ C(A). The definitions of σ̃ and ψ̃ are completely analogous.
For a class c ∈ C(A), we choose a regular ideal a ∈ c, and we put ε(c) := [aÃ] ∈ C(Ã).

Proposition 2.1. Diagram (1) commutes, and the rows are exact.

Proof. Commutativity follows from [14, Satz 7(i)]. The bottom sequence is essentially
the sequence of [14, Satz 11], and the exactness of the top sequence follows easily from
[14, Satz 12] and its proof.

Remark 2.2. These sequences are reminiscent of well-known exact sequences in global
class field theory. Indeed, if A is an order in a number field K , then the bottom row is the
basic sequence of [17, Satz 7.5.2], and the top row is its analog for ring class field extensions.

For later reference, we introduce the canonical group homomorphism

µA : J(A) −→ J(Ã), a 	→ aÃ

and we note that the following statement holds.

Proposition 2.3. The sequence

0 −→ (Ã/f)×

(A/f)×
ι−→ J(A)

µA−→ J(Ã)

is exact. Here, ι is induced by a + f 	→ aA + f.

Proof. By [14, Satz 8(i)], it suffices to prove the injectivity of ι. This is obvious, from the
fact that aA + f = A ⇐⇒ a ∈ A.

There is a standard exact sequence

0 −→ D(A) −→ C(A) −→ C(Ã) −→ 0, (2)

induced by the functor _⊗AÃ, where D(A) is usually called the kernel group.

3https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

To determine D(A), we consider the sequence

0 −→ A× −→ Ã× −→ (Ã/f)×

(A/f)×
ϑ−→ C(A)

ε−→ C(Ã) −→ 0, (3)

where all the unlabelled maps are defined naturally. The map ϑ is induced by ᾱ 	→
[αÃ ∩ A], α ∈ (Ã/f)×, and ε is defined as in diagram (1).

Proposition 2.4. The sequence (3) is exact, and therefore

D(A) � (Ã/f)×

(A/f)× im(Ã×)
.

Proof. This is essentially a reformulation of [14, Satz 10]; see also [18, Satz (12.9) and
(12.11)], which covers the case when A is an order in a number field.

We now focus on the following special situation, which occurs frequently in arithmetic
and is the basic setup for the algorithms that we will develop in Section 3. Let R denote a
Dedekind domain andK its field of fractions, and letAbe a finite-dimensional, commutative,
reduced K-algebra. We let A ⊆ A be an R-order (in the sense of [11, Definition (23.2)]),
and we write Ã for the integral closure ofR inA. We shall always assume thatK is perfect.
Then there is an isomorphism of K-algebras

A � K1 × . . .×Ks,

whereKi/K , i = 1, . . . , s, is a finite field extension. In view of this identification, one has

Ã � R1 × . . .× Rs,

where Ri denotes the integral closure of R inKi . Since A is noetherian, it is in particular a
Marot ring, by [15, Theorem 7.2]. Since A has Krull dimension one, it follows easily that
each regular prime ideal ofA is maximal. Indeed, if pj := {α = (a1, . . . , as) ∈ A | aj = 0},
then {p1, . . . , ps} is exactly the set of minimal prime ideals. Hence A is also an order in the
sense of [14, Section 3]. Finally, note that A = T (A) = T (Ã).

Examples 2.5. Let K be a number field and put R = OK . We fix an algebraic closure
Kc of K .

(a) Let L/K denote a finite field extension, and let A = L. Then A is any OK -order
of L. For example, if α ∈ Kc is integral, then A = OK [α] is an order in A = K(α).

(b) LetG be a finite abelian group, and setA = K[G]. Then A is any OK -order inK[G];
in particular, this example includes all orders arising as associated orders, as described in
the introduction.

(c) The last example is motivated by the study of integral module structures in arithmetic
geometry (see, for example, [20]). LetG denote a finite abelian group on which Gal(Kc/K)

acts from the left. Then one is naturally led to consider (Hopf) orders in the K-algebra
A = (Kc[G])Gal(Kc/K), where Gal(Kc/K) acts by

ω

(∑
g∈G

λgg

)
=

∑
g∈G

ω(λg)ω(g)

for ω ∈ Gal(Kc/K), λg ∈ Kc. For more specific examples and questions arising in this
context, the reader is referred to [5].

4https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

3. Algorithms

3.1. Setup and notation

In this section, K always denotes a fixed number field. Let K1, . . . , Ks be finite field
extensions of K , and set A = K1 × . . . × Ks . Moreover, we fix an OK -order A ⊆ A.
We present algorithms for the computation of Pic(A), and an algorithmic solution to the
corresponding refined discrete logarithm problem. The idea of our approach to computing
Pic(A) has already been very roughly sketched out in [4]; our solution to the discrete
logarithm problem considerably improves on [3, Section 2.2, Steps 3–5].

