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A PROBABILISTIC A P P R O A C H TO T H E 
C O N V O L U T I O N T R A N S F O R M 

BY 

LOUIS-PAUL RIVEST* 

ABSTRACT. The inversion and the characterization of the con
volution transform is derived via the concept of unimodality intro
duced by Khintchine (1938). This method yields simple and intui
tively appealing proofs. 

Introduction. According to Olshen and Savage (1970), a distribution F is 
unimodal (with vertex at 0) if and only if F can be regarded as the distribution 
of UY where U is a U[0, 1] random variable distributed independently of Y 
and Y has distribution F(x)-xf(x). 

In the first section this result is generalized to characterize random variables 
of the type U1/aY. Taking logarithm convolutions of the form Y+X/a are 
characterized where X is an exponential random variable distributed indepen
dently of Y In section 2 successive applications of this result yield the 
inversion and the characterization of the convolution transform. 

1. Preliminary results. In this section the concept of a-unimodality intro
duced by Olshen and Savage (1970) is characterized: 

DEFINITION. A distribution F with a well defined (except possibly at 0) 
density f(x) is said to be a-unimodal (a^O) if f(x)/a |x | a _ 1 is increasing for 
x < 0 and decreasing for x > 0. 

REMARK. For a = 1, this reduces to the unimodality of Khintchine (1938). 

NOTATION. Let U1, U2,..., Un be independent U[0,1] random variables, 
{Yj}"=1 denote a random sample independent of the Uj's i//a(x) = sgnx |x|a. 

THEOREM 1. The following statements are equivalent: 
(i) F is 1-unimodal. 

(ii) G(x) = F(x) — xf(x) is a distribution function (without loss of generality 
assume that f is right continuous so that G is also right continuous as 
should be a distribution function). 

(iii) F can be regarded as the distribution of UY. Furthermore if Y has 
distribution G(x), UY has distribution F. 
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Proof. See section 2 of Olshen and Savage (1970) and Gnedenko and 
Kolomogorov (1954) p. 154. 

For a-unimodality, Theorem 1 becomes: 

THEOREM 2. The following statements are equivalent: 
(i) F is a-unimodal. 

(ii) G(x) = F(x) —x/(x)/a is a distribution function. 
(iii) F can be regarded as the distribution of U1/(XY. Furthermore if Y has 

distribution G(x), U1,aY has distribution F(x). 

Proof. Assume that F is a-unimodal for a > 0 . By the definition of a-
unimodality it is easily seen that this assumption is equivalent to F(t//1/a(x)) is 
1-unimodal. Applying Theorem 1, F(x) is a-unimodal if and only if: 

F(ip1/a(x))-x\x\1/a-lmi/a(x))/a 

is a distribution, if i/>i/a(x)=y, the last expression is equal to G(y) and 
(i)O(ii). 

Theorem 1 implies that F(i//1/a(x)) can be viewed as the distribution of UY 
hence F(x) can be viewed as the distribution of u1/ocy1/a where Y1/a has 
distribution G and the theorem is proved for a > 0. 

For a < 0, assume without loss of generality that F does not give probability 
mass to 0 (if F(0)-l imx t 0 F(x) = 8 write F as SI(x) + ( l -S )F 0 (x ) and work 
with F0). The proof is similar to the case a positive, it relies on the fact that F 
is a-unimodal ( a < 0 ) if and only if: 

[F(0) -F(x- 1 ) x < 0 

[F(0) + 1-F(x- 1 ) X > 0 

is (-a)-unimodal. Q.E.D. 

a-unimodality can also be characterized via characteristic functions: 

THEOREM 3. A distribution function F with characteristic function </> is a-
unimodal if and only if: y(t) = <j)(t) + r<i)'(t)la is a characteristic function; 
furthermore if y(t) is the characteristic function of Y, U1/<x Y has distribution F. 

Proof. Take a positive, according to Theorem 2 F is a-unimodal if and only 
if F can be seen as the distribution of U1/aY. Suppose F is the distribution of 
LT1/aYthen 

<t>(t)-
i 

v(tx1/a) dx 

where v is the characteristic function of Y For t>0 and tx1,a = w, 

<f)(t) = at v(w)wa dw 
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Differentiating both sides: 

4>(t) + t4>\t)la = v(t). 

