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ABSTRACT. Historically, dry-snow metamorphism has been classified by the thermal environment and
thermodynamic processes in a snowpack. Snow experiencing predominantly macroscopic isothermal
conditions develops different microstructure than snow subjected to large temperature gradients. As
such, much previous research has been categorized by and limited to specific thermal conditions. The
current research expands a generalized approach for the movement of heat and mass to include a snow
crystal kinetic growth model. An existing spiral defect propagation theory for kinetic growth on simple
faceted geometry is utilized. Primary crystal habit as a function of temperature is incorporated. A model
of heat and mass transfer through an ice and pore structure is coupled with phase-change
thermodynamics during kinetic growth. A kinetic growth microstructure model is developed and
integrated into heat and mass transfer representations, which are solved using finite-difference
techniques. The kinetic morphology model approximates frequently observed hopper-type crystals. The
snow microstructure is allowed to change at every step, resulting in a transient description of kinetic
growth metamorphism. Variable kinetic growth rates are demonstrated based on temperature and on
crystallographic orientation relative to a temperature gradient. Crystals preferentially aligned with the
temperature gradient have significantly higher growth rates, supporting previous observations of
predominant crystal habits developing under temperature gradient conditions. Grain-size dispersion
increase with time is demonstrated and supported experimentally in the literature. A dominant grain
growth theory based on crystallographic orientation that has been previously postulated is supported. A
broad range of metamorphic geometric parameters and thermal conditions may now be simulated with
a single model.

INTRODUCTION
In the terrestrial environment, ice exists near its phase-
change temperature. Consequently, snow on the ground is a
thermodynamically active material with a granular micro-
structure that is continuously changing. The morphologic
structure of the snowpack influences virtually all of its
thermomechanical and optical properties including
strength, density, thermal conductivity, heat capacity, and
reflectivity or albedo. These properties dictate many critical
snow responses and are foundational to snow science. The
critical dependence of snow properties on microstructure
makes metamorphism an extremely important area of study.
Typically, dry snow will metamorphose either toward a
faceted granular structure when exposed to a temperature
gradient or to rounded sintered ice grains under macro-
scopically isothermal conditions. Both processes may occur
simultaneously at different levels within the same snow-
pack. Which of these processes dominates is largely
dependent on the magnitude of the local temperature
gradient. Larger temperature gradients, nominally taken to
be >10Km–1 (Colbeck, 1982), lead to the development of
the structurally fragile snow with a faceted crystal morph-
ology, termed the kinetic growth form (Colbeck, 1982). The
process is particularly prevalent near the relatively warmer
snow base, in which case the resulting structure is termed
depth hoar (Seligman, 1936). Lower temperature gradients
yield a structure composed of rounded sintered grains,
commonly referred to as the equilibrium growth form
(Colbeck, 1987).

Several theories have been published to explain meta-
morphism mechanisms for rounded grains and faceted grains
individually, but limited research spans both regimes (Arons
and Colbeck, 1995). Lehning and others (2002) present
approaches using mixture theory to describe ‘equi-tempera-
ture’ metamorphism and vapor transport within a lattice
network of cubic grains to model kinetic growth. Christon
and others (1994) explored kinetic growth metamorphism by
solving heat- and mass-conservation as well as phase-change
differential equations using three-dimensional finite-element
techniques. Their approach did not include the effects of ice
surface geometry on excess vapor pressure, which are
important for equilibrium growth but not a significant
limiting factor during kinetic growth. As such, their model
focused on temperature gradient metamorphism only. Flin
and Brzoska (2008) present a simple vapor diffusion model
for kinetic growth that includes crystal modeling to predict
rounded and faceted morphologies based on temperatures
and surface geometry. They use a Kossel crystal model for
sublimation and condensation, but neglect latent heat in the
ice network. Flanner and Zender (2006) address curvature
growth and temperature gradient growth with simplified
spherical ice geometries to study the evolution of snow
albedo. They present a coupled system with smooth tran-
sitions between the two regimes, but are only concernedwith
rounded ice geometries. Kaempfer and others (2008) and
Kaempfer and Plapp (2009) utilized a microcomputed
tomography imager to non-destructively image snow under-
going temperature gradient metamorphism. They used
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microstructure images to develop a model for a numerical
tool that examined the heat and mass transfer with phase
change through a diffuse boundary. Their results suggest
heat- and mass-flow ‘inhomogeneities’ on the size scale of
grains. Their approach is unique with the coupling of
experimental methods and numerical simulation. Miller
and others (2003) developed a theory for snow metamorph-
ism independent of temperature conditions. They presented
simplified ice-grain and pore-space geometries where vapor
mass in the pore and energy in the ice were conserved.
Latent-heat transfer into or out of the ice network was
included. They coupled the conservation equations with heat
and mass sources from phase change at the ice/pore interface
that included ice surface energy. The resulting coupled non-
linear equations were solved by finite-difference methods for
discretized ice and pore networks. Miller and others (2003)
showed good correlation with rounded morphologies and
identified transition temperature gradients for kinetic growth.
They examined important parameters defining the transition
to kinetic growth, but did not present an approach where
individual grains were allowed to grow kinetically after
transition.