Before introducing any further notation, we relate this setup to our motivating example,
as mentioned in the introduction. If G is a finite abelian group, then we write Ĝ for its
group of abelian characters. Let χ1, . . . , χs denote a set of representatives of Ĝmodulo the
action of Gal(Kc/K). For i ∈ {1, . . . , s}, let Ki denote the field extension of K generated
by {χi(g) | g ∈ G}. Then we have an isomorphism of K-algebras

 : K[G] −→ K1 × . . .×Ks,

induced by
(g) = (χ1(g), . . . , χs(g)) for g ∈ G. Whereas
 depends on the choice of
the χi , the componentsKi depend only on the Gal(Kc/K)-orbits of Ĝ. It is straightforward
to implement algorithms that, for a given groupG, computeK1, . . . , Ks and isomorphisms

 and
−1. For more details on this issue, the interested reader is referred to the PARI-
implementation of our algorithm. Therefore the problem of computing Pic(A) for OK -
orders A ⊆ K[G] is reduced to the more general setup of this section. In the same way,
one can also deal with Examples 2.5 (a) and (c) (for (c), use the explicit Wedderburn
decomposition of [5, Lemma 2.2]).

We return to the setup described at the beginning of this section, and we fix some
further notation. For i = 1, . . . , s, we set ni := [Ki : K]. We suppose that each OK -
module OKi is given by an integral pseudo-basis (ωij , aij)1�j�ni (for a definition, see [10,
Definition 1.4.1]); that is

OKi = ai1ωi1 ⊕ . . .⊕ ainiωini , (4)

with fractional OK -ideals aij and elements ωij ∈ Ki . Then the set {ωij | 1 � i � s,
1 � j � ni} forms a K-basis of A, and (ωij , aij)1�i�s, 1�j�ni is an integral pseudo-
basis for the maximal order Ã. To simplify our notation, we set n := [A : K] and write
(ωk, ak)1�k�n for this pseudo-basis, but we always bear in mind that it actually comes in
component-wise pieces. Furthermore, we assume that the OK -order A is given by a pseudo-
basis (νk, bk)1�k�n.

For the computation of C(A), we use the top sequence of diagram (1). Therefore we
have to develop algorithms for the computation of Cf(Ã) and (A/f)×.

3.2. Computation of Cf(Ã)

The Ã-ideal f naturally decomposes as a direct sum f = f1 ⊕ . . . ⊕ fs , where each
fi , i = 1, . . . , s, is an integral ideal of OKi . In the same way, the ray class group Cf(Ã)
decomposes as a direct product of ray class groups in number fields,

Cf(Ã) = clf1(K1)⊕ . . .⊕ clfs (Ks).

We first describe how to compute f1, . . . , fs . To that end, we let Tr = TrA/K : A −→ K

denote the usual trace map, and we observe that Tr = ∑s
i=1 TrKi/K . SinceA/K is separable,

5https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

the trace form

b : A× A −→ K, b(λ1, λ2) := Tr(λ1λ2),

is non-degenerate, and for any full OK -submoduleM ⊆ A, we identify the OK -linear dual
ofM withM∗ := {λ ∈ A | Tr(λM) ⊆ OK}. IfM is given by a pseudo-basis (µk, ck)1�k�n,
thenM∗ is easy to compute. Indeed, if µ∗

1, . . . , µ
∗
s ∈ A is the dual basis of µ1, . . . , µs with

respect to the trace form, then (µ∗
k, c

−1
k)1�k�n is a pseudo-basis ofM∗. Obviously, the dual

basis µ∗
1, . . . , µ

∗
s can be computed by means of simple linear algebra.

Lemma 3.1. Let M,N ⊆ A denote full OK -submodules. Put

f(M,N) := {λ ∈ A | λM ⊆ N}.
Then f(M,N)∗ = MN∗.

Proof. This is an easy adaption of the proof of [6, Lemma 4.2].

The product MN∗ can be computed by applying the Hermite normal form (for short,
the HNF) algorithm in Dedekind domains; see for example [10, Algorithm 1.4.7 and Sec-
tion 1.5.2]. We will use Lemma 3.1 for two different applications, as follows.

(1) If M = Ã and N = A, then f(M,N) is the conductor of A.

(2) If M = a and N = b, with invertible A-ideals a and b, then f(M,N) = a−1b.

Using (1), we are able to compute a pseudo-basis (µk, dk)1�k�n of the conductor f.
We let πi : A −→ Ki denote the projection on the ith component. Explicitly, if λ =∑s

i=1
∑ni
j=1 xijωij with xij ∈ K and ωij as in (4), then πi(λ) = ∑ni

j=1 xijωij . Then
(πi(µk), dk)1�k�n is a pseudo-generating set of fi , and we can use the HNF algorithm in
Dedekind domains to compute a pseudo-basis of fi .

In each of the components, we now use [10, Algorithm 4.3.1] to compute integral ideals
c′ij of OKi coprime to fi and integers dij > 1 such that

clfi (Ki) =
ti⊕
j=1

(
Z/dijZ

) [c′ij]fi .

For 1 � i � s, 1 � j � ti , we define

cij := OK1 ⊕ . . .⊕ OKi−1 ⊕ c′ij ⊕ OKi+1 ⊕ . . .⊕ OKs .

Then cij + f = Ã, and

Cf(Ã) =
s⊕
i=1

ti⊕
j=1

(
Z/dijZ

) [cij]f.

Applying [10, Algorithm 4.3.2] in each of the components, it is now obvious how to give a
refined discrete logarithm algorithm in Cf(Ã).

