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Abstract. In this paper we will present a result which gives a sufficient condition
for a vector field X on R3 to be equivalent at a singularity to the first non-vanishing
jet jkX(p) of X at p. This condition - which only depends on the homogeneous
vector field defined by jkX(p) - is stated in terms of the blown-up vector field X
(which is defined on S2xU), and essentially means that there are no saddle-
connections for X | S2 x {0}.

The key tool in the proof will be a result of local normal linearization along a
codimension 1 submanifold M providing a C° conjugacy having a normal derivative
along M equal to 1.

1. Introduction and statement of results
Let X be a C vector field on R3 with a singularity at 0, X(0) = 0, p > 3 . Assume
that X is non-flat, i.e. that one of the jets of X at 0 is non-zero. Let k be such that
jjfcX(O) # 0 and7/t_1A'(0) = 0 (k == p -2). We call the homogeneous polynomial vector
field Xk =jkX(0) the first-non-vanishing jet of X at 0.

We also need to define the blowing-up of a vector field. Let S2 be the unit sphere
in R3 and let <f>:S2xR-»R3 be defined by (u, r)-*• r • u (the spherical coordinates).

Define X by Q^X = X and let

XX- fc-1

where k is as before. X is a C~k vector field on S2xR.
Finally we say that two vector fields X and Y are C°-equivalent in 0 if there is

a homeomorphism on a neighbourhood of 0 onto its image, mapping orbits of X
onto orbits of Y preserving the orientation of orbits. If the homeomorphism also
preserves the parametrization we call it a C°-conjugacy.

THEOREM 1. Let X be a C vector field, p^3, and Xk be its first non-vanishing jet
(fcsp-2). Furthermore let X be the blown-up vector field associated with X at 0.
Assume that
(1) X | S2 x {0} is Morse-Smale.
(2) All singularities and periodic orbits of X are hyperbolic (in S2xR). Then X is
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C°-equivalent to Xk near S2 x {0} and a fortiori X is locally C°-equivalent to Xk

near 0.

The proof of the theorem occupies the main body of the paper (i.e. § 2). It relies
on two 'technical' theorems, which we have put in 2 separate appendices. These
theorems concern local normal linearizability along a codimension-one invariant
submanifold and are valid in all dimensions. As we will see, it is not important that
the critical elements of X \ S2 x {0} are hyperbolic, but it is certainly essential that
there are no 'saddle-connections', see [Str].

If in addition X \ S2 x {0} has no periodic orbits, our proof will imply that X and
Xk are C°-conjugate in the neighbourhood of S2 x {0}. Of course this induces also
a C°-conjugacy between X/r*"1 and Xk/r

k~l.
The conditions (1) and (2) do not imply that X is structurally stable, only that

X\S2x {0} is structurally stable. This is because X may have two periodic orbits y,
and y2 on S2x{0} both of saddle-type of X such that Wu(y1)n(S2x{0}) and
W (y2) n (S2 x {0}) have an intersection. Then W(y,) and Ws(y2) have a non-
transversal intersection. In [ST] it is shown that moduli of stability can appear for
homogeneous vector fields with two limit cycles. We have evidence to conjecture
that it is even possible to give such an example where (1) and (2) are satisfied. Of
course, it follows from our theorem that the space of moduli of stability is finite
dimensional.

The theorem was shown before in special cases. Shafer in [Sh] proved it if X is
a gradient vector field. Camacho in [C2] generalized this to the case where X \ S2 x {0}
has no periodic orbits. Urbina et al. in [ULL] treated the case where X | S2 x {0}
has no orbits connecting limit cycles of saddle type. In these three papers, the
authors also prove the stability of their vector fields inside the space of all vector
fields with jk_tX(0) = 0. In particular, the homogeneous vector fields they consider
are stable in the space of homogeneous vector fields of degree k. Camacho proved
in [Cl] that, for k = 2, it is also a generic condition for a homogeneous vector field
of degree k to fulfill conditions (1) and (2) in our theorem. Recently, Camacho has
announced that she has proven the same result for k>2.

To end let us remark that conditions (1) and (2) are equivalent to (1) and (2')
with (2'): Xk has no singularities or periodic orbits in the neighbourhood of 0,
(apart from the singularity 0).

Some properties of blowing up of singularities. To simplify things we assume that
X(x) is defined for all x e R3. This is no restriction. It should be noted that everything
in this section holds in R" for arbitrary n. Throughout this paper we will denote
the flow of a vector field Y by 4>Y{t, x).
Property 1. X is a C~k vector field, in particular it is at least C2.

Property 2. Let (u, r) denote coordinates on S2xR. If X and Y have the same fc-jet
in 0 (always assuming jfc-i X(0) =jk-i Y(0) = 0) and if we write

X = XT—+XN— and YT—+YN—
du dr du dr
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then there exist C"*" 1 resp. cp~k'2 functions fT:52xR-»R2 resp. fN:S2xU^U
such that XT - YT = rfT and XN - YN = r2/N.

Proo/ Let B:R3\{0}-*S2xR:x->(x/\x\, \x\) be the inverse of * . Then B!)!X = X
A straightforward calculation yields:

x

\*\2
^ & • ) ,

so for M = x/|x| and r = |x| we get:

X(u,r)=*DB(x)-X(x)

= (r"'(X(ru) -<M, X(ru))u), {u, X{ru))).

We can write X = Y + O(|x|fc+1). So if we divide X and y by r""1 we get:

XT{u,r)-YT(u,r)=^O{\ru\k+l).

XN(u, r ) - YN(u, r)=-^O(\ru\k+1).

This proves property 2. •

COROLLARY 1. X \ S2 x {0} is completely determined byjkX(0). So X and Xk coincide
onS2x{0}.

COROLLARY 2. (a) Let pe S2x {0} be a singularity ofX. The eigenvalues ofDX(p)
(considered in S2 x R) only depend on jkX(0). (b) Let ycS2x {0} be a periodic orbit
ofX and let Pbe a Poincare map for y. The eigenvalues ofP only depend onjkX(0).

Proof, (a) This follows directly from Property 2. (b) Fix a point p e y. Then 2 =
{qe S2xU\(q-p, X(p)) = 0} is a local section of y which we use for denning the
Poincare map P. Let <j>x denote the flow of X; consider the following equation in
(t,q)eUx-L:

F(t,q) = {4>x(t,q)-p,X(p)) = 0. (1)

Let t(q) be a C°° function with F(t(q), q) = 0 such that P(q) = </>x(t(q),q); put

We write <fo = (<f>x, <£*) e 5 2 x R and P = (PT, PN) . As S2 x {0} is invariant for X
we have DuP™(p) = 0.