The goal of this research is to utilize Miller and others’
(2003) approach as the basis for heat and mass transfer and
expand it to include a kinetic growth capability that
considers hopper-type crystal habit. In keeping with a
unified approach, the method should be independent of
temperature boundary conditions and should always be
applicable as conditions dictate. The resulting model could
simulate a broad spectrum of dry snow microstructure
metamorphism.

MODEL DEVELOPMENT
Existing model background
The current project uses the heat, mass and phase-change
interaction developed by Miller and others (2003). Before
the development of a new kinetic growth model is
introduced, their approach is briefly summarized. The
microstructural geometry and governing equations are
described by Miller and others (2003). Details with

derivations are found in Miller (2002). They modeled a
network of rounded ice grains connected to each other by
concave necks with accompanying pore spaces. Their
network was the basis of this study and was used to extend
the approach to kinetic growth. Miller and others (2003)
present a quasi-two-dimensional approach, as heat and
vapor are free to move in one dimension with phase-change
interaction between vapor and solid phases in a second
dimension (e.g. Fig. 1). Metamorphism was simulated
through solutions of the heat and mass conservation
equations, which were coupled through phase change. In
the pore spaces, the steady-state mass conservation equation
with mass sources/sinks and Fick’s law for vapor diffusion
(including the differential form of the Clausius–Clapeyron
equation) are

~r � ðJÞ ¼ MSand J ¼ �D PL
R2T 3r

*

T , whereMS ¼ Jec
Aec

Vpore
:

ð1Þ
J is the mass flux from diffusion through the pore (kgm–2s–1),
Jec is the mass flux to or from the pore due to phase change
(kgm–2 s–1), Aec is the ice surface area undergoing phase
change (m2), Vpore is the volume of the pore space (m3), D is
the water-vapor diffusion coefficient in air (2.02�10–5m2

s–1), R is the water-vapor gas constant (462 J kg K–1), T is the
pore temperature (K), L is the water latent heat of sublim-
ation (2.838� 106 J kg K–1), MS is the mass supply or sink to
the pore space from phase change (kgm–3 s–1) and P is the
pore pressure (Pa) (Miller and others, 2003). By assuming the
vapor is an ideal gas, treating the pore space as saturated
and assuming a temperature gradient in only one dimension,
the relations in Equation (1) can be combined and expanded
giving a non-linear ordinary differential equation in terms of
pore temperature (Colbeck 1982, 1983) but including mass
sources or sinks from phase change (Miller, 2002). The mass
vapor flux through the pore space and mass flux due to
phase change are represented in Figure 1.

To solve the mass conservation differential equation,
Miller and others (2003) chose to examine constant tempera-
ture conditions. While temperatures within the microstruc-
tural model were allowed to change during metamorphism,
the boundary nodes were maintained at constant tempera-
ture. This implies no limit on availability of vapor entering or
leaving the model boundary, except as prescribed by vapor
diffusion. Vapor crossing the model boundaries comes from
or goes to the surrounding snowpack (e.g. mass supply by
sublimation of ice grains in what is often referred to as the
hand-to-hand transfer of mass (Yosida and others, 1955)).
Temperature gradients in the pore are used to calculate mass
flux crossing boundaries. Given the small scales of ice and
pore structures considered, and their intent to individually
model small areas at various locations within a snowpack,
this assumption was deemed reasonable.

Next, Miller and others (2003) considered conservation of
energy through the ice network. The steady one-dimensional
heat conduction equation through the ice network with
variable area is given as

d2�
dy2 þ

1
A
dA
dy

d�
dy
¼ HS

kA
, whereHS ¼ JecL

dAec

dy
: ð2Þ

k is the ice thermal conductivity (2.2Wm–1 K–1), A is the
cross-sectional area for heat conduction through the ice
grain and neck network (m2), � is the ice temperature (K), y is

Fig. 1. Relationship between crystal habit (�), crystal axes relative to
temperature gradient (�) and crystal orientation relative to tempera-
ture gradient (�). Mass flux through the pore space (J) and mass flux
due to phase change (Jec) are shown.
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the dimension parallel to the temperature gradient (m), and
HS is a heat source term that is coupled to the pore through
the phase change at the boundary (Wm–1) (Miller and
others, 2003). Equation (2) is very similar to heat conduction
of a variable geometry cooling fin except convective heat
exchange is replaced by heat from phase change (Incropera
and DeWitt, 1985). Since the ice geometry changes in time
and the phase-change boundary is moving, Lock (1990)
defines this as a ‘quasi-steady’ problem even though heat
capacitance terms are neglected. Notice that the heat (HS)
and mass (MS) source terms are coupled through the phase
change mass flux (Jec) at the ice/vapor interface.