In order to simplify our notation, we assume that the ray class group is given in the form

Cf(Ã) =
t⊕

k=1

(Z/dkZ) [ck]f (5)

with t = ∑s
i=1 ti , integers dk > 1 and integral Ã-ideals ck such that ck + f = Ã.

6https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

3.3. Computation of (A/f)×

For the computation of (A/f)×, we follow very closely the strategy applied by Cohen
in [10, Section 4.2]. Since we have to deal with abelian groups (that is, Z-modules) in this
subsection, it is useful and natural to work with Z-basis of the OK -modules that occur
during the computation of the finite abelian group (A/f)×.

To begin with, we recall that the conductor f decomposes as a direct sum f = f1 ⊕ . . .⊕fs ,
where each fi is an integral ideal of OKi . In each component, we compute the prime ideal
factorization of fi (for example, with the PARI routine idealfactor); we may therefore
assume that we have a prime ideal factorization

f =
∏
i∈I

P
ei
i =

⋂
i∈I

P
ei
i ,

where I denotes a finite index set, each Pi is a regular prime ideal of Ã, and ei � 1. For
i ∈ I , we set pi := Pi ∩ A, and we let J ⊆ I denote a maximal subset such that pj1 �= pj2

for j1, j2 ∈ J , j1 �= j2. For j ∈ J , we define

qj :=
⋂

i∈I, pi=pj

(
P
ei
i ∩ A

) =
(⋂

i∈I, pi=pj

P
ei
i

)
∩ A.

Proposition 3.2. Assume the above notation; then the following statements hold.

(a) qj is pj -primary for j ∈ J .

(b) qs + qt = A for s, t ∈ J , s �= t .

(c) f = ∏
j∈J qj = ⋂

j∈J qj is the unique primary decomposition of f, when f is consid-
ered as an A-ideal.

Proof. (a) Since Ã is Dedekind, its primary ideals are exactly the powers of its prime
ideals. Hence each of the ideals P

ei
i ∩ A is primary, and obviously it must be pj -primary,

if Pi ∩ A = pj . By [12, Corollary 3.8], qj is pj -primary.

(b) Since each of the ideals pj , j ∈ J , is maximal, one has ps + pt = A for s, t ∈ J ,
s �= t . Since A is noetherian, there exists a positive integer kj such that p

kj
j ⊆ qj for each

j ∈ J . This implies that the assertion holds.

(c) The equality of ideals is obvious. Since each of the primes pj , j ∈ J , is minimal over
f, there are no embedded primes, and uniqueness follows from [12, Theorem 3.10 (c)].

Using the HNF algorithm in Dedekind domains (or even in Z), it is easy to compute the
ideals pj and qj . See [10, Section 1.5.2], and in particular [10, Algorithm 1.5.1], for more
details.

The Chinese remainder theorem implies that the canonical map

ϕ : (A/f)× �−→
∏
j∈J

(
A/qj

)×

is an isomorphism. If we succeed in makingϕ (or rather its inverse) explicit, the computation
of (A/f)× is reduced to the computation of (A/q)× for a p-primary ideal q of A. We first
address the problem of computing (A/q)×.

We consider the natural exact sequence

1 −→ 1 + p

1 + q

ι−→ (A/q)× π−→ (A/p)× −→ 1.

7https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

The homomorphisms ι and π are obviously effective in the sense of [10, Definition 4.1.5].
By [10, Algorithm 4.1.8] it therefore suffices to compute (1+p)/(1+q) and (A/p)×. Note
that for the application of [10, Algorithm 4.1.8], it is essential to have a discrete logarithm
algorithm in (1 + p)/(1 + q).

We turn to the computation of (A/p)×. Let P denote a prime of Ã lying over p; that is,
p = P∩A (note that P is already known from the computation of p). Since Ã decomposes
as a direct product of Dedekind domains, we easily obtain a discrete logarithm algorithm
in (Ã/m)× for any integral regular Ã-ideal m by componentwise application of [10, Algo-
rithm 4.2.18]. Let q := |A/p| and q̃ := |Ã/P|. Then (Ã/P)× is cyclic of order q̃− 1, and
we let ã denote a generator. We randomly choose a ∈ A \ p, and we compute the discrete
logarithm of a in (Ã/P)×, namely a ≡ ãn (mod P). If (n, q̃ − 1) = (q̃ − 1)/(q − 1),
then the class of a generates (A/p)×. Unfortunately, the discrete logarithm algorithm in
(Ã/P)× is very time-consuming (see the comment in [10, Algorithm 4.2.18, Step 1]), so
that the naive algorithm of simply randomly choosing a ∈ A \ p until one finds an element
of exact order q − 1 in (A/p)× is probably similarly (in)efficient.

Let us turn to the computation of (1+p)/(1+q). We define k := min{s ∈ N0 | p2s ⊆ q}.
If k = 0, we have p = q, so that we are done. We henceforth assume that k > 0, and we
consider the filtration

p = p + q ⊇ p2 + q ⊇ . . . ⊇ p2k−1 + q ⊇ p2k + q = q.