A similar result holds for f<0 , hence y(t) is a characteristic function. Con
versely if y(t) is the characteristic function 

(1.1) cf>(t)= f y(txlla)dx 

and <j> is the characteristic function of an a-unimodal random variable. (1.1) 
also proves the last statement of the theorem. The proof for a < 0 is derived 
with a similar argument. Q.E.D. 

As a first application of these results, consider the problem investigated by 
Williamson (1956) and Levy (1962) about the characterization of: 

DEFINITION. n-Motone function. 

A function f(x) defined on (0, o°) is said to be rc-monotone if ( - l ) k / ( k ) (x)>0 
for k = 0 , 1 , . . . , n where f(k)(x) = dk/(dxk)f(x). 

In a probabilistic context, Williamson and Levy's result can be stated as: 

COROLLARY 1. Let F(x) be a distribution with a density f(x) satisfying 
u{x) = f{x)ixct~l is n-monotone (a > 0); then F can be seen as the distribution of 

n - l 

n u]/(a+i)y 
i = 0 

where Y has density 

h(x) = ( - l )nx a + n-1 i i ( k )(x)/a(a + 1) • • • (a + k - 1). 

Proof. Since f(x)/xa+1 decreases F is a-unimodal and can be seen as the 
distribution of Uo/aY0 where Y0 has distribution H0(x) = F(x)-xf(x)/a and 
density 

h0(x) = /(x)(l -Ha)- xf(x)/a = -xau(1\x)/a. 

Now HQ is (a + l)-unimodal hence F can be seen as the distribution of 

[ / i / « [ / i / ( « + i ) Y i 

where Yx has density h1(x) = xa+lu(2)(x)la(a +1). The result is proved by 
induction. Q.E.D. 

Note that n ^ o U]K<x+i) is distributed Beta with parameters a and n (Rao 
(1973), p. 168) hence if u(x) is n monotone, 

/(x) = [B(a,M)]"1 {{xlyY-W-xlyY^lyhiy)) dy. 
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2. The convolution transform 

NOTATION. Let {X;}°°=1 be a sequence of independent exponential random 
variables distributed independently of {Y)}~=1. 

Convolutions with an exponential random variable are now characterized. 

THEOREM 4. F can be viewed as the distribution of Y + XJa, (a^O) if and 
only if F(X) + /(x)/a is a distribution function. Furthermore if Y has distribu
tion F(x) + /(x)/a, Y + XJa has distribution F 

Proof. F can be viewed as the distribution of Y + X1/a (a^ 0) if and only if 

F(x) = (l-e-a{xt))dG(t) 

ae-{y-l) dG(t) dy. 

by Fubini's theorem. This implies F(x) + /(x)/a = G(x). To prove the converse 
the differential equation F(x) + /(x)/a = G(x) has to be solved subject to the 
condition F(-oo) = 0. Using the general solution for first order equation (see 
Simmons (1972) p. 48). 

F(x) = ( l -e- f l ( x -°)d<j( r ) 

and Theorem 4 is true for a>0. 
The argument is similar for a < 0 . Q.E.D. 

REMARK. This result could have been proved using Theorem 2 since F is the 
distribution of Y + XJa if and only if F(log(x)) is (—a)-unimodal. 

Using D as the differential operator, the distribution of Y is (l + D/a)F. 
Iterating Theorem 4 yields: 

COROLLARY 2. F is the distribution of X^ i X,/^ + Y if and only if 
nj^i (l + D/a;-)F(x) is a distribution function. If Y has distribution YlJ=i(l + 
Dlaj)F(x), Xjn=i Xj/Oj + Y has distribution F 

Corollary 2 implies that there is a unique distribution which is a solution of 
the following differential equation: 

EI (l + D/a /)F(x) = H(x) 

where JFf(x) is the distribution of Y, namely the distribution of £"=1 Xijai + Y 
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As n tends to infinity Corollary 2 becomes the inversion theorem for the 
convolution transform: 

THEOREM 5. Let {a7-}JLi be a sequence of real numbers such that £ aj2<<*>. Then 
F can be seen as the distribution of Y + YdJ=l(Xi — l)/aj if and only if: 
rijn=i (l + D/ay)F(jc) is a distribution for each n. Furthermore, in this case, the 
distribution of Y is equal to: 

f[(l+ Dlaj)e-D/^F(x) 

where 
e-D/aF(x) = F(x-a-1). 

Proof, According to Feller (1971) theorem (p. 266) X°°=1 (X; - l)/ay is a well 
defined random variable. Since Y+I7=i iXi — \)lai is distributed according to 
F(x)Il?=i (l + D/aj)F(x) is a distribution using Corollary 2. 