Miller and others (2003) then present the energy balance
at the phase change surface accounting for ice surface
geometry, ice surface temperature, and pore temperature.
The result is the third coupled differential equation,

�kice d�dx þ kpore
dT
dx
¼ JecL , ð3Þ

where x is the direction of latent-heat flow during phase
change (m).

Miller and others (2003) finally offer a finite-difference
iterative solution to Equations (1–3) that ensures mass
conservation in the pore, energy conservation in the ice
(including latent heat) and accounts for phase change. The
geometry is then updated, based on integrating mass flux
from phase change, as the simulation continues. Miller and
others (2003) used this model to examine density, grain size,
bond size and temperature for macroscopically isothermal
conditions with excellent correlation to established trends
and experimental data. They replicated observed phenom-
ena such as large grains growing at the expense of small
grains and intergranular bond development. In the presence
of a temperature gradient, a transition to kinetic growth was
defined when the vapor pressure of the pore becomes
sufficient to overcome convex surface curvature effects of
the ice. This model is used here as the basic tool for the
movement of vapor in the pore space and heat in the ice
network with the phase-change interaction between them.
With this approach established, a kinetic growth extension
to the model is now offered.

Facet geometry and crystal habit
The hexagonal crystal structure of ice Ih gives it unique
crystal habit configurations when grown from vapor.
Depending on temperature, either the basal or prism plane
will generally exhibit dominant growth. Their relative
growth rates determine the primary geometric habit of
faceted crystals (Lock, 1990; Libbrecht, 2005). If c-axis
growth dominates, prism-like structures appear. Conversely,
plate-like structures form when a-axis growth is dominant.
Early experiments by Nakaya and others (1938) showed that
crystal habit varied with temperature and supersaturation.
While specific environmental and crystal habit relationships
were not developed, their experiments indicated that basic
crystal habit was primarily determined by temperature.
Several authors have determined the effects of supersatur-
ation and temperature on the growth of ice from the vapor,
but Kobayashi’s (1957, 1967) experiments rigorously con-
firmed primary crystal habit dependence on temperature,
with secondary features such as dendrite growth or hopper
crystals (e.g. Fig. 2c) determined by vapor supersaturation.

While the very complex features of many crystal habits
with complicated secondary features are difficult to model

(e.g. Libbrecht, 2005), primary crystal habit in this model is
incorporated through simple geometric shapes. Here the
faceted crystals nucleate and grow on Miller and others’
(2003) round ‘parent’ grains. The rounded form provides the
base to grow the kinetic crystal morphologies. If the relative
crystallographic growth rates (a vs c axes) are known, the
primary crystal habit is established for kinetic growth. Lamb
and Hobbs (1971) presented relative crystallographic
growth rates as a function of temperature. Using their data
at specific temperatures, crystal habit is determined here by
selecting the relative growth velocities of the a and c axes.
Only the crystal habit is utilized from Lamb and Hobbs
(1971); actual growth velocities are addressed later. Figure 2
shows the proposed simple facet geometry to include
primary crystal habit. The simple geometric structures
considered here approximate hopper-type structures that
result from high supersaturation growth (Lock, 1990). This
geometry is based on the hopper crystal habit since the cup
(or partial cup) morphology is often observed in tempera-
ture-gradient-driven snow metamorphism (Fig. 2c). The full
symmetry of the well-developed atmospherically grown
hopper crystal will not be expected to develop when
confined to the snowpack constraints. The approach only
considers combinations of prismatic shapes with the aspect
ratio of the triangular surface determined by relative
crystallographic growth velocities. Each triangle is referred
to as a facet face whose shape is determined by tempera-
ture. The approach also allows for one to six faceted crystal
faces to develop. In Figure 2a, the basal plane showing the
characteristic prism length, l, is illustrated. The c axis is
perpendicular to the basal plane. Figure 2b shows two sides
of a potential crystal with combined a- and c-axis growth. In
Figure 2c, a single facet face from the model is super-
imposed on hopper crystals for plate and needle-type
morphologies. At any particular temperature, one axis
generally has a greater growth velocity than the other
(unless they are exactly equal, which is possible at three
temperatures (Lamb and Hobbs, 1971)). In order to quantify
and model the growth rate of each axis, an angle from the
dominant growth direction (a or c depending upon
temperature) to the crystal facet face is defined by the
angle �. � is determined by the relative growth velocity of
the two crystallographic directions. If single axis growth is
prevalent, � will be small, but the approach can accom-
modate all combinations of relative growth rates. If a- and
c-axes growth rates are equal, � will be 458. Since � is
measured from the dominant growth axis, it is never greater
than 458.