We observe that the map

p2a + q

p2a+1 + q
−→ 1 + p2a + q

1 + p2a+1 + q

induced by x 	→ 1+x is an isomorphism of abelian groups. Applying HNF techniques over
Z, it is easy to compute the left-hand side. As in [10, Section 4.2], we inductively compute
(1 + p)/(1 + q) using the short exact sequences

1 −→ 1 + p2a + q

1 + p2a+1 + q
−→ 1 + p

1 + p2a+1 + q
−→ 1 + p

1 + p2a + q
−→ 1

fora = 1, 2, . . . , k−1. It is straightforward but quite lengthy to adapt [10,Algorithms 4.2.15,
4.2.16 and 4.2.18] for our purposes, and this is therefore left to the reader. For a detailed
description, the reader is also referred to the paper [16] of Klüners and Pauli, which deals
with the case of orders in number fields (our example (a)).

We finally outline a procedure for making ϕ−1 explicit. We suppose that we have already
computed

(
A/qj

)× =
rj⊕
k=1

(
Z/djkZ

)
αjk, αjk ∈ A,

for each j ∈ J . We set aj = qj and bj = ⋂
k �=j qk . Then aj + bj = A. We will briefly

indicate below how to compute aj ∈ aj and bj ∈ bj such that aj + bj = 1. If we set
δjk = bjαjk + aj , j ∈ J , k = 1, . . . , rj , then the classes [δjk] generate (A/f)×; moreover,
ϕ−1(αjk) = δjk .

Let a and b denote A-ideals such that a+b = A.As from the beginning of this subsection,
we assume that A, a and b are given by Z-bases. Let ω = (ω1, . . . , ωm) denote a Z-basis of
A, and let z ∈ Zm be the column vector such that 1 = ωz. Furthermore, let A,B ∈ Zm×m
denote the matrix such that ωA and ωB are Z-bases of a and b, respectively. Note that all of

8https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

this data can be computed efficiently by means of linear algebra. It is then straightforward
to adapt [10, Algorithm 1.3.2]. In other words, if (A|B)U = (0|H) with U ∈ Gl2m(Z)
computes the HNF of (A|B), then H is the m×m identity matrix, and we derive

1 = ω(0|H)
(0

z

)
= ω(A|B)U

(0

z

)
= ωAx + ωBy

with

U
(0

z

)
=

(
x

y

)
.

Hence we obtain a + b = 1 with a = ωAx ∈ a and b = ωBy ∈ b.
If, in a more general situation, A, a and b are given by OK -pseudo-bases, then one

can avoid the conversion to Z-bases and apply [10, Theorem 1.4.6 and Algorithm 1.4.7] to
compute the composition 1 = a+b. Since it is straightforward to adapt the above algorithm,
we leave the details to the reader.

In the following subsections, we assume that (A/f)× is given in the following form

(A/f)× =
r⊕
k=1

(Z/ekZ) εk, εk ∈ A, εkA + f = A. (6)

3.4. Computation of C(A)

For the computation of C(A), we consider the exact sequence

(A/f)× σ−→ Cf(Ã)
ψ−→ C(A) −→ 0.

If we are merely interested in the structure of C(A) as an abstract abelian group, we need
only to apply [10, Algorithm 4.1.7]. Our ultimate goal, however, is to solve the (refined)
discrete logarithm problem in C(A), and some extra care has therefore to be taken, mainly
in order to make the map ψ effective in the sense of [10, Definition 4.1.5].

Although most of our abelian groups are usually written multiplicatively, we will use the
more convenient additive notation in the following algorithm.

Algorithm 3.3. This algorithm computes integral A-ideals gi such that gi + f = A and
integers fi � 1 such that

C(A) =
g⊕
i=1

(Z/fiZ) [gi].

It also computes the additional information needed for the computation of refined discrete
logarithms. We assume that Cf(Ã) and (A/f)× are given as in (5) and (6).

1. [Express the relations given by σ((A/f)×) in terms of the generators of Cf(Ã).]
Using the refined discrete logarithm algorithm in Cf(Ã) compute, for k = 1, . . . , r ,

elements ξk ∈ A× and integers x1k, . . . , xtk such that

εkÃ = ξkc
x1k
1 . . . c

xtk
t , ξk ≡ 1 (mod× f).

Set ε′k = εk/ξk , and let (x1k, . . . , xtk) be the kth column of a (t × r)-matrix P . Then

(ε′1Ã, . . . , ε′rÃ) = (c1, . . . , ct)P .

The Z-span of the columns of P represents all the relations with respect to the generators
represented by c1, . . . , ct .

9https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

2. [Compute the Smith Normal Form (for short, the SNF) of P .]
LetD be the diagonal matrix with entries d1, . . . , dt . Compute the HNFH of (P |D), so

that (0|H) = (P |D)W , and then the SNF S = UHV ofH . The matricesW , U and V will
be needed below.

Now the Z-span of the columns of S represents all the relations with respect to the new
generators defined by (c1, . . . , ct)U

−1. Note that these representatives of the generators of
Cf(Ã) are in general not integral.

3. [Compute integral representatives of the generators of Cf(Ã).]
Compute a matrix Q such that all entries of C = U−1 + Q are non-negative integers

and each entry of the kth row of Q is divisible by dk . Then compute the integral Ã-ideals
g̃1, . . . , g̃t , defined by

(g̃1, . . . , g̃t) = (c1, . . . , ct)C.