Because of Property 2, DuP
r(p) only depends on jkX(0). So the only thing to

check is that (dPN/dr)(p) only depends on jkX(0). We have

(To,

r (T0,p).
or
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,p) = DX{<t>x{t,p))

The variational equation gives:

' d

dt ( ' '

• D(u>r)<j>x(0,p) = Identity,

where (u, r) represent coordinates on 52xR.
If we write D(t^r)<f>x(t, p) = U(t) this gives, with respect to the product 52xR:

dXT

(2)

U-r

so in particular

t / T N ] ' =
t/NNJ

DuXT(d>x(t,p))
dr

dr

UTN~\

[/NNJ'

dXN

dr

By Property 2 it follows that this last function only depends on jkX{0) since
VteU:4>x(t,p)eS2x{0}. •

2. Proof of Theorem 1
We look for a homeomorphism h, realizing an equivalence between X and Xk, with
the following properties. First of all we take h \ S2 x {0} to be the identity, because
of Corollary 1. Write h = (hT, hN). We say that h is normally tangent to the identity
on a set A <= S2 x {0} if there exist K > 0 and a € ]0,1[ such that for all u e A and
small r we have:

hT(u,r)-u
K and

r)-r
K.

Step 1. We start the construction of h at the saddle points of X|S2x{0}. Let q be
such a saddle. By Corollary 2(a) the eigenvalues of X and Xk at q are equal.
Therefore, according to Theorem A in Appendix 1, we can find a neighbourhood
V of q in S2 x R and a homeomorphism ft defined on V conjugating X | V and
Xk\h(V) such that h is normally tangent to the identity on Vn(S2x{0}). In this
way we get for each saddle q of X|S2x{0} a neighbourhoood V(q) of q and a
conjugacy /i: V(^) -*h( V(q)) between X and Xk \ V. Choose these neighbourhoods
V(q) so small that the saturations L U R <t>x(t, V(q)) of V(^) are disjoint for distinct
saddles. (And similarly the X^-orbit saturations of h(V(q)) are disjoint.) This is
possible since we do not allow saddle connections.

Step 2. Let p be a source of X \ S2 x {0}. Take a small closed curve C in S2 around
p such that the orbits of X | S2 x {0} are transversal to C. Then for small S > 0 the
orbits of X are transversal to C x ]-S, S[. If no stable manifold of a saddle-point
of X|S2x{0} intersects C then we just take h to be the identity on Cx[-S, 8~\.
Otherwise let qx,..., qn be the saddles of X \ S2 x {0} such that their stable manifolds
intersected with S2 x {0} cut C. We denote {s,} = W*{q,) n (S2 x {0}) n C (see figure
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r
FIGURE 1

1). Now we extend h, defined in Step 1, by means of saturation in negative time,
until we hit C x ]—8, 8[. More precisely, for each i e {1,. . . ,«} let Vt be a neighbour-
hood of qt on which h is defined in Step 1 and let Ut = {<£x(f, x); xeVt and
t(x) < t < 0} where t(x) is the first time the negative orbit through x hits C x ]-S, S[,
i.e. <f>x(t(x), x) € C x ]-S, S[; this is well defined if Vj is small enough (see figure 2).

FIGURE 2

For yeUt we define ft(.y) = 4>Xt(t, h(<f>x{-t, y))), that is: we force h to be a
conjugacy on l/f. This implies that h is the identity on C/(n(52x{0}). We check
that h is still normally tangent to the identity on l/;n(Cx{0}) in the following
lemma.

LEMMA. Let A c S2 x {0} be a Z/ne segment or a closed curve transverse to the X-orbits.
Let f.A^Uo be a given C°° function and put B = {<f>x(t(x),x);xeA}. If h is an
equivalence between XandXk on a neighbourhood Vof {<t>x(s, x); xeA and 0 < s <
t(x)} in S2xU, and ifh is normally tangent to the identity on A, then h is normally
tangent to the identity on B.

Proof. We take coordinates (u,, u2, r) in which locally Acz{r=u2 = 0} and Bc{r = O
and u2 = w"} f°r some u°2 and such that the orbits of X are 'horizontal' lines
{«! = constant and r = constant}. From Property 2 we know that XN — XKN = r2fN.
We put /o = sup{|/N(x)|; xe V}, which is finite for small V, and mo =
inf {«2-component of Xk(x); x e V}. For small V we have mo> 0. Let (u,, 0, r) e V
be given and put r = hN(ul,0,r). We know that f = r(l + fc(u!,0, r)) with
|fe(M,,0, r)\<Kra. Consider the two initial value problems (see figure 3)

{dR,_ R2f0

du2 m0
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FIGURE 3. Front view.

and

We can solve them easily:

and

dR2

du2

R1(u2) = -

m0

m0

l_Auf
m0

If V is small enough we can write for all u2e [0, u2]:
„ . , f r(l + Kra)
R2(u2)< <—K— — < r ( l

, Jo o- , Jo o ->I u2r I u2-2r

for some K2>0. Here we have used a € ]0,1]. Similarly:

for some K3 > 0. From this and XN - X^N = T2/N it follows that

In the same way, using XT-XKT=rf-v, we obtain the required estimates for hT.
This proves the lemma. •

So far h is defined on Ujn(CxM). We continue Step 2 by extending h to a
neighbourhood of C x {0} in C x ]-S, S[ as follows. We have to take care that h is
normally tangential to the identity on C x {0}. We may assume that the neighbour-
hoods Vj are chosen such that Ujn(C x]—S,S[) are 'vertical' strips of the form
[a,, bi]x]-8, S[, where the [a,, &,] are disjoint segments in C.

We restrict the construction to the 'exterior' region {r>0}, since the construction
for {/•<()} will be similar and can be pasted decently. We consider first, instead of
h, the following homeomorphism h: for xe[a, , b J x ] - 5 , 8[ we define h(x) to be
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the intersection point of the orbit of Xk through h(x) with C x ]-S, 8[. (See figure
4.) ft is obtained as the restriction of a new equivalence derived from the conjugacy
ft, hence it follows from the lemma that ft is 'tangent to the identity'. Since ft maps
U,n(Cx]-S,S[) into C x R w e will first extend ft and then use this to find an

FIGURE 4

extension of ft. We extend ft to a neighbourhood of C in C x ] -5 , 8[ as follows.
Let i e { l , . . . , n } ; we denote an+l = ax, ftn+1 = ft,. In between b, and ai+1 we fix a
line {c,} x [0, 77,], where 0< ^ < 1 is small and fixed; we define ft |{c,} x [0, TJ,] to be
the identity.