Once crystal habit has been established, the actual
growth velocity of the dominant axis can be calculated.
Spiral defect propagation theory offers one explanation of
the kinetic growth of ice crystals. Burton and others (1951)
developed an extensive model for step propagation
enabling the calculation of crystallographic face growth
velocity, which is well supported in the literature. Hobbs
(1974) and Lock (1990) interpret Burton and others (1951)
with the following relationship for the growth velocity of
the a or c axis as

Vl ¼ �

�ice

m
2�k�

� �1
2 �P2

�P1
tanh

�P1
�P

� �
, ð4Þ

where Vl is the facial velocity (m s–1), l is either the c or a
axis (depending on which is dominant), � is the molecular
absorption coefficient (0.01; Yokoyama, 1993), m is ice

Miller and Adams: Dry-snow metamorphism model for kinetic crystal growth 1005

https://doi.org/10.3189/002214309790794832 Published online by Cambridge University Press

https://doi.org/10.3189/002214309790794832


molecular mass (2.989�10–26 kg), k is Boltzmann’s con-
stant (1.38�10–23 J K–1 ), �ice is ice density (917 kgm–3) and
�P is the excess vapor pressure (Pa). �P1 is a critical excess
vapor pressure, given by

�P1 ¼ 2
ffiffiffi
2

p ��a20P0
KXs�

, ð5Þ

where � is the ledge energy per unit step length
(2�10–11 Jm–1 from Yokoyama, 1993), a0 is the lattice
parameter (4.519�10–10 m for a-axis growth and
7.357� 10–10m for c-axis growth; Petrenko and Whitworth,
1999), Xs is the mean absorption migration distance

(400a0m; Yokoyama, 1993) and P0 is the equilibrium vapor
pressure (Pa). For �P1 � �P, VI/�P2, and for �P1 � �P,
VI/�P. Such behavior has been noted in laboratory studies.
Libbrecht (2005) questions the adequacy of critical par-
ameters such as the molecular coefficient which is likely a
function of supersaturation and temperature. For this study,
the parameters �, �, a0 and Xs are all assumed constant. If, in
the future, more accurate representations of these values
become available, the model can be easily updated. Kinetic
growth is always possible if there is excess vapor pressure
relative to the ice surface, but if the vapor is in equilibrium
or undersaturated relative to the ice surface, kinetic growth
is not possible. For understaturated conditions, sublimation
is still allowed under the original Miller and others (2003)
model. Equations (4) and (5) describe crystal growth when
enough excess vapor pressure exists in the surroundings to
produce kinetic growth. With the dominant axis growth

velocity described in Equation (4), the overall crystal growth
velocity with both axes contributing to growth is

Vl=cosð�Þ : ð6Þ

This crystal growth velocity represents the growth of a crystal
edge which results from the simultaneous growth of the a
and c axes.

Heat and mass transfer during kinetic growth
With the crystal habit and the crystal growth velocity
established, the heat and mass source terms used in the
conservation Equations (1) and (2) need to be developed for
kinetic growth. To establish source terms, the mass flux from
the vapor to the ice during kinetic growth is required. Even
though detailed geometry of faceted crystals has been
studied little, some geometric parameters have been meas-
ured. Sturm and Benson (1997) conducted extensive
experimental research in Alaska on depth hoar. They
collected numerous depth-hoar samples for mass and size
characterization. Using mass fraction techniques in various-
sized sieves, Sturm and Benson (1997) established a
polynomial fit of sieve size and grain mass as

�mj ¼  
�Dj, jþ1
2

� �3

, ð7Þ

where mj is the grain mass average for the sieve,  is a fit
constant (126.6 kgm–3) and �Dj, jþ1 is the average size of the j
and j+1th sieves (m). This mass to grain-size approximation
is useful in relating mass addition to crystal growth. Sturm

Fig. 2. (a) Facet crystal geometry showing basal plane. (b) Two crystal facet faces with relative a- and c-axis growth determining primary
crystal habit. The aspect ratio of the crystal is determined by a- and c-axes growth velocities. � is the angle from the dominant growth
direction to the crystal face and is a function of the relative growth rates of each crystallographic axis. All faces for a particular crystal have
the same angle due to symmetry assumptions. The size of the crystal is taken as the length of the crystal edge l/sin(�). (c) Examples of
modeled single-facet faces superimposed on hopper-type crystals. The crystal on the left is c-axis dominant growth and the crystal on the
right is a-axis dominant growth. The model will accommodate one to six faces. (Hopper crystal representations taken from Lock, 1990.)
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and Benson (1997) empirically relate depth-hoar grain mass
with a grain dimension that is similar to grain size used here.
For the current problem, the length of a single crystal edge is
used for the average sieve size (Fig. 2b), �Dj, jþ1. While a
narrow yet long crystal may fit through a sieve smaller than
this dimension, the relatively planar characteristics of these
crystals makes this dimensional approximation reasonable.
Equation (7) becomes