4. [Compute the additional data needed for the computation of refined discrete loga-
rithms. This step can be skipped if it is not intended to compute refined discrete logarithms.]

(a) Using the refined discrete logarithm in Cf(Ã), compute the elementsα1, . . . , αt
∈ A such that

αkÃ = c
dk
k , k = 1, . . . , t.

(b) Compute, for i = 1, . . . , t , the elements γi ∈ A defined by

γi =
t∏

k=1

α
Qki/dk
k .

Then (γ1Ã, . . . , γtÃ) = (c1, . . . , ct)Q.
(c) From(

0, . . . , 0,
(
g̃1, . . . , g̃t

)
S
)

= (
ε′1Ã, . . . , ε′rÃ, α1Ã, . . . , αtÃ

)
W

(
0 0
0 V

)
+ (

0, . . . , 0, γ S11
1 Ã, . . . , γ Sttt Ã

)
compute elements βk ∈ Ã such that g̃

Skk
k = βkÃ, k = 1, . . . , t .

5. [Compute representatives for the generators of C(A).]
If S is the identity matrix, then set g = 1, g1 = A and f1 = 1. Otherwise, let g be the

largest index such that Sgg �= 1. For k = 1, . . . , g, compute gk = g̃k ∩ A and set fk = Skk .
Output (g1, . . . , gg), (f1, . . . , fg) and U ; also, if Step 4 has been done, (γ1, . . . γt) and
(β1, . . . , βt).

Remarks 3.4. (a) If we do not intend to compute refined discrete logarithms, then the
algorithm becomes much simpler and faster. In Step 1, it suffices to compute a matrix P
such that

(σ (ε1), . . . , σ (εr)) = ([c1]f, . . . , [ct]f
)
P.

This can be achieved by applying the discrete logarithm algorithm in Cf(Ã), which is much
faster than its refined version. Step 4 can be skipped completely. The output (g1, . . . , gg),
(f1, . . . , fg) and U suffices for the computation of discrete logarithms.

(b) Note that for k = 1, . . . , r the principal A-ideals ε′kA are contained in Jf(A). Indeed,
if ξk = λ1/λ2 with λ1, λ2 ∈ Ã• such that λ1Ã + f = λ2Ã + f = Ã and λ1 ≡ λ2 (mod f),

10https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

then there exists an element µ ∈ Ã such that λ1µ ≡ λ2µ ≡ 1 (mod f), and hence we have
ε′kA = (εkλ2µA)/(λ1µA) ∈ Jf(A).

(c) By the choice of the matrix Q in Step 3, we have

([c1]f, . . . , [ct]f)U−1 = ([c1]f, . . . , [ct]f)C
in Cf(Ã). Using C instead of U−1 has the advantage that the representatives g̃1, . . . , g̃t are
integral and satisfy g̃k + f = Ã. Therefore, ψ([g̃k]f) = [gk] in C(A), by [14, Satz 7].

(d) In Step 4(a), the refined discrete logarithm algorithm produces elements αk ∈ Ã such
that αk ≡ 1 (mod× f). So, indeed, αk ∈ A; moreover, αkA ∈ Jf(A). The method used to
compute the element βk in Step 4(c) ensures that βkA ∈ Jf(A). This will be vital for the
refined discrete logarithm algorithm described in the next subsection.

3.5. The refined discrete logarithm problem

Let a ⊆ A be an invertible A-module. Our intention is to compute an element ξ ∈ A×
and integers x1, . . . , xg such that 0 � xj < fj and a = ξg

x1
1 . . . g

xg
g .

Let c̃ ⊆ Ã denote an invertible Ã-ideal in the class [aÃ] ∈ C(Ã), such that c̃ + f = Ã.
Then there exists y ∈ A× such that c̃ = yaÃ. By construction, the invertible A-ideal
a′ := ya(c̃ ∩ A)−1 is in the kernel of µA : J(A) −→ J(Ã). By Proposition 2.3, there
exists a unique element η = ((z+f)mod (A/f)×) in (Ã/f)×/(A/f)× such that a′ = zA+f.
More precisely, the proof of [14, Satz 8 ii)] implies that η is determined by the requirement
that z ∈ a′. If z′ ∈ Ã satisfies zz′ ≡ 1 (mod f), then the proof of [14, Satz 10 i)] shows
that c = z′ya is an integral ideal such that c + f = A. By the definition of ψ , it follows
that ψ([cÃ]f) = [a] ∈ C(A), so that the discrete logarithm problem can be solved by the
method of [10, Section 4.1.3].

If we apply [10, Algorithm 4.2.21] component-wise, it is straightforward to compute
(Ã/f)×; in addition, we can use [10, Algorithm 4.2.24] to solve the discrete logarithm prob-
lem in (Ã/f)×. Since (A/f)× is also explicitly known, it is easy (use [10, Algorithm 4.1.7])
to compute L = {z1, . . . , zm} ⊆ Ã and integers h1, . . . , hm > 1 such that

(Ã/f)×

(A/f)×
=

m⊕
j=1

(
Z/hjZ

) [zj], zj ∈ Ã with zj Ã + f = Ã,

where [zj] denotes the class of zj .
Here is a detailed description of the refined discrete logarithm algorithm in C(A). If x

denotes a vector or matrix, we write xtr for its transpose.