Let r} =j~lT)t for all j e M. We define ft, by induction on j , on a rectangle [ft,, c,] x
[rJ+i, rj] as follows. We denote

Z(J) = {(", r) e C x [0, 5[ | r;+1 - Xrj:r < r < r, + Kr)+a}

where K and a are so that

hN(u, r)
— 1

r
and small r > 0.

Define e(r) = K4r
a, where K4 is so that

r) | |u -6 , | <e(r)}.

This is possible since h is normally tangent to the identity at (blt 0).
We connect, by induction for all j , h{bt, rj) to (c,, r,) by means of an injective C°

arc Tj:{bt,Ci]-*Z(j-l)nZ(j) in such a way that Tj(6,) = ft (ft,, r,) and for all
u 6 [e(r,), c,]: Ty(u) = (M, r7). Also 7)(]fej, c,]) does not meet Im T, , . . . , Im TJ-^ and
H{bi} x [0, r,]). We define ft on [b,, c,] x {r7} by ft(w, r,) = T,(M) and moreover ft is
the identity on {(u, r)|w>fe, + e(r)}. In this way ft is defined on the boundary of
the rectangle \bt, c,]x[rJ+1, r;]. The image of this curve is a curve without self-
intersections. Now we apply the Schonflies theorem [Mo] to extend ft to [ft,, c,] x
[rj+l, rj] for all / So ft([ft,, c,] x [0+1, rj) ^ ZO).

First of all we note that h extends to the identity on [ft,, c,] x {0}. Next we check
that ft is normally tangent to the identity on [ft(, Cj]x{0}: let re[r,+1,r,] and
M 6 [ft;, c,]. We know that
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Since r,/rJ+1<2 for all jeN, this implies

hN(u, r) - r r, -r + Kr)+a _ Kr)+a

In a similar way we find a constant K5 such that

r-*"( M rW (4)
On the other hand for (M, r) with \u - fc,| < e(r) = X4r° we know that (U,R):= h(u, r)
also satisfies |C/-b , | s X4J?", by construction, and as R = r+O(r1+a) we have
\U-u\<2K4R

a, hence there exists a X6>0 such that |L/-u|</C6r"; for (u,r)
with w € [e(r), c,] this is trivially true. So on [£>,, c,] x [0,17,]:

hT(u, r)-u „

By repeating the same construction to the regions [c,, aI+1] we can assume now that
h is defined on, say, C x[-77, 77].

There exists a continuous function

such that <t>xk(t(h(x)), h(x)) = h(x). Let t* denote any continuous extension of t to
C x [-77,77]. Finally put h{x) = <f>xk(t*(ii(x)), h(x)) for all x e C x [-77, 77]. For the
same reasons as in the lemma above h is normally tangent to the identity on
C x {0}. Using Theorem B in Appendix 2 we extend h to a conjugacy on a neighbour-
hood of the source p of X \ S2 x {0}.

Step 3. Let y<=S2x{0} be a repelling limit cycle of X|S2x{0}. Let 2 and 1.^2.
be small transversal sections of y on which the Poincare maps P :^ , -*^ for X and
Pt:2!-»2 for Xk are defined. By assumption (2) in the statement of Theorem 1, P
and Pk are hyperbolic.

P|2,n(S2x{0}) is repelling. We make a similar construction as in Step 2 as
follows. Take a smooth closed curve D in S2 around y in a small neighbourhood
of y such that JV | S2 x {0} is transversal to D. For small S > 0 we still have transver-
sality to D x ] - 8 , S[. Just as in Step 2 we consider all the saddles of X|S2x{0}
whose stable manifolds, intersected with S2 x {0}, cut D. We extend h obtained in
Step 1 in negative time starting at the neighbourhoods of these saddles, until we
hit D x ]-S, S[; this is done in the same way as in Step 2. We continue Step 3 by
extending A to a neighbourhood of Dx{0} in DxR. This is done precisely as in
Step 2. The obtained extension, always called h, is also normally tangent to the
identity on D x {0}. If no stable manifold of a saddle of X | S2 x {0} intersects D
then we just take h to be the identity on a neighbourhood of Dx{0} in DxR.
Finally we repeat the whole construction of this Step 3, only using this time a
transversal cylinder of the form Dx]-S,S[ with D on the other side of y.
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Step 4. Let y<=S2x{0} be a repelling limit cycle of X|S2x{0} such that its
Poincare map is of saddle type. We will extend h such that it has an invariant
cylinder around y transversal to X and Xk. But we will have to switch from conjugacy
to equivalence.

Let Dx be a closed curve inside D (see Step 3) in 52x{0} transversal to X, and
let 5, be small such that X is transversal to D, x ]-S, , 5,[. For each x e D x ]-8, 8[
there exists a unique f(x)<0 such that 4>x{t{x), x)e DjXj-S,, 5,[. We extend h
to A := {<f>x (', x) | x € D x ] - 8, 8 [ and < (x) < f < 0} by interpolation using arc-length
as follows. For y = 4>x(t, x)eA there exists a unique xe Dx]-8, 8[ such that .y is
in the orbit of x for X. Let dx resp. dXk be metrics in the orbits of X resp. Xk

denned by arc length. We define h(y) to be the unique element in the negative orbit
of h(x) for Xk such that

h is continuous, and by reversing the process we see that it is a homeomorphism;
moreover by construction it is an equivalence between X and Xk on A.

We conclude that A(D, x ] -5 i , 5,[)<= D1x]-81, 8^. We form the same construc-
tion on the other side of y in S2 x {0}. Since P is of saddle type, the normal eigenvalue
of P is less than one (it is always positive). Denote {a} = yn1l. As h is defined
on D,x ] -S , , 8,[ this automatically induces a conjugacy H between P and Pk on
the connected component of 2,\W*(a) cut by the orbits of D,x]-5 i ,5 , [ : fix
fundamental domains F resp. Fk for P resp. Pk in this component and take x e F.
We let y be the unique point of intersection of the positive orbit of X through x
with D, x ]-S, , 5,[: we let H(x) be the (unique) point of intersection of the negative
orbit of Xk through h(y) with Fk. By the lemma in Step 2 it follows that H is
normally tangential to the identity on Fn(S2x{0}).