�mj ¼  
l

2 sin �ð Þ
� �3

: ð8Þ

With the crystal mass related to a crystal dimension by
Equation (8), the thickness of the crystal can be established.
Assuming a constant thickness for the entire crystal and
using the triangular faces shown in Figure 2, a crystal
thickness can simply be calculated. Kinetic growth is
assumed to take place at the crystal’s exposed edges or
‘tips’ through rectangular surface areas (Fig. 2c). With the
growth velocity and crystal geometry defined, the mass flow
from phase change and the resulting latent-heat contribu-
tions may be calculated. The resulting mass source (MS) to
be used in Equation (1) is

MSfacet ¼ �  Vll2

4Vpore sin 2 �ð Þ cos �ð Þ , ð9Þ

where Vpore is the volume of the pore element containing the
crystal tip and supplying vapor for growth (Miller, 2002). The
negative sign for the facet mass source term represents
condensation from the vapor to the ice phase. The growth
velocity of the crystal is geometrically related to the
dominant growth direction velocity, VI, through the cosine
term appearing in Equation (9) but originating in Equa-
tion (6). The heat source term for facet growth is derived in a
similar manner. Using the mass flow from phase change, the
facet heat source in the ice becomes (Miller, 2002)

HSfacet ¼ � LVl l
4 sin �ð Þ cos �ð Þ : ð10Þ

Equations (9) and (10) can now be used in Equations (1)
and (2) respectively.

CRYSTAL ORIENTATION IN THE PRESENCE OF A
TEMPERATURE GRADIENT
With crystal habit defined as a function of relative
crystallographic growth rates (�) and crystal geometry
developed, the orientation of a crystal within the snowpack
can be considered. Crystal habit has been defined relative
to crystallographic coordinates; now orientations of the
crystals relative to a temperature gradient are considered. It
is assumed that faceted crystals nucleate on existing or
parent grains and grow with the same crystallographic
orientation as the parent grain. Adams and Miller (2003)
demonstrated that ice crystals grown from the vapor phase
on existing ice substrates adopt the same crystallographic
orientation as the parent. They also proposed a grain
growth theory for depth hoar where dominant configura-
tions grow more rapidly than less preferentially aligned
neighbors. While the theory is supported by observation,
they state further quantitative work is required to confirm
the conjecture. Atmospherically formed snow crystals will
be deposited onto the ground in a generally random
crystallographic orientation. When subjected to a tempera-
ture gradient, the ‘new’ crystals will pick up the orientation

of the parent (primary/nucleate) snow grains onto which
they accrete. A particular crystal may have a growth
advantage due to parent crystal orientation, since it may be
better positioned to quickly grow deeper into warmer vapor
(if it is not restricted by the proximity of other grains). If a
particular grain’s crystallographic orientation relative to the
temperature gradient requires the tip to grow toward the
warmer areas, the growth rate will be enhanced as the
crystal develops. For these orientations, the relatively high
thermal conductivity of ice (as compared to the pore
spaces) results in a cooler tip reaching into a progressively
warmer (as the crystal grows) saturated pore space (i.e.
supersaturated with respect to the ice surface). The result is
increased excess vapor pressure at the ice tip, enhancing
the growth rate. New crystals that are favorably oriented
could crowd out other less optimally oriented crystals
(although this is not currently implemented). Since crystals
grow with the same crystallographic orientation as the
parent grain, and observed depth-hoar crystal morphologies
are similar amongst grains in the same snowpack location
(Akitaya, 1974), this dominant grain theory seems plausible.
An analogous process takes place in lake ice grown under
high growth-rate conditions (Gow and Langston, 1977;
Lock, 1990; Petrenko and Whitworth, 1999). Initial basal
plane growth rates dominate for liquid water at approxi-
mately 273K, allowing vertical basal planes to grow
deeper faster than other orientations. As the crystals reach
deeper, they grow faster and eventually crowd out c-axis
vertical crystals.

To examine the dominant grain growth scenario, the
variation of crystal orientation relative to the temperature
gradient must be established. In Figures 1 and 2, the crystal
habit was defined by the angle (�) measured from the
dominant crystallographic growth axis to the crystal edge
and was determined using the relative axial growth
velocities as a function of temperature (Lamb and Hobbs,
1971). As shown in Figure 1, the angle from the tempera-
ture gradient to the dominant growth axis is defined by the
angle �. This feature is added to simulate various crystallo-
graphic orientations relative to the temperature gradient so
distributions of crystal orientations in snow can be repre-
sented. Figure 1 shows the relationships between the
crystal, crystallographic axes and temperature gradient.