Algorithm 3.5. Let a ⊆ A be an invertible A-ideal. Further input comprises the output
of Algorithm 3.3, and the data L, h1, . . . , hm as described above. This algorithm computes
ξ ∈ A× and integers x1, . . . , xg such that 0 � xj < fj and a = ξg

x1
1 . . . g

xg
g .

1. Compute an integral Ã-ideal c̃ such that c̃ + f = Ã and [c̃] = [aÃ] in C(A).

2. Applying the refined discrete logarithm algorithm in C(Ã), we compute y ∈ A such
that c̃ = yaÃ.

3. Compute a′ = ya(c̃ ∩ A)−1, and find the unique element

z = z
r1
1 . . . z

rm
m , 0 � rj < hj ,

such that z ∈ a′.

11https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

4. Compute z′ such that zz′ ≡ 1 (mod f), and set c = z′ya.

5. Applying the refined discrete logarithm algorithm in Cf(Ã), we compute ξ ′ ∈ A, and
integers y′

1, . . . , y
′
t , 0 � y′

k < dk , such that

cÃ = ξ ′cy
′
1

1 . . . c
y′
t
t .

Note that ξ ′A ∈ Jf(A).

6. Set (y1, . . . , yt)
tr = U(y′

1, . . . , y
′
t)

tr, and compute the integers v1, . . . , vt , x1, . . . , xt
such that yk = vkfk+xk, 0 � xk < fk . (Note that for k > g, one automatically has yk = vk
and xk = 0.)

7. Set ξ = (ξ ′βv1
1 . . . β

vt
t)/(γ

y1
1 . . . γ

yt
t z

′y), and output ξ, x1, . . . , xg .

Remarks 3.6. (a) For the solution of the discrete logarithm problem, it suffices in Step 5
to apply the discrete logarithm algorithm in Cf(Ã) to compute y′

1, . . . , y
′
t such that

[cÃ]f = [c1]y
′
1

f . . . [ct]y
′
t

f .

In Step 7, we skip the computation of ξ .

(b) Steps 1 and 2 can be done component-wise using [9, Algorithm 6.5.10]. In fact, this
algorithm can be easily adapted to solve the refined discrete logarithm problem in each
component (see also Cohen’s comment in [10, p. 209]).

(c) Step 3 seems to be the most time-consuming part of the algorithm. Nevertheless it is
a big improvement, compared to [3, p. 250, Steps 4 and 5]. In practice, it turns out that it is
much faster to avoid the computation of (c̃ ∩ A)−1. The test for z ∈ a′ is then replaced by
one for z(c̃ ∩ A) ⊆ ya, which can be performed by the method of [10, 1.5.2(3)].

(d) By construction, (y1, . . . , yt)
tr solves the discrete logarithm problem in Cf(Ã) with

respect to the basis ([c1]f, . . . , [ct]f)U−1. Hence (x1, . . . , xt) is a solution of the discrete
logarithm problem with respect to the basis [g1], . . . , [gt]. The final step, Step 7, takes
account of the difference between U−1 and C, the relations given by S and the equality
c = z′ya. In fact, the definitions immediately imply that cÃ = z′yξ g̃x1

1 . . . g̃
xg
g . Both the

ideals c and z′yξgx1
1 . . . g

xg
g are mapped to cÃ by µA as a consequence of [14, Satz 7 ii)].

Since both these ideals are contained in Jf(A), it follows from [14, Satz 9] that they are
actually equal.

4. Examples

We implemented our algorithms using PARI-GP [2]. In this section, we describe our
numerical examples, and make some observations derived from the computed data. The
source files of our program and the results of our computations are given in Appendix A.

Essentially, we looked at two classes of examples. The first class consists of extensions
L/K , whereK is a quadratic number field andL is the Hilbert class field ofK . We recall that
a defining polynomial for L can be computed using the PARI-function quadhilbert .
By Noether’s theorem, OL is a locally free OK [G]-module. We computed Pic(OK [G]) and
the discrete logarithm of the class of OL. The results of these computations can be found
in the file Hilbert.log.

Let K denote a number field with class number hK = 1. We fix a prime l that does not
ramify in K/Q, and we let G denote the cyclic group of order l. We then let p denote a
prime ideal of OK , and we assume that l divides the degree [K(p) : K], whereK(p) denotes
the ray class group of conductor p. Let L/K denote the unique subextension of K(p)/K

12https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

of degree l. We set A := OK [G], and we choose an identification of G with Gal(L/K).
Then OL is an invertible A-module. In all of our examples, we are interested in the class
of OL in Pic(A), which depends on L and the chosen isomorphism G � Gal(L/K).

We view all our number fields as subfields of the complex numbers C, and we set
ζl = exp(2πi/l). We further assume that K ∩ Q(ζl) = Q. Let E = K(ζl). Then the
Wedderburn decomposition ofK[G] is given byK[G] � K⊕E. Since l divides [K(p) : K],
the absolute norm of p is congruent to 1 modulo l, and hence p splits completely in E/K .
Moreover, we have (OK/l)× � (OE/(1 − ζl))

×.