In the same way H can be defined on the other connected component if 2 , \ Ws(a).
Now by Theorem B in Appendix 2, H can be extended to a conjugacy of P and
Pk on the whole of 2 , .

Next it is standard to construct from H an equivalence h between X and Xk on
a neighbourhood of y in S2 x R, see for example [PM]. We consider once more a
transversal cylinder D2x]-82,82[ where D2 lies between y and Dt (see Step 6);
we consider once more a transversal cylinder D3x ]-83, 83[ where D3 lies between
y and D2, and we take care that h is defined on D3 x ]—53, 53[ by our construction
just made (see figure 5). Precisely as before we can extend h from D 3 x] -5 3 , 53[
to D2x]-82,82[ in such a way that / i(D2x]-52, S2[)<= D 2 x] -5 2 , 82[. The only
thing that remains to be done is to make an extension of h to the zone Z between
D2x]-82,82[ and D,x]-5, ,S, [ . We do this as follows. Remember that H was
defined on 2 , \ W"(a) by means of the definition of h on D, x ] -8 , , S,[. So let z e Z
Let y be the intersection point of the negative orbit of X through z with D2 x
]-82, 82[, and let y' be the intersection point of the positive orbit of X through z
with D, x ] -5 , , 5,[. We define ft (z) to be the unique point of the positive orbit of
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Dx]-8,8[

invariant
for/i

FIGURE 5

Xk through h(y) for which

dXk(h(y),h(z)) _dx(y,z)
dxk(h(y),h(y')) dx(y,y'Y

Finally we make a completely similar construction on the other side of y in S2 x {0}.
Step 5. Let y <= S2 x {0} be a repellor considered as a periodic orbit of X, i.e. the
Poincare-map P is a repellor. Take a narrow solid 2-torus T containing y and
transversal to X. We can suppose that the two transversal cylinders of the form
DX[-T], 7)] from Step 3 lie in dT. Remember that h was defined on these two
cylinders (see figure 6). Extend h in an arbitrary way to a homeomorphsm on dT.

FIGURE 6

Then extend h to T\y by means of saturation in negative time, that is: for each
x€ T\y there exists one / > 0 and one yedT such that </>x(f, *) = y- We define h(x)
to be <f>xk(-t, h(y)). Remark that h conjugates X and Xk in T\y. Indeed, if (X,)1€M

is a sequence such that x, -* y, then for each i e M there exists one tt > 0 and one
ytedT such that <f>x(tlt x,) = ys. Now t,-*oo, hence for /i(^) = <f>Xk(-dTt,, h(yt)) we
obtain that h(xt)->- y. In order to extend h continuously to a map h : y-* y, we need
to reparametrise orbits of X is a standard way, see [PM].
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Step 6. For each sink r or X \ S2 x {0} we do the following. Let £ be a small closed
curve in S2 around r, transversal to X. We take a small e > 0 such that the sequel
holds. UxeEx[-e, e] then one has three possibilities for the negative orbit of X
through x: (1) it cuts a neighbourhood of a saddle q of X|S2x{0} on which h was
defined in Step 1; (2) it cuts a set of the form C x [-77,17] where C is a small closed
curve with center a source p as in Step 2; (3) it cuts a set of the form D x [-77,77]
near a repelling limit cycle y as in Step 3. Hence we can extend h by means of
saturation in positive time until it is defined on Ex[-e, e]. Remark that, up to
now, h is a conjugacy, and by the lemma in Step 2, h is normally tangential to the
identity on E x {0}. Again extend h to a neighbourhood of r using Theorem B.
Step 7. Let ycS2x{0} be an attracting limit cycle of X|S2x{0}. Let F be smooth
closed curve in S2 x {0} around y in a small neighbourhood of y such that X | S2 x {0}
is transversal to F. For small e > 0 we still have transversality to Fx[-e, e], and
just like above we can extend h by means of saturation in positive time until it
is denned on F x [ - e , e]. h is normally tangential to the identity on Fx{0} by the
lemma in Step 2.

We do the same for a closed transversal curve on the other side of y in S2 x {0}.

Step 8. We make an exactly analoguous construction as in Step 4 for those attracting
limit cycles, sources and sinks of X \ S2 x {0} which are, considered in S2 x R, of
saddle type. That is: we extend h to smaller transversal cylinders around them such
that these cylinders are invariant for h.

Step 9. Let y be an attracting limit cycle of X \ S2 x {0}. In Step 8 we defined h up
to transversal invariant cylinders on both sides of y. Again from the lemma in Step
2, h is normally tangential to the identity, and hence we can proceed precisely as
in Steps 4 and 5.

3. Consequences and remarks
(1) If we look closely to the proof of Theorem 1 we notice that we only had to
switch from conjugacy to equivalence in the neighbourhood of limit cycles. Hence
if there are no limit cycles, X and Xk will be C°-conjugate. Moreover, as the
attracting and the repelling periodic orbits are giving no problem when blowing
down S2 x {0} to 0 (see Step 8), this yields:

THEOREM 2. Let X be as in Theorem 1 and assume that X has no periodic orbits of
saddle type. Then X/r^1 is C° conjugate to Xk/r

k^ near 0.

(2) From the methods of the proof it clearly follows that the condition that X \ S2 x {0}
is Morse-Smale can be weakened. Let us just mention that the hyperbolicity of the
singularities and periodic orbits is not essential. However, it is not permitted that
X|S2x{0} has a saddle-connection between hyperbolic saddles, see [Str].

Appendix 1. A C° normal linearisation theorem providing conjugacies with normal
derivative equal to 1
Consider a C2 diffeomorphism / on R" xR with a fixed point in 0, /(0) = 0, such
that/(R" x {0}) = R" x {0}. Take (y, z) E R" x R and write/(y, z) = (fy(y, z)JAy, z)) e
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U" x R. Since / respects U" x {0}, one has

My, z) = y(y, z) • z,

with y(y, z) a C'-map. Write a = -y(0,0).

THEOREM A. Suppose f,f are two diffeomorphisms as above with

/ |Rnx{0}=/|Rnx{0};

along R" x {0}, (and in particular a = a'). Finally

(Al)

(A2)

(A3)

Then there exists a neighbourhood U of 0 and a homeomorphism h conjugating f and
fonU,i.e.h°f=f°h, and writing h = (hy,hz)eU" xU there exists ana>0 such that

< 1

and

h{y,z)-z

Remark. From these estimates it follows that dhjdz is well defined along R" x {0}
and identical to 1.