Updating microstructural geometry
With provisions for heat and mass flow through the ice/pore
network, a definition of a simple microstructural geometry
with habit and orientation relative to the temperature
gradient established, the numerical simulation may com-
mence. The heat-conduction, vapor mass-continuity and
phase-change equations are solved at every time-step using
Miller and others’ (2003) model. During kinetic growth, the
mass flux due to phase change, Jec, is calculated at each
time-step from terms in Equations (4–8). The latent-heat
contribution from phase change is added to the ice network
directly at the parent grains (HS); conduction from the grain
tip to root is not considered. The facet grain temperature is
assumed to be constant due to high (relative to pore) thermal
conductivity of the ice. The inclusion of heat conduction
from the crystal tip to root at the base grain is being
considered in future updates. Over a small time-step, the
mass flux is integrated, giving the total addition of mass to
the crystal. The crystal geometry is then updated and the
simulation advances to another time-step.
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RESULTS AND ANALYSIS
A simple set of microstructural conditions was used first to
examine kinetic growth trends. Then specific comparisons
are made with previously published experiments of kinetic
growth. In examining kinetic growth trends, following the
work of Miller and others (2003), an initially rounded set of
parent grains with 0.5mm radius and snow density of
150 kgm–3 was used as the base network to simulate kinetic
growth. The model’s sensitivity to these parameters is
discussed by Miller and others (2003) as well as their roles
in modeling metamorphism. The current effort is focused on
a kinetic growth approach, so these microstructural par-
ameters are not varied here but do impact the potential rates
of heat and mass diffusion. The temperature gradient was
allowed to increase until the kinetic growth on the parent
grains developed. In Miller and others (2003), the transition
to kinetic growth occurred when the excess vapor pressure
over the ice surface was sufficient to require rounded parent
grains to grow kinetically.

Facet growth vs temperature
The change in facet growth rate as a function of temperature
is not a simple result. In addition to the temperature
dependence of metamorphic processes due to molecular
mobility, the dominant crystal habit varies with temperature.
The growth rates of the a and c axes are not the same under
identical conditions. The critical excess vapor pressure in
Equation (5) is greater for c-axis growth due to a larger lattice
parameter, a0 (Petrenko and Whitworth, 1999). As a result,
a-axis dominant growth rates are greater than c-axis growth
rates under identical thermal conditions. Additionally, to
isolate the temperature dependence, only one crystal
orientation relative to the temperature gradient is presented.
Varying crystal orientation relative to the temperature
gradient is examined in the next subsection. The angle from
the temperature gradient to the crystal was fixed at 208 (the
combination of crystal habit and crystal orientation is shown
in Figure 1). These microstructural conditions were simu-
lated with a 45Km–1 temperature gradient over a range of

temperatures. The results in Figure 3 show the kinetic growth
rate under identical temperature gradients but at different
temperatures. As expected, the overall growth rate does
decrease with decreasing temperature. In addition, the
transitions between a- and c-axis dominant growth are
evident, and take place at temperatures indicated by Lamb
and Hobbs (1971). The enhanced a-axis growth rates are
apparent when compared to c-axis growth rates.

Facet growth vs orientation
The faceted crystal growth rates may be integrated in time
with various crystal orientations relative to the temperature
gradient. In Figure 1, the total angle from the crystal edge to
the temperature gradient, �, is given by

� ¼ � þ �: ð11Þ
� combines the parent crystal orientation relative to
temperature gradient, �, and crystal habit, �, by locating
the crystal edge relative to the temperature gradient. In
Figure 1, � is always positive and less than 458 since it is
measured relative to whichever crystallographic axis is
dominant. Negative values of � can better align the crystal
with the temperature gradient. Simulation results for
225 hours of parent grains with 0.5mm radius and density
of 150 kgm–3 at an average temperature of 263K and
temperature gradient of 25Km–1 are shown in Figure 4. �
varied from 42.38 to 44.78 depending on the actual
temperature of each crystal. Crystallographic orientations
in the snowpack, �, were varied simulating different
orientations relative to the direction of the temperature
gradient, �. Note that � is dependent on the crystallographic
orientation of the nucleate parent grain. Figure 4 suggests
that the direction of the facet face relative to the temperature
gradient is a primary factor in determining which crystals
will have highest growth rates. Crystals more closely aligned
with the temperature gradient grow quickly, supporting
Adams and Miller’s (2003) proposed dominant grain growth
theory discussed previously. Figure 4 demonstrates that
certain crystals are preferentially oriented for higher growth

Fig. 3. Facet growth vs temperature. �=208, �=150 kgm–3,
temperature gradient is 45 Km–1 and parent grain radius is
0.5mm. The crystal growth rate changes with dominant growth
direction and temperature.

Fig. 4. Facet length (l/sin(�)) vs time for various crystal orientations,
with angle from the temperature gradient displayed. Smaller values
of � represent closer alignment to the temperature gradient.
Temperature gradient is 25Km–1, average temperature is 263K,
parent grain radius is 0.5mm and �=150 kgm–3.
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rates when compared to less optimally aligned neighbors.
These preferentially oriented crystals grow rapidly due to the
larger excess vapor pressure created as the tip reaches
warmer vapor. In addition to the facet size, the facet growth
rate was examined during the same 225 hour time period.
By observing the growth curve slopes, Figure 4 shows
increasing growth rate with increasing size. Again, this is
attributed to the increasing excess vapor pressure encoun-
tered by a crystal tip as it grows into warmer saturated vapor.
It is evident that crystal orientation is an important factor,
critical to determining which crystals may outpace others.
While only a few select orientations were evaluated for this
study, any grain orientation distribution could be imple-
mented in the model.