As described in [6], we choose a normal basis element θ ∈ L, and we compute the
A-module

Aθ := {λ ∈ K[G] | λ(θ) ⊆ OL}.
Then Aθ � OL as an A-module. Hence Aθ is an invertible A-submodule of K[G], and
we may first compute Pic(A) and then apply the (refined) discrete logarithm algorithm to
determine the class of OL.

Since hK = 1, the standard exact sequence (2) is of the form

0 −→ (Ã/f)×

(A/f)× im(Ã×)
ϑ−→ Pic(A)

ε−→ clE −→ 0,

where clE denotes the ideal class group of E. Identifying Ã with OK ⊕ OE , we obtain
f = lOK ⊕ (1 − ζl)OE from [11, (27.8)]. Our assumptions also imply that A = OK [G] is
a fibre product as in [11, Section 42], and this immediately leads to

(OK/l)
×

im(O×
E)

� (Ã/f)×

(A/f)× im(Ã×)
,

induced by a+ lOK 	→ (a, 1)+ f ∈ (Ã/f)× � (OK/l)
× ⊕ (OE/(1 − ζl))×. Here im(O×

E)

denotes the image of O×
E in (OK/l)× � (OE/(1 − ζl))

×. Hence we obtain the short exact
sequence

0 −→ (OK/l)
× / im(O×

E)
∂−→ Pic(A)

ε−→ clE −→ 0, (7)

which we could also have derived from the Mayer–Vietories sequence of [11, Section 42].
The boundary map ∂ can be described explicitly. For ā, we letMā := {(x, y) ∈ OK ⊕OE |
ax ≡ y (mod (1 − ζl))}, and we viewMā as an A-submodule ofK[G]. Then ∂(ā) is equal
to the class of Mā .

We looked first at the examples treated by Ayala and Schertz in [1, Satz 1], where l = 2
andK = Q(

√
dK), with dK = −8,−11,−19,−43,−67,−163. Let p denote a prime that

splits inK/Q,p = pp̄, such thatp ≡ 1 (mod 4). For the computation ofL, we implemented
an adapted version of [10, Algorithm 6.3.27].

Note that in this situation, one has E = K and ∂ : (OK/2)× −→ Pic(A) is an isomor-
phism. Moreover, one has an isomorphism

(OK/2)
× −→ (

(OK/4)
× /{±1})2 � (cl4(K))

2

induced by γ̄ 	→ γ̄ 2.

13https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

We computed a fair number of examples, and compared the class of OL in Pic(A) with
the class of p in cl4(K). An inspection of the computational results led us to formulate the
following theorem.

Theorem 4.1. Let K = Q(
√
dK) with dK = −8,−11,−19,−43,−67,−163. Let p

denote a prime that splits in K/Q, p = pp̄, such that p ≡ 1 (mod 4). Let L/K denote
the unique quadratic subextension of K(p)/K . Let π denote a generator of p. Then π−1

is a square in (OK/4)×/{±1}. We denote its inverse image in (OK/2)× by
√
π−1. Then

[OL] = ∂(
√
π−1) in Pic(OK [G]).

Remark 4.2. For the discriminants dK = −3,−4,−7, Pic(OK [G]) is trivial.

Proof of Theorem 4.1. The group (OK/4)×/{±1} is cyclic, and the norm map NK/Q in-
duces a short exact sequence

0 −→ (
(OK/4)

× /{±1})2 −→ (OK/4)
× /{±1} −→ (Z/4)× −→ 0.

SinceNK/Q(π) ≡ 1 (mod 4), we see that the class ofπ is indeed a square in (OK/4)×/{±1}.
Since hK = 1, there is a relative integral basis for L/K of the form

OL = OK ⊕ OK
a + √

d

2

with a, d ∈ OK and dOK = p (see also [1, proof of Satz 1]). Let θ = (a + √
d)/2, and

write G = 〈σ 〉, e0 = (1 + σ)/2 and e1 = (1 − σ)/2. Then

Aθ =
〈
1,

1

a
(1 + σ)

〉
OK

.

By definition, we have

∂(ā−1) = {xe0 + ye1 | x, y ∈ OK, x ≡ ay (mod 2)}
= 〈ae0 + e1, 2e0〉OK .

Hence Aθ = ξ · ∂(ā−1) with ξ = (1/a)e0 + e1. From the fact that TrL/K((a + √
d)/2) =

1
4 (a

2 − d), we deduce that a2 ≡ d (mod 4), and this immediately implies that the theorem
holds.

From now on, we assume that l �= 2. We again fix an imaginary quadratic field K =
Q(

√
dK) with class number hK = 1, and we assume that l does not ramify in K/Q. Let p

denote a split prime such that p ≡ 1 (mod l). If p denotes a prime ideal lying over p, then
there exists a unique subextension L/K of degree l of K(p)/K .