Al . Two lemmas in a globalised case
Before proving Theorem A we will state and prove two lemmas. In § 2 we will
reduce Theorem A to these Lemmas.

Consider a linear map L:R"xR-»R"xR with a matrix of the form

L =

L_ 0 0
0 L+ 0
0 0a

where L_: W- -» Rn-, L+: W* -> Rn+, a e U, R"-@R"+ = R". For definiteness assume that

a>\. (Al.l)

We do not assume that L_ or L+ is hyperbolic, or that L_ is contracting. However
we assume that, (writing || • || for the operator norm)

.«J (A1.2)

for some 5oe]0,K- Choose and fix 50e]0,^[ such that (A1.2) holds.

For e, C>0 consider the class A(e,C) of C2-maps A :Rn xR-»R" xR such that

supp(A)cR"x[-e, e], supp (A) is compact; (A1.3)(a)

|A|<C-e, Lip(A)<C,

\(y,z)-\(y',z)
y-y'
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write A = (A_, A+, Aj e R"- x W* x R, then one has

X2(y, 0) = 0, Vy € R" = R"- x R"+ i.e. we can write (A1.3)(c)

K(y, z) = j(y, z) • z, with y C1;

\y\*C-e, L i p ( r ) < C . (A1.3)(d)

Remark. Condition (A1.3)(c) implies t h a t / = L + A satisfies/(Rn x{0})<=R" x{0}.

Now take two diffeomorphisms / and / ' of the form / = L + A, / ' = L + A' where L
is of the form as above, and A, A'e A(e, C). Also assume

f\M"x{0}=f\Mnx{0}. (A1.4)

Clearly this implies that

A=A' along R" x{0}. (A1.5)

LEMMA A.l. Let L, C, a, So be as above. For any T> a and 8 sufficiently close to So

there exists a small e > 0 with the following property. Take two diffeomorphisms f, f
of the form f= L+ A, / ' = L + A', with

A,A'eA(e, C)

the functions y and y' from (A1.3)(c) satisfy:

y(y,0) = y'(y,0),\/yeW.

Then there exists a unique mapping h such that h°f=f°h, of the form h=id + g,
with g = (g-,g+,gz):W-xR"*xR^Rn-xR"+ xR satisfying

g is uniformly continuous on R" x [ - re, re ], (Al .7) (a)

g+ = 0 outside |z| < T • e, (A1.7)(b)

g±(y, z)

gz(y, z)
Z2-2S

for all (y, z) e R" x [-re, re].

Remarks
(1) Property (A1.7)(d) implies that \hz(y, z)/z\ -* 1 uniformly as z-» 0, and therefore
in particular that (d/dz)hz exists along R" x{0}.
(2) We shall prove Lemma A.1 using a method quite similar to the technique
employed by Pugh [Pu] in his proof of Hartman's result.

Proof of Lemma A l . Fix T > a and take S (close to So) such that | |L_||<a'"* and
||L+I||a1~8<l. Denote for a function «:R"x[-Te, re]-*Uk the supremum norm of
u by \u\. In the following we shall repeatedly write g in the decomposed form
g = (g_,g+,gz)eW'XU"*xU. Also we shall use y for points in R" and z for points
in R giving (y, z) e R" x R. The identity map is denoted as 1 and lz is the map (y, z) -> z.

From now on we shall look at maps

g = ( g - , g+, gz) •• R"- x R •* R" n" x R
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such that the following seminorm is finite:

f | g±(y, z ) gz{y, z ) \ ]
h\\.= SUP ,-a , 2-28

yeR" U Z Z IJ

In fact define the following space Ee

g is uniformly continuous, g+ = 0 for \z\ > re

and || g || c< oo}.

Then define Ec(r) as the r-ball in Ee:

We shall show that there exists a conjugacy h, between / and f, i.e.

h°f=f'°h,

of the form fc=id + g, ge£ e ( l ) . So we need to solve

or

This is equivalent to

So expanding (A1.8) in the decomposition g = (g_, g+,gr)eR"-xRn+xlR one gets

Equation (A1.9)(b) is equivalent to

Now define a new map Pg: R" x R -» R"" x Rn+ x R, for maps g e Ee, by Pg = ((Pg)_,
, (flf).), where

(Pg)+ = for|/z(>>)Z)|<T-e
0 otherwise.

As (£e, II • || e) is a semi-normed space we pass to the quotient space Ee with respect
to the equivalence relation ~ defined by: g, ~ g2<̂ > ||g, — g2|U

 = 0 - On EB we keep
the notation || • ||e. Observe that (Ee, \\ • \\E) is sequentially complete: take a Cauchy
sequence of classes (gn)neN in (Ee, \\ • ||e); then gn |R" x [-re, re] converges uniformly
on R" X[-TE, re] to some uniformly continuous map g: g:R" X[-TE, re]-*M" xR;
take any uniformly continuous extension, still called g: R" x R -* R" x R. Then g € Es

and ||gn-g||e-»O as
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PROPOSITION Al.l.

and

6 [a — e, a + e].

Proof. This follows immediately from / = L+ A and |AZ| < e. |z|. •
PROPOSITION A1.2. There exists an e > 0 such that for all g e Ee(l): Pg is uniformly
continuous.

Proof. We have to show that (Pg)+(y, z) is continuous. So we have to show that
(Pg)4y, z) = 0 for \fz{y, z)\ = re. So take \fz(y, z)\ = re. Since g+(y, z) = 0 for \z\ >
r • e, we have Ll\g+ °f](y, z) = 0. Furthermore from Proposition Al.l, \fz(y, z)\ = re
implies

for e>0 sufficiently small. Since geEe(l), one has |g2|<|z|2~2S for | z |< r -e .
Therefore, since S 6 ]0, | [ , for |z| < r • e

|(l + g)z |>|z|- |z |2-2 a

provided e > 0 is sufficiently small. Since supp(A)cR" x [ -e , e], this implies
that A+(y, z) = 0 and A+(l+g) = 0 if \fz(y, z)\ = r- e. This implies the continuity
of Pg. The uniform continuity of Pg follows from the fact that A has a compact
support. •

Remark. In fact if \z\ > (a - e)"1 • T • e, then \fz(y, z)\ > re and (Pg)+(y, z) = 0.

PROPOSITION A1.3. P maps £e(l) into Ec(\) provided e > 0 is sufficiently small.