Facet grain-size dispersion
Data in Figure 4 demonstrate not only enhanced growth
rates for preferentially orientated grains, but suggest in-
creased grain-size dispersion with time. Initially equally
sized parent grains grow at different rates due to crystal
orientation relative to the temperature gradient. As a
consequence, grain-size variance increases during kinetic
growth.

Experimental comparison
Fukuzawa and Akitaya (1993) developed kinetic crystals in
the laboratory by exposing snow to very high and prolonged
temperature gradients. Their experiment simulated the
growth of faceted crystals near the surface of low-density
snow on clear, cold nights. To further understand the
relationship between temperature gradients and crystal
growth, they exposed snow to gradients ranging from 100
to 300Km–1 for up to 50 hours. Previous studies (Marbouty,
1980) had examined kinetic growth features, but at much
smaller temperature gradients. Fukuzawa and Akitaya’s
study was singled out for comparison because the authors
were very meticulous in their experimental set-up and data
collection. Additionally, snow experiencing these large
gradients for relatively long periods is considered stressing
for the current numerical approach.

There are no widely accepted standardized methods to
quantitatively describe the geometry of kinetic growth
crystals. With rounded crystals, grain radii are generally
used as the primary size measure, but complex kinetic
growth crystals do not lend themselves to such simple
parameters. As a result, attempting to compare grain sizes
between several studies is difficult. Fukuzawa and Akitaya
(1993) took photographs of their samples and used an image
analyzer to determine grain size. They designated grain size
as the diameter of a circle with the same projected surface
area as the grain. For grains with predominantly symmetric
planar features, this measure is similar (but not identical) to
the crystal size defined in Figure 2. For simple structures
such as hexagonal plates, the two size measures are similar,
but as grains become highly ornate or cupped, the
measurement methods diverge. The current study does not
assume a circular planar area, but rather uses a crystal
‘length’ (l/sin(�) in Fig. 2b) as a measure of size which could
be larger than the diameter of an equivalent circular area,
particularly if crystals develop in cupped or elongated
configurations. If grains become cupped or elongated, the
current theory will predict a larger grain size than Fukuzawa
and Akitaya (1993). In addition to grain size, Fukuzawa and
Akitaya calculated one standard deviation for grain-size

distributions. This measurement is rarely reported, yet is
highly informative. As the grains grew in their experiments,
the size dispersion increased.

Even though crystal size definition is an issue for
comparing results, the current model was used to simulate
Fukuzawa and Akitaya’s experiments. For all experiments,
Fukuzawa and Akitaya reported initial samples of very fine
ice particles with an initial equivalent diameter of 0.12mm,
forming the ‘base’ of round grains for the model. The model
initial kinetic crystal size is then given by l/sin(� ) where l is
the radius of the parent grain. The result is a larger initial
grain size than reported by Fukuzawa and Akitaya, but is
necessary to account for differences in grain size definitions
and the non-circular nature of Fukuzawa and Akitaya’s
initial snow samples. Additionally, the current numeric
approach has the nucleation site at the center node of a
parent grain only, requiring a slightly larger initial facet size
to extend to the vapor pore adjacent to the node. In reality,
the facets will nucleate on the parent grain surface, not from
the center of an existing grain. This approach simplified the
computations and could be eliminated in the future by
allowing latent-heat addition at locations other than grain
center nodes (Miller and others, 2003). Facets with five
crystal orientations (relative to the temperature gradient)
were then allowed to grow from the base grains. For the test
average temperature of 257K, the model yields a-axis
dominant growth, with ��208.

Figure 5 presents the model and experimental data
comparisons. Fukuzawa and Akitaya’s observed average
sizes and standard deviations (represented by the vertical
bars) are shown. For both experiments, the average crystal
size increased linearly and growth rates increased with
increased temperature gradients. Additionally, the grain-size
standard deviation doubled during both experiments,
although the relative standard deviation remained largely
unchanged. The model predictions are consistent with the
experimental trends of increasing grain size with time,
increased growth rates with temperature gradient, and
increased size dispersion. The simulation’s increase in
grain-size distribution results from varying crystal orienta-
tions, providing some physical explanation for size variation
increases. The model’s crystal growth rates are constant
when the crystals are relatively small, but experience
increasing rates as time progresses. In the 200 Km–1