Conversely, suppose that Wf:=1(l + D/aj)e~D/aiF(x) is the distribution of a 
random variable, say Yn. In order to prove the theorem, it suffices to prove that 
the sequence {Yn} converges in distribution. 

For m > rc, Ym-Yn= £/ln+i (Xy - l)/a, has 0 expectation and variance 

m °° 

I «r2< I *?• 
j = n + 1 / = n +1 

Therefore given e there exists a constant n0 such that m,n>n0 implies 
E((Ym - Yn)

2)<s. Hence {Yn} converges in distribution to a random variable 
Y with distribution 

n i ( l + D/a,)e-D'"JF Q E D 

REMARK. If f(x) is completely monotone (i.e. n-monotone for each rc), 
Corollary 1 and Theorem 5 imply that F(x) = Jg f(x) dx is the distribution of 
nr=i (eUt)

inY where -log Y has distribution 1-117=1 (l + D/!>~D / iF(-logx). 
Since [17= i (eL^)17^ -7 (7 is the Euler constant) is exponentially distributed, for 
a] = j Theorem 5 yields the real inversion formula for the Laplace transform: 
f(x) is completely monotone implies that F(x) is the distribution of X1Y1 

where log Yx is distributed according to 1 - ] 1 T = I ( 1 +D/i)e~D/ie~DyF(-\ogx). 

Dealing with characteristic functions, note that 

cMO + t<!>'(t)la = (1 + D/a)<t>(ex) |x=log t 

Corollary 2 becomes: 

COROLLARY 3. cf> is the characteristic function of YY\"=l Uj/a> if and only if 

.(^iïd + D/a^lU^ 
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is a characteristic function. If Y has characteristic function v(t) then 
Y ^ i U)laihas characteristic function <f>(t). 

Along the lines of Theorem 5, one proves: 

THEOREM 6. Let {a]}^1 be an Resequence satisfying £ aj2<&> • <f>(t) can be 
viewed as the characteristic function of YYlJ^i (eL/,-)1/a'' if and only if: 

n ( l + D/a7.)c/>(ex)|x==logf 

is a characteristic function for each n. Furthermore if the characteristic function Y 
is 

v(t)=f\ (l + D/a])e-D/a'ct>(ex)\x=^t 

then 4>(t) is the characteristic function of Y 117=1 (e^j)1/a'-

COMMENTS. Analytical proofs of the inversion theorem for the convolution 
transform are given in Chapter 3 of Hirschman and Widder (1955) and in 
Karlin (1968) p. 355, see also Widder (1971). 

The characterization of the convolution transform of Theorem 5 is similar to 
the results of Chapter 7 of Hirschman and Widder (1955) while the characteri
zation part of Theorem 6 is new. 

EXAMPLE. The general birth process. 

In a general birth process, let Yn be the random variable representing the 
time spent at state n and let Fn(t) be the distribution of X"=0 Yy. 

Now 

Pn(0 = P(X(f) = n) 

= P (the process is in state n at time 0 

= Fn_1(f)-Fn(f)n = 0 , l , . . . 

where 

F-UWH; ::: 
The forward Kolmogorov equations of this process are (Feller (1958) p. 402) 

P'n(t) = -ynPn(t) + yn-iPn-i(t) n a l 

Po(t) = -y0P0(t) 

Summing from 1 up to n and using 

1=0 
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for f > 0 
-DFn(t) = -ynPn(t) or (l + D / 7 J F n ( 0 = Fn_i(f) 

and Fn is solution of 

(2-D n ( l + D/7,)F(f) = I(0. 

Using Corollary 2 and a subsequent remark, there is a unique solution to 
equation (2.1) which is the distribution of X ^ O ^ / T J - TO obtain an algebraic 
expression for Fn(x) when the yy's are distinct, first obtain a partial fraction 
representation of ilf(t) = Yl^0(l — it/yi)~

1, the characteristic function of Fn 

*(0=L ( 11(1-7,/%)) \l-itly,)-1 

using the linearity of the inversion operator for characteristic function: 

Fn(x)=l-Z e " v ( n (1 -%/%)) ' 

Now Pn(t) = DFn(t)/yn is easily obtained. This derivation is simpler than the 
usual one (Feller (1971) p. 489, Prabhu (1965) p. 135) which is using the 
Laplace transform. 
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