Proof.(a) First we estimate (Pg)+:

(Pg)+ g+°f A + - A V ( l + g ) | l

z" I]

using Proposition Al.l

+ - A U l + g ) | l

z-s I;

Let us estimate the last term. Remark that from / |R" x{0}=/|lRn x{0}, one has
A(j',0) = A'(>',0). Hence

A+(>>,z)-A+(>',0)

\+(y,z)-\+(y,0)

, 1 - S

k'+(y,0)-\'+(y + gy,
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Using (A1.3)(b) this gives:

gy
1-8

and since |z |<T- E, and geEc(l), this implies that the above expression is o(l),
where o(l) is a function which only depends on C and T, and o(l)-»0 as eJO.

Combining this with the estimate for (Pg)+/zl~s we already had, one gets

(Pg)+

for E > 0 sufficiently small and S like in (A1.2).
(b) Now we estimate (Pg)-.

Pg-
1-8

As before using |(./^1(j', z ) ) z /z |<(a-e) ', see Proposition Al.l, one gets:

^(a-E)-l+s

and as before, for ge Ee(l),

g-
. l - S

for e > 0 sufficiently small and S as in (A1.2).
(c) Finally we estimate (Pg)z.

(Pg)z
•(a + e) .2-25 ,2-28

and as in (b) using Proposition Al.l,

,2-28

Let us estimate the last term in this sum. Observe that Az(y, z) = y(y, z) • z and
>',0) = y'(^0). So

K(y + gy,z + gy)-\z(y,z)
z2-28

y'(y+g

(y'(y+gy,z+

_i_

^ r*.

4- t

y'(y,z)-(z-

z)-(z- ? z ) -
z2-28

z2-28

tgz-Z

z2-28

(y(y,0)-y(y,z))-

g

Z2~2t

\z\

gz
z2-28

i .

I 1 '
-1- /^ .

)

Z

1

+

28 ,

y(y, z) • z

)-(z + gz)

(y'(y,z)- y'(y,o)\

{ z2-2* ) *

C' Izl24

E + 2-C- \z\2S <
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for all ge Ee(l), provided e >0 is small enough. Combining this with the previous
estimate for \(Pg)Jz2~2S\ one gets:

,2-2«

for e > 0 sufficiently small. This finishes the proof. •

PROPOSITION A1.4. For e >0 sufficiently small, P: Ee(l)-> Ee(l) is a contraction.

Proof. Again we estimate each term separately

(Pg-Pg')+(a)

S I I L ; 1 ! !

^ l l ^ ' l ! . 1 - 8

A +

+ C-

Take 0<fc<l , such that ||Z,+*|| • a1

sufficiently small,
(see Assumption Al. 2). Then for e > 0

(b) Similarly

(Pg-Pg')-

\l-6

1
(a-e)1"

As in case (a) one estimates the last term, and gets

1
-(a-e)1-*

. 1 - 8

https://doi.org/10.1017/S0143385700004971 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004971


298 P. Bonckaert et al.

Taking 0<fc<l , with \\L_\\/al~s <k<l, one gets

provided e > 0 is small enough. Finally

(Pg-Pg')z(c) .2-28

(a + e)-\\g-g'\\
li(l + g)-Ai(

Let us estimate the last term in this sum. Remark that \z(y, z) = y(y, z) • z, and

K(y+gy, z+gz)- K(y+g'y, z+g'z)
.2-28

y'(y+gy, z+gz) • (z+gz)-y'(y+g'y,
.2-28

y'(y + g'y,z + g'z) • ((z + gz)-(z + g'z))

8-8' 1 +
gz~gZ

Putting all this together and taking 0 < k < 1, such that a'1 <k< 1, one has

provided e > 0 is sufficiently small. This proves the Proposition. •
PROPOSITION A1.5. For e > 0 sufficiently small we have:

(i) for all gi, g2e Ee(1) with g, ~ g2: Pgx ~ Pg2 in Ee(l), so this means that P acts
on classes in Ee( l ) ;

^ Dcjine P \ EE^\) -» E E ^ ; g -» Pg (.this is well dejined by (\Y), then P is a contrac-

tion on EB{\).
Proof, (i) g, ~ g2 means: V(y, z) e R" x [-re, re]: g,(y, z) = g2(y, z). Now let (y, z) e
R " X [ - T 8 , T B ] . Then, by Proposition Al.l, rl(y,z)eU"x[-Te,Te], so from the
definition of P it immediately follows that (Pgi)-(y,z) = (Pg2)-(y,z) and
(Pgi)z(y, z) = (Pg2)z(y, z). Concerning the + direction, we distinguish two cases.

Case 1. |/zO>,z)|<Te. Then this fact together with |z|<re implies (Pgi)+(y, z) =
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Case 2. \fz(y, z)\ > re. Then by definition (Pgt)+(y, z) = (Pg2)+(y, z) = 0. Hence Pg, ~
Pg2-

The proof of (ii) follows immediately from Proposition A1.4 since for all g, g' e Ee(l):

\\pg-Pg'h = 11*5-^11. = \\Pg-P8%
^k\\g-g% = k\\g-g'\\e. D

Continuation of the proof of lemma Al. From Proposition A1.5 we infer the existence
of a unique geEe(l) with Pg = g- This means: for all (y,z)e
R"x[-Te, re]: Pg(y, z) = g{y, z), or equivalently (as can be checked from the
definition of P):

So there is a unique class ge Ee{\) with the above property. On the other hand it
follows from the estimates in Proposition Al.l that the conjugacy equation (1 +
g)°f=f°(l + g) fixes the definition of g on the whole R"xR. This implies the
existence and the unicity of the g in Lemma Al, and finishes the proof. •

LEMMA A2. (We use the symbols of Lemma Al.) If we take 8<80 sufficiently close
to So and if we take e of Lemma Al small then h is a homeomorphism.

Proof. First we apply Lemma Al for So and obtain an e0 > 0 such that for each A,
\'eA(e0, C) there exists a unique mapping

go = (go-, go+, goJ: R" x R -* R"~ x R"+ x R
such that

and which satisfies:

go is uniformly continuous on U" x [-re0, TE0], (A1.10)(a)

g0+= 0 outside |z|<re0, (A1.10)(b)

go-(y,

z
\-8 <1 and

go+(y, z)

z
\-t

for all (y, z) e R" x [-re0, re0],

goziy, i

Choose eo> 0 such that areo< 1. Now let 5 < SQ be close to 50 such that

IIM < **-*
and

IIL;1^-^!.
Fix S.