Let P denote a prime of E lying over p. For j = 1, . . . , l − 1, we write σj ∈ � :=
Gal(E/K) for the automorphism that sends ζl to ζ jl . Inspired by Greither’s paper [13], we
consider the integral OE-ideal a = Plθ , where

θ = 1

l

l−1∑
i=1

iσ−1
i ∈ Z[�]

is the standard lth Stickelberger element. We now assume that [OL] is in the kernel of ε.
Then a is necessarily principal, by [13, Theorem 1.6], and we let α ∈ OE denote a generator
of a. Moreover, the sequence (7) shows that in this case the class of OL in Pic(A) does not
depend on the choice of the isomorphism G � Gal(L/K).

14https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

We set

e =
{

0, if l splits in K/Q,

1, if l is inert in K/Q,

and we consider the element ϑ((πe, α)) ∈ Pic(A). In all of our examples (always assuming
that ε([OL]) is trivial), we observe thatϑ((πe, α) = [OL].A detailed listing of our numerical
data can be found in the file conjecture.log.

The smallest values for which [OL] fails to be in the kernel of ε are listed in [13, Table 3].

Appendix A.

This appendix contains the source files of our program and the results of our computa-
tions. These, as well as a "README" file, can be found at

http://www.lms.ac.uk/jcm/8/lms2003-035/appendix-a .

References

1. E. J. Ayala and R. Schertz, ‘Eine Bemerkung zur Galoismodulstruktur in Strahl-
klassenkörpern über imaginär-quadratischen Zahlkörpern’, J. Number Theory 44
(1994) 41–46. 1, 13, 14

2. C. Batut, K. Belabas, D. Bernardi and H. Cohen, ‘User’s guide to PARI/GP’,
M. Olivier, 2000, http://pari.math.u-bordeaux.fr . 2, 12

3. W. Bley, ‘Computing associated orders and Galois generating elements of unit lat-
tices’, J. Number Theory 62 (1997) 242–256. 2, 5, 12

4. W. Bley, ‘An algorithmic approach to determining local and global module structures’,
Appendix to [7]. 5

5. W. Bley and R. Boltje, ‘Lubin–Tate formal groups and module structure over Hopf
orders’, J. Théor. Nombres Bordx. 11 (1999) 269–305. 4, 5

6. W. Bley and D. Burns, ‘Über arithmetische assoziierte Ordnungen’, J. Number
Theory 58 (1996) 361–387. 2, 6, 13

7. D. Burns, ‘On the equivariant structure of ideals in abelian extensions of local fields’,
Comment. Math. Helv. 75 (2000) 1–44. 2, 15

8. P. Cassou-Nogués and M. Taylor, Elliptic functions and rings of integers, Progr.
Math. 66 (Birkhäuser, 1986). 2

9. H. Cohen, A course in computational algebraic number theory, Grad. Texts in Math.
138 (Springer, New York, 1995). 12

10. H. Cohen, Advanced topics in computational number theory, Grad. Texts in Math.
193 (Springer, New York, 2000). 5, 6, 7, 8, 9, 11, 12, 13

11. C. Curtis and I. Reiner, Methods of representation theory, vol. I, Wiley Classics Lib.
(Wiley-Interscience, New York, 1994). 4, 13

12. D. Eisenbud, Commutative algebra with a view towards algebraic geometry, Grad.
Texts in Math. 150 (Springer, New York, 1995). 2, 7

13. C. Greither, ‘On normal integral bases in ray class fields over imaginary quadratic
fields’, Acta Arith. 83 (1997) 315–329. 1, 14, 15

15https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/8/lms2003-035/appendix-a
http://pari.math.u-bordeaux.fr
https://doi.org/10.1112/S1461157000000875

Picard groups and refined discrete logarithms

14. F. Halter-Koch, ‘Die Klassengruppe einer kommutativen Ordnung’, Math. Nachr.
168 (1994) 97–108. 2, 3, 4, 11, 12

15. J. A. Huckaba, Commutative rings with zero divisors (Marcel Dekker, 1988). 4

16. J. Klüners and S. Pauli, ‘Computing residue class rings and Picard groups of arbi-
trary orders’, preprint, 2003, www.math.tu-berlin.de/˜pauli . 8

17. H. Koch, Algebraische Zahlentheorie (Vieweg, 1997). 3

18. J. Neukirch, Algebraische Zahlentheorie (Springer, Heidelberg, 1992). 4

19. R. Schertz, ‘Galoismodulstruktur und Elliptische Funktionen’, J. Number Theory 39
(1991) 285–326. 2

20. M. J. Taylor, ‘Mordell–Weil groups and the Galois module structure of rings of
integers’, Ill. J. Math. 32 (1988) 428–452. 4

W. Bley bley@math.uni-augsburg.de
M. Endres me@mendres.org

Institut für Mathematik
Universität Augsburg
Universitätsstrasse 8
D-86135 Augsburg
Germany

16https://doi.org/10.1112/S1461157000000875 Published online by Cambridge University Press

http://www.math.tu-berlin.de/~pauli
mailto:bley@math.uni-augsburg.de
mailto:me@mendres.org
https://doi.org/10.1112/S1461157000000875

	Introduction
	Class groups and Picard groups
	Algorithms
	Setup and notation
	Computation of $\cal{C}_{\mathfrak{f}}(\tilde{\cal{A}})$
	Computation of $(\cal{A}/ \mathfrak{f})^{\times}$
	Computation of $\cal{C}(A)$
	The refined discrete logarithm problem

	Examples
	