experiment, the model reasonably predicts the observed
grain size and distribution. As the temperature gradient
increased to 250Km–1, the model does not track the
experiment accurately. In the initial stages (first 24 hours),
the model predicts the experimental results reasonably well,
but starts to diverge from the experiment as the grain size
increases when subjected to the larger temperature gradient.
In the 200Km–1 case, the model results would likely
eventually diverge too, as the trend shows increasing growth
rates with time. There are several potential explanations for
the divergence in size when the model results are compared
to the experiments. As the crystals get large, the experi-
mental growth rate remains constant while the model
diverges from the experiment with larger growth rates.
One potential reason for the divergence in size is the size
definition. Fukuzawa and Akitaya calculate an equivalent
circular diameter, even if the crystals lack axial symmetry.
The current method defines size as the longest crystal
dimension (Fig. 2). As the crystals grow, the model allows for
naturally occurring dimensional aspect ratios through the
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crystal axes’ relative growth defined by crystal habit; no
equivalent diameter is necessary. To help illustrate the size
definition differences, consider a single triangular facet face
of a crystal from Figure 2b. If such a crystal was observed,
Fukuzawa and Akitaya’s equivalent circular diameter would
be <50% of the size predicted by the model. The model
allows for one to six facet faces, further complicating the
comparison. Additionally, the current approach assumed
saturated vapor in all pore spaces, which in certain cases
may not be true after long periods of exposure to large
temperature gradients, depending upon vapor supply
sources. It was also assumed that the average temperature
of the kinetic crystal was the same as the parent grain from
which it is growing. Due to the high thermal conductivity of
ice (as compared to the pore space), this is considered
reasonable until the grains become ‘large’. Since kinetic
growth is taking place toward the warmer direction of the
gradient, the excess vapor pressure at the crystal tip
continues to increase due to its connection in the cooler

region at the parent grain. The current approach only limits
excess vapor pressure at the facet tip by the pore’s ability to
diffuse to that location. Heat from phase change is
numerically added at the center of the parent grain (Miller
and others, 2003), not diffused through the crystal. The
addition of heat conduction from the crystal tip to its root is
envisioned for a future update. It also seems logical to
expect some physical interference between grains growing
and contacting neighboring grains, especially when they
become large. The current model does not account for
growth limitations created by finite pores resulting in crystal
interference, contributing to the overestimation of growth. In
summary, the model did predict the trends observed in
Fukuzawa and Akitaya (1993), but did not consistently track
the average size and growth rate when grain sizes and
temperature gradients became large. These differences may
be attributed to size definition issues and limitations to the
model based on current assumptions.

CONCLUSIONS
The model agrees with fundamental established trends of
kinetic growth in a dry snowpack. It reasonably predicts the
crystal growth rate and size dispersion increase of a
laboratory experiment for a 200 Km–1 temperature gradient,
but does not accurately predict the crystal size at 250Km–1

for the entire experiment. The results support a previously
postulated dominant crystal growth theory whereby prefer-
entially orientated grains (based on local conditions) have
growth rates that outpace other orientations.

Extended applications of the model are currently being
considered. For example, recent experimental research at
the Montana State University Subzero Science and Engin-
eering Research Facility has focused on the development of
near-surface facets (Morstad and others, 2007; Slaughter and
others, 2009). Strong temperature gradients can develop
near the snow surface, resulting in kinetic growth on and just
below the surface. The current model could be used to more
thoroughly examine fundamental conditions that result in
these growth mechanisms.

The approach could be refined and improved. The
assumed ice and pore network is very simple. The addition
of increased coordination number and grain interference
would bring further realism to the microstructure. Addition-
ally, the approach could be adapted to different thermo-
dynamic conditions such as crystal growth under ice layers
or addition of sub-saturated pore spaces around faceted
grains resulting in sublimation. The addition of heat
conduction during kinetic growth from the crystal tip to
the root is also envisioned.

The addition of kinetic growth to Miller and others’
(2003) unified approach produced a numerical model that
uses generalized thermal conditions, allows the transfer of
heat and mass to develop naturally, and simulates snow
metamorphism at a microstructural level. This tool can
evaluate snow metamorphism from macroscopically iso-
thermal conditions, transition to kinetic growth and kinetic
crystal growth. Using simple facet geometries, the kinetic
growth model accounts for crystal habit as a function of
temperature and allows for differing crystallographic orien-
tations. The model conserves heat and mass, including
phase change interactions. Ice and pore geometries are
updated in time as interactions progress, resulting in a time-
transient metamorphism model.

Fig. 5. Kinetic growth experiment comparison for temperature
gradients of (a) 200Km–1 and (b) 250Km–1 at average temperature
of 257 K. Vertical bars represent one standard deviation in
experimental grain size and are shown around average grain size.
The model shows increasing growth rates, especially for crystals
more closely aligned with the temperature gradient. The model
predicts increasing grain-size dispersion based on alignment with
temperature gradient also. For the smaller temperature gradient (a),
the model and experimental results are similar, but diverge as
crystals become large (b).
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