We apply Lemma Al for this S and infer the existence of an e > 0 such that for
each A, \'eA(e, C) there exists a unique mapping g = (g-,g+,g2) such that (1 +
g)°(L+A) = (L+A')°(l + g) and which satisfies

g is uniformly continuous on R" x [-re, re], (Al.ll)(a)

g+ = 0 outside \z\ < re, (Al.ll)(b)
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g-(y,
<1 and

P. Bonckaert et al.

g+(y,z±
8 — 1

for all (y, z)eR"x [—re, re],

, 1 - S

.2-28

Moreover we can take care that e < eo(l -(are, ,)1 2 S) . Fix arbitrary A, A'eA(e, C).
By interchanging A and A' we also infer the existence of a unique mapping g

such that (1 + g ) ° ( L + A') = (jL + A)°( l + g) a n c j with similar properties as in (Al.l 1).
Combining these two we can write:

In this we have:

=1+1,
where g = g + g ° ( l + g).

Observe that A(e, C) <= A(e0, C), so A e A(e0, C). We want to show that g satisfies
the properties in (Al. 10); then uniqueness implies g = 0, hence ( l + g ) ° ( l + g) = l;
in a similar way also (l + g ) ° ( l + g) = l; so 1 + g has an inverse namely 1 + g.

So let us check (A1.10) for g. From the estimates on fz in Proposition Al.l it
immediately follows from the conjugacy equation that g is uniformly continuous
On W X[-T£0, T£o]-

First we look at how (Al. l l )(d) implies an estimate for gz on R"xR. Let (y, z)e
R"xR, |z|>Te. There exists an NeN such that \z\e[aNTe, aN+1re]. As supp(A)u
s u p p ( A ' ) c R " x [ - r e , re] it follows from the conjugacy equation that

where L~N-\y, z)eR" x[-re, re]. Denote ( / , z') = L"""1^, z); then z = aN+xz'
and

\g,(y, z)\ WN+lgAy', z')\ 2-2S

N + l

since S e ]0, | ] .
We conclude that for all (y, z) € W x U • \gz(y, z)\/\

g. We prove (A.1.10)(b) for g. So let \z\ > re0.
We first show the implication |z|e[Te0, aTeo]

[TE0,

Then

'' < 1. The same holds for

|z + gz(y, z)|>re. Let |z|e
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so
\z + gz(y,z)\>\z\(l-\z\l-2S)

Now let N eN and suppose by induction that the following implication holds for
all (y,z)eU"xU:

\z\ e [aNre0, aN+ire0]=>\z +gz(y, z)\ > aNre.

Suppose \z\ e [aN+1Te0, aN+2Te0]. Then, by the conjugacy equation we have:

gz(y,z)\ = \a(\+g)2(L-1(y,z))\

since \{L~\y, z))z\e[aNre0, aN+1re0].
We can conclude that for all (y, z) E W X R:

Since g+ = 0 outside \z\ < re and since g+ = 0 outside \z\ < re we see from the formula
for g that g+ = 0 outside |z| < re0-

We prove (A1.10)(c) for g. Remember that the supports of A, A' lie in R" x [-re, re].
Let (y, z) e R" xR, \z\ > re. There exists an NeN such that |z| e [a^re, aJV+1re].

We have from the conjugacy equation:

Denote ( / , z') = L"^"1^, z); then z = a ^ V and

| z

y . Z ) l , II r ..
l - 8 —II ^ - 1 1

So we may conclude that for all

Similarly for g_.
Furthermore, by (Al.ll)(b), for all

(y, z)eR"xR:

The same holds for g+.
So we can write for all (y, z) e R" x [-re0, TE0]:

\l~s

\z\l~s '\z\l~s° \z\l~s°

^ + l
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If e0 is small (only depending on T, 50) 5) we can make this less than 1. A similar
argument works for g+. We finally prove (A1.10)(d) for g:

if e0 is small enough. •

A2. Theorem A reduces to Lemma 2. As before we have two diffeomorphisms f, f
(or local diffeomorphisms) on R" x {0}, with

/ , / ' (Al-2.1)

for y e W. It follows that A = df(0) respectively A' = df(0) is of the form

.respectively

\B' *1
l " o .•

with B = B', a = a' and * some term which is irrelevant. Using a linear coordinate
change respecting W x {0}, we can put B = B' in the form

B = l0 B+_

where the eigenvalues of B_ are less than \a\, (in norm), and the norms of the
eigenvalues of B+ are bigger or equal to \a\. Denoting || • || for the operator norm
of a linear map and choosing 8e]0, \[ such that |a|'~s is not an eigenvalue of B,
we can take this linear coordinate change so that

\\B-\\<\°r\

So, using this coordinate change, we can assume that df(Q), df(0) are of the form

df(0) =

4T(0) =

Write

L =

0
0

L_
0

0

L_

0

0

0
L+

0

0

L+

0

0

L+

0

b.
b+

a

bL

b'+

a

0"

0
a
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The / and f are of the form

lbA
W

f b'+\z+P'(x),

W
where \P(x)\,\P'(x)\ = O(\x\2).

Now we will globalize the local difieomorphisms / and f. Take a bump function
/3 such that
(1) /3:R-»[0,l] isC°°
(2) )8(z) = 0 outside |z |>l
(3) j3(z) = l for |z |<i
We define for e > 0

and fe = L+X€; similarly for A 'e and fe = L+A'e.
Clearly/e | R" x {0} =f'e |R x {0}. We check the desired properties for A£ (those for

A'e are the same). The support of \e is compact and lies in R" x [ - e , e]. We can
choose eo>0 and M > 0 such that for all xeRn xR with |x| < e0: \\DP(x)\\ < M\x\

d | P ( ) | M | | 2

If 0 < e < e0 then |Ae| s Ce with C > 0 not depending on e. Denote / = |(fe_, b+, 0)|;
then the Leibniz formula yields the following, for 0< e < e0: if |x| < e then

/ /\x\\ \ 1
Lipl̂ Sl1—-JP(x) I<-Lipj8- Me2+Me;

as )8(|x|/e) P(x) = 0 for |x|>e this estimate remains correct on R"xR; for |z|<e:

/ M\(b-\ \
Lip / 3 ( | J C | ) 0 — )\b+ z < Lip p • Is +- Lip fi-le + l,

\ K'\o}}
which remains correct on R" x R since

(b.\
[^)\b+ z = 0 for|z|ge.

