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Abstract

In this paper we prove that every positive definite n-ary integral quadratic form with 12 < n < 13
(respectively 14 < n < 20) that can be represented by a sum of squares of integral linear forms is
represented by a sum of 2 • 3" + n + 6 (respectively 3 • 4" + n + 3) squares. We also prove that every
positive definite 7-ary integral quadratic form that can be represented by a sum of squares is represented
by a sum of 25 squares.

2000 Mathematics subject classification: primary 11E08,11E12, 11E20,11E25, 15A63.

1. Introduction

For any integer n > 1 we define gz(n) to be the smallest positive integer such that
every positive definite n-ary integral quadratic form that can be represented by a sum
of squares is represented by a sum of gz(n) squares.

Mordell [7], and later Mordell [8] and Ko [6], proved that for n < 5, every positive
definite integral quadratic form of rank n is a sum of n + 3 squares of integral linear
forms, that is, gz(n) = n + 3 for 1 < n < 5. So it was naturally expected that every
positive definite integral quadratic form of n variables would be represented by a sum
of n + 3 squares. This, however, turned out to be false. Indeed, Mordell [9] showed
that the integral quadratic form associated to the Dynkin diagram E6, which we denote
also by E6 by abuse of notation, cannot be represented by a sum of squares. Kim and
Oh [3,4] proved that every positive definite 6-ary integral quadratic form that can be
represented by a sum of squares is represented by a sum of 10 squares, and showed
that gz (6) = 10.
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However, no explicit evaluation of gz(n) for all n is known. Icaza [2] has given an
explicit function/ (ji) such that gi(n) < f (n) for all n > 5:

where bn = n-('-1)(4/5)("-3)("-4)/2(ff/4)'I(r(/i/2 + 1))~2, h is the Z-lattice corre-
sponding to the sum of k squares, and h(Ik) is the class number of Ik. Oh [10] has
given an upper bound of gzin) for 7 < n < 11: gz(n) < n + 3 + n(n + l)/2.

In this paper we give an upper bound for gz(n) for 12 < n < 20 and for n = 7:

/ x f2 -3" +/I + 6 f o r l 2 < n < 1 3 , . ^ o c
gz(n) < { and gz(7) < 25.

[3-4" + /i + 3 f o r l 4 < w < 2 0 ,

These bounds are better than those of Icaza [2] and Oh [10].
We use the terminology and notation of O'Meara [12]. Let / be a positive definite

Z-lattice of rank n equipped with a symmetric bilinear form B. Here, a Z-lattice is
a free Z-module with s(l) c Z, where 5(0 is the scale of /. We denote ta) a scaling
of / for a € Q. We denote the corresponding quadratic form by fi(xux2,... , xn) =
YHj=\fuxixj and the corresponding matrix by M; = (fy), where fy = B(Vj, Vj) € Z,
for a fixed basis [vu v2,... , vn] of/. LetIN =A-N Ze, =A-N (1>, where {et,... , eN)
is a Z-basis of 1N with B(et, et) = Sy for all i, 7 = 1 , . . . ,N. Thus IN is the Z-lattice
corresponding to the sum of N squares.

2. Upper bound for gi(n)

LEMMA 2.1. Every positive definite Z-lattice I of rank n is represented by the genus
of /n+3, that is, I —*• Lfor some L € gen(/n+3).

PROOF. See the proof of Kim-Oh [4, Theorem 2.1] or Icaza [2, Theorem 1]. •

We now give an upper bound for gz(n) for 12 < n < 20.

^ „ * , x [2 • 3 " + n + 6 /or 12 < / j < 13,
THEOREM 2.2. gz(n) < {

~ [3 • 4" + n + 3 /or 14 < n < 20.

PROOF. We set Jfc = k(n) = 3 for 12 < n < 13, and k = 4 for 14 < n < 20. Let
/ = /, be a positive definite n-ary Z-lattice with 12 < n < 20. Suppose that I -> IN

for some N. Then we can write// = £*L,(ai,*i H •" ^n.^n)2-
If there exist k linear forms (fli,v JC] + • • • + anitxn) (j = I,... ,k) with

(aUyjci,... , anijxn) = (aUmxi,... , animxn) mod A:
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for 1 5 y\ "i < k, then the Z-lattice K corresponding to

k

is (semi-)positive definite and s(K) c ki.
Then we have

(1)

where

with

for 1 < r, s < k and the corresponding Z-lattice K is of scale in kl. Thus
we may assume that there exist at most it — 1 linear forms with (au,... ,ani) ==
(aij,... ,anj) mod k in the summation of the first term in (1). So we see that the
number of the squares of the linear forms in the summation of the first term in (1) is
at most (A: - l)k".

Applying Lemma 2.1 and, Conway-Sloane [1, Theorem 14, Appendix] for k — 3,
Conway-Sloane [1, Theorem 18] for k = 4, respectively, K is represented by /n+6 for
k = 3, and /n+3 for k = 4. Thus we have

<,,, «"'(,. J = K o . ' *»<</..») mod

where <p(k) = n + 6 for it = 3, and #(it) = n + 3 for it = 4. •

Next we give a better upper bound for gz(7)- Let /„ be semi-positive definite Z-
lattice with rank n. Let it be an integer with 0 < k < n. If there exists a basis of /„
such that

~\'Al2 A22)

with A,, € Mk(l), A,2 € Mt,n_t(Z), A22 e MB_t(Z) satisfying AM = 0t,t mod 2 then
we say that /„ has a k-null space over F2. Moreover, we say that /„ has an orthogonal
k-null space over F2 if A12 = ()*,„_* mod 2.

LEMMA 2.3. Let /7 be a positive definite Z-lattice and suppose /7 has a 5-null space
over F2. Then /7 is represented by /i0.
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PROOF. By assumption we fix a basis of Z7 such that Z7 has a 5-null space over F2.
Since Z7 is represented by the lattice in the genus of /i0, Z7 is represented by cls(/i0)

orcls(£8 J. 12).
Suppose that Z7 is represented by cls(£8 J. 72). Then there exists a semi-positive

definite Z-lattice Z7 corresponding to the quadratic form

ft, = //, - (anxx H 1- anx7)
2 - (anxx -\ h a72x7)

2

such that Z7 is represented by Es. Since the norm ideal of s(V,) is in 22 and by the
assumption, we have (an,... ,a5l) = (ai2,...,a52) mod2 and V, has also a 5-null
space over F2. Then we can easily see that Z7 has an orthogonal 3-null space F2 by
changing the basis of 1'7 if necessary. This implies that the rank of the unimodular
Jordan component of Z2-lattice (/7)2 is less than 5 and by O'Meara [11, Theorem 2],
we have (i7)2 —*• (/8)2. Since (Vj)p -> (/8)p for all odd primes p (including oo) and
gen(/8) = cls(/8), C, is represented by /g. Thus we conclude /7 ->• / i0 . •

Let L and M be Z-lattices. For a sublattice / of L A. M of the form

I = I(Xl + yi) + • • • + l(xn + yn)

with x,, € L, V/ € M, we define

Z(L) := Ixi + • • • + Ixn and Z(M) := lyi + •• • + lyn.

Even when <p : Z -> L J. Af, we simply write Z(L) instead of <f>(l)(L) if no confusion
arises.

Let IN = TLex -\ h leN. For a subset 5 of {1 ,2 , . . . , N), we define

where {^,... , kr} is the complement of 5 in {1 ,2 , . . . , Af}.

LEMMA 2.4. For a sublattice L C. 1N of rank n with N > n(n + l) /2, f/iere «JC
a subset S c {1, 2 TV} JMC/I rAa/ | 5 | < «(n + l ) /2 ands(L(I*)) C 2Z.

PROOF. See Oh [10, Proposition 3.3.2]. •

THEOREM 2.5. gz(7) < 25.

PROOF. Let Z be a Z-lattice of rank 7. Assume that I is represented by IN and put
Z = Zu] -I h Tv7, where v, = (an,...,ai7) e 7^. Put V := Ivx H 1-2v5 c I.
Let 5 be the set satisfying the property in Lemma 2.4 for I'. Then we see that 1(1%)
has 5-null space and 1(1%) -*• Il0 by Lemma 2.3. Thus we conclude that

Si(7) < ^ + 10 = 25. •
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