,0/

Hence Lip(Ae) is bounded by some C > 0 not depending on e(<f0). Similarly we
can estimate Lip,,Ae, meaning the Lipschitz constant respecting the y-variable:

Lip p • le
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and

Lip,, (p(—)p(x)j < - Lip P • Me2+Me;

hence Lip,, (Ae)< Ce for some C > 0 independent of e (^£0). The C1 function ye

is defined by

where Aez is the z-component of A€. Since Pz(y, 0) = 0 one can write Pz(j>, z) =
, z) • z for a C1 function q>. By definition

y.(x) = /8^J,(x).

As q(y, 0) = (dPz/dz)(y, 0) we have q{0, 0) = 0 and for eo> 0 sufficiently small one
can find N > 0 so that for |x |<e0: |g(x)|< N\x\. Consequently, for 0 < e < e o we
have (taking into account that ye(x) = 0 for \x\ > e):

and

Lip (%) s - Lip /3 • Ne + Lip q< C,

for some C > 0 not depending on s.
All the conditions of Lemmas Al and A2 are satisfied. As / and fe coincide

on a small neighbourhood of 0, it follows that Theorem A reduces to
Lemma A2. •

Remark. In case / and / ' are the time-1-mappings of the resp. flows (X,),eR and
(^I)ieR we can use the same method as in [Pu] to show that (Xt) and (X',) are
conjugate in the neighbourhood of 0.

Using a bumpfunction we extend (X,) and (X',) to flows which are globally
defined. Let us still denote them by (X,) and (X1,). If/ and/ ' are their respective
time 1-mappings and h is the unique conjugacy as given by Theorem A, then one
shows that h = Jo (X't ° h ° X_,) dt, and hence that h serves as a conjugacy between
X, and X\ for any t.

Appendix 2. Characterization of the conjugacies in theorem A, in the special case of
an («, I)-saddle
In this Appendix we work again with diffeomorphisms / and / ' as in Theorem A
of Appendix 1. However, / |R" x {0} =f\U" x {0} = g is supposed to be a contraction
(not necessarily hyperbolic) and moreover/is the 'normal linearization' of/' along
U" x {0}. We will show that any conjugacy between / and/ ' given in the neighbour-
hood of a fundamental domain of g and 'tangent to the identity along R" x {0}'
(like in Theorem A) extends in a unique way to a conjugacy between / and / ' .

Let f :R" xM-*M" xU:(y, z)^>(f'y(y, z),f'2(y, z)) be of class C2 and defined on
an open neighbourhood V of 0 and a diffeomorphism onto its image, with f(0) = 0.
Suppose that f't{y, z) = y'(y, z) • z where y' is C1 and y'(0,0) = a > 1. Let / be the
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'normal linearization' of/, i.e./:RnxR-»R" xM:(y, z)-*(g(y), y(y)z) with g(y) =
f'yiy, 0) and y(y) = y'(y, 0). Assume V = V, x ]-e, e[ where V, is so small that for
all ye V,: y{y)>b>\.

Let us moreover suppose that g is a local contraction in 0 in the sense that for
some Riemannian metric on R": V, =>5,(0) (the closed unit ball), g(B,(0))<= 5,(0)
and r U o £"(5,(0)) = {<>}.

THEOREM B. Let f f be as above and let h be any mapping, homeomorphism onto
its image, defined on some neighbourhood W of (B,(0)\g(B,(0)))x{0} in R"xR,
We V, with the property h °f=f °h,h = (hy, hz),

K-z hy-y

Then h extends uniquely to a C° conjugacy between f and f on a neighbourhood ofO.

Proof. Because of Theorem A, / is C° conjugate to / ' around the origin; moreover
the conjugacy H = (Hy, H2) is such that

Hz-z

and

for some a > 0. We take care that/° H = H°f holds on V. Taking V ° V sufficiently
small and extending h by means of the condition h °f=f° h ('saturation'); we may
suppose that h is defined on W=> V\({0}xR) and that h(W)c V. Consider K =
H° h: W-*R"\({0}xR); K is a homeomorphism onto its image, K °f=f° K and
K = (Ky, Kz) = (y + P,z +

Q

with

P
= £ 1 .

We also define K on {0} x R to be the identity; we shall prove that K is continuous.
As a consequence H = H~* ° K is a C° conjugacy between/and/1 in the neighbour-
hood of 0, with H | W = h. It is clearly the unique conjugacy extending h.

So take a sequence (j,-, z,-)->(0, z), i-»oo, j>,;*0. For each ieN consider NteN
with g~N'(y,) e B1(0)\g(51(0)). Remember: f(y, z) = (g(y), y(y)z).

Clearly ]V,-»oo for i->oo. As K commutes with / we have that K(y,,zt) =
fN>°K°rN>{yi,zt).

More explicitly:

K(y<, A) = (9i + P(y~i, zi), zt + Qiyi, z,)) = (y»
and

K{yt, zi) = (gN'(yi), ("n y(gJ(P,)))sX
\ 7=0 /
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Take / e N large enough so that for all i a / : g(yt) e B,(0); this is possible because
y(y)> b> 1, because X|Rnx{0} is the identity and because K is continuous on
W. It follows that gN'(j,)-»0 for i-*oo.

Now

Kz(yi,zi) = ( h

and as y, = g N'(y,) we get

\;=o y(g iyi))J \j=o
Furthermore

lim
j=o y(gJ(yi))

)) .
= 1 ,

))
• = 1 ,

J(yi))

It suffices to show that

because then,

for a > 0 which implies limbec X(.y,, z,) = (0, z).
As y is C1 there exists a C,>0 such that y(y) = y(y') + L(y,y') with |L(>\/)|:

C ^ - ^ ' l . From this:

and

y(gJ(y,))

So using ||Dg(0)|| < 1 and taking Vj sufficiently small we can find a positive constant
A < ba/2 such that for V^, yt e V,,

1-^1 AJ\° -1 -- y(gJ(yi)) -;! | C i

ft ' ' ~y(gJ(y~i))~ ft
We use

a / 2
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and obtain

r 7 a/2

We take the logarithm of these expressions; moreover we have the estimates:

and similarly

I log
I C
V b

z
a/2

I z l a / 2

"/2(1 _ AN.'-2Cx\Zi\
a/2{\~AN')

bl+iN'a(l-A) |Zi|
72

a/2

' l " / 2 l

|Zfl

Hence, as A<b°" , we can find a constant C2>0, independent of i, such that

Since |fi|
<*/2<|z,/fcN'|a/2->0 for i->oo the proof is finished. D

Remark. Iff and/ ' are the time 1-mapping of the flows X, resp. X', and if h in the
previous construction is a conjugacy between the flows, then H will be a conjugacy
between the flows